1
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Arya SS, More PR, Ladole MR, Pegu K, Pandit AB. Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106504. [PMID: 37406541 PMCID: PMC10339045 DOI: 10.1016/j.ultsonch.2023.106504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Hydrodynamic cavitation (HC) is the process of bubbles formation, expansion, and violent collapse, which results in the generation of high pressures in the order of 100-5000 bar and temperatures in the range of 727-9727 °C for just a fraction of seconds. Increasing consumer demand for high-quality foods with higher nutritive values and fresh-like sensory attributes, food processors, scientists, and process engineers are pushed to develop innovative and effective non-thermal methods as an alternative to conventional heat treatments. Hydrodynamic cavitation can play a significant role in non-thermal food processing as it has the potential to destroy microbes and reduce enzyme activity while retaining essential nutritional and physicochemical properties. As hydrodynamic cavitation occurs in a flowing liquid, there is a decrease in local pressure followed by its recovery; hence it can be used for liquid foods. It can also be used to create stable emulsions and homogenize food constituents. Moreover, this technology can extract food constituents such as polyphenols, essential oils, pigments, etc., via biomass pretreatment, cell disruption for selective enzyme release, waste valorization, and beer brewing. Other applications related to food production include water treatment, biodiesel, and biogas production. The present review discusses the application of HC in the preservation, processing, and quality improvement of food and other related applications. The reviewed examples in this paper demonstrate the potential of hydrodynamic cavitation with further expansion toward the scaling up, which looks at commercialization as a driving force.
Collapse
Affiliation(s)
- Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India.
| | - Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Mayur R Ladole
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Aniruddha B Pandit
- Chemical Engineering Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
3
|
More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
5
|
Usman I, Hussain M, Imran A, Afzaal M, Saeed F, Javed M, Afzal A, Ashfaq I, Al Jbawi E, A. Saewan S. Traditional and innovative approaches for the extraction of bioactive compounds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mehak Javed
- Medicine and Allied, Faisalabad Medical University, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Shamaail A. Saewan
- Department of Food Sciences, College of Agriculture, University of Basrah, Basrah, Iraq
| |
Collapse
|
6
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
7
|
Abstract
In the present review article, the definitions and the most advanced findings within Process Intensification are collected and discussed. The intention is to give the readers the basic concepts, fixing the syllabus, as well as some relevant application examples of a discipline that is well-established and considered a hot topic in the chemical reaction engineering field at present.
Collapse
|
8
|
Suktham K, Daisuk P, Shotipruk A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia L. (Rubiaceae): Errata and review of technological development and prospects. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Szewczyk K, Bogucka-Kocka A, Vorobets N, Grzywa-Celińska A, Granica S. Phenolic Composition of the Leaves of Pyrola rotundifolia L. and Their Antioxidant and Cytotoxic Activity. Molecules 2020; 25:molecules25071749. [PMID: 32290223 PMCID: PMC7180938 DOI: 10.3390/molecules25071749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
The leaves of Pyrola rotundifolia L. were extracted in the mixed solvent of methanol/acetone/water (2:2:1, v/v/v) and investigated for their phytochemical analysis and biological activity. Total phenolic and flavonoid contents were determined spectrophotometrically. A high content of phenols (208.35 mg GAE/g of dry extract), flavonoids (38.90 mg QE/g of dry extract) and gallotannins (722.91 GAE/g of dry extract) was obtained. Ultra-high performance liquid chromatography diode array detector tandem mass spectrometry (UHPLC-DAD-MS) allowed for the detection of 23 major peaks at 254 nm. The extract was analyzed for its antioxidant capacity using 2,2-diphenyl-1-picryl-hydrazyl (DPPH•) and 2,2'-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS•+) radical scavenging, metal chelating power and β-carotene-linoleic acid bleaching assays. The examined extract showed moderate radical scavenging and chelating activity, and good inhibiting ability of linoleic acid oxidation (EC50 = 0.05 mg/mL) in comparison to standards. The cytotoxic effect in increasing concentration on five types of leukemic cell lines was also investigated using trypan blue vital staining. It was found that the analyzed extract induced the apoptosis of all the tested cell lines. Our findings suggest that the leaves of P. rotundifolia are a source of valuable compounds providing protection against oxidative damage, hence their use in traditional medicine is justified.
Collapse
Affiliation(s)
- Katarzyna Szewczyk
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
- Correspondence: ; Tel.: +4-881-448-7064
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - Natalia Vorobets
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Danylo Halytsky Lviv National Medical University, 69 Pekarska Str., 79010 Lviv, Ukraine;
| | - Anna Grzywa-Celińska
- Chair and Departament of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
10
|
Li SJ, Liu Q, He XB, Liu JP, Liu XL, Hu J, Tang ZP, Peng QY, Cui LJ, Zhang HN, Yang XL, Wang Q, Zhang ZJ. Pyrola incarnata demonstrates neuroprotective effects against β-amyloid-induced memory impairment in mice. Bioorg Med Chem Lett 2020; 30:126858. [PMID: 31836444 DOI: 10.1016/j.bmcl.2019.126858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the neuroprotective effects of Pyrola incarnata against β-amyloid-induced memory impairment in mice. Ethanol extract of Pyrola incarnata (EPI) was obtained and led to eleven phytochemicals successfully by isolation and purification, which were elucidated by spectroscopic analysis (1H NMR, 13C NMR and HR-ESI-MS). Thereinto, ursolic acid was gained as most abundant monomer. C57BL/6 mice were intracerebroventricular injected with aggregated Aβ25-35. Open-field test, Barnes maze test and Morris water maze were conducted for evaluating cognition processes of EPI and ursolic acid. EPI significantly improved learning and memory deficits, attenuated the Aβ25-35 level of deposition immunohistochemically. Further studies revealed that ursolic acid as bioactive phytochemical of P. incarnata improved spatial memory performance and ameliorated Aβ25-35 accumulation by activating microglia cells and up-regulating Iba1 level in the hippocampus. These findings suggest P. incarnata could improve the cognition of mice and be a promising natural source for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Shuang-Jun Li
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qian Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiao-Bin He
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin-Ping Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiao-Liu Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Hu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhi-Peng Tang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qing-Yun Peng
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lian-Jie Cui
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hua-Ni Zhang
- Department of Pharmacy, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, Hubei 442000, China
| | - Xi-Liang Yang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qiang Wang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhi-Jian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
11
|
Yang X, She J, Liu J, Yang T, An G, Chen Q, Fan C, Li S, Liu Q, Qian C, Liu Y, Zhou Y, Zhao J. A Comprehensive Review of the Genus Pyrola Herbs in Traditional Uses, Phytochemistry and Pharmacological Activities. Curr Top Med Chem 2019; 20:57-77. [PMID: 31797760 DOI: 10.2174/1568026619666191203112412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Pyrola (Pyrolaceae), also known as Luxiancao/in China, was recorded in Sheng Nong's Herbal Classic listed in top grade. Pyrola herbs were used as medicinal plants for a long history with wide-ranging activities such as nourishing kidney-yang, strengthening muscles and bones, activating blood, stopping bleeding, dispelling rheumatism, and eliminating dampness. Currently, the research on Pyrola plants is increasing year by year but there is no comprehensive and detailed review concerning genus Pyrola. This review aims to sum up the updated and comprehensive information about botany and traditional use, phytochemistry, pharmacological activities and safety by analyzing the information available on Pyrola plants via internationally accepted scientific databases. Collectively, more than 100 compounds have been isolated from the Pyrola plants. Furthermore, a total of 33 prescriptions containing Pyrola plants are compiled in this review. Pyrola plants are used as indispensable agents in traditional Chinese medicine due to its activities of antimicrobial, anti-inflammatory, antioxidant, lipidlowering, cardiovascular and cerebrovascular protection, proliferation of osteoblasts promoting, antineoplastic and etc. Further work should be developed on the elucidation of structure-function relationship, understanding of multi-target pharmacological effects, as well as developing its application both in clinical usage and functional food for research and development of Pyrola plants.
Collapse
Affiliation(s)
- Xiliang Yang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jianglian She
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinping Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tao Yang
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Gege An
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingru Chen
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Fan
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuangjun Li
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qian Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunguo Qian
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Liu
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yajie Zhou
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jingyi Zhao
- Department of Pharmacy, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
12
|
Zhang SD, Wang P, Zhang J, Wang W, Yao LP, Gu CB, Efferth T, Fu YJ. 2'O-galloylhyperin attenuates LPS-induced acute lung injury via up-regulation antioxidation and inhibition of inflammatory responses in vivo. Chem Biol Interact 2019; 304:20-27. [PMID: 30849337 DOI: 10.1016/j.cbi.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
2'O-galloylhyperin, an active flavonol glycoside compound with remarkable anti-immune activity, was isolated from Pyrola [P. incarnata Fisch.]. However, the evidence of anti-inflammatory activity in pulmonary diseases was still not convincing. The aim of the present study was (1) to investigate the effect of 2'O-galloylhyperin on LPS-induced acute lung injury in mice, and (2) to identify the mechanisms of attenuation of inflammatory responses. The results demonstrated that 2'O-galloylhyperin significantly reduced LPS-induced inflammation damage in a dose-dependent manner. After LPS challenge, treatment with 2'O-galloylhyperin reduced the production of pro-inflammatory cytokines and chemokines, and also improved LPS-induced lung histopathology changes. 2'O-galloylhyperin also increased the activities of antioxidant enzymes, including SOD and GSH-Px to maintain cellular redox homeostasis. Furthermore, 2'O-galloylhyperin inhibited translocation of nuclear factor (NF-κB) activation and suppressed phosphorylation of MAPK signaling pathway consisting of p38, ERK, JNK. In addition, 2'O-galloylhyperin enhanced heme oxygenase-1 (HO-1) expression to block LPS-induced inflammation via activating nuclear factor-crythroid 2-related factor (Nrf2). Moreover, 2'O-galloylhyperin induced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation. 2'O-galloylhyperin attenuated LPS-induced acute lung injury by inhibiting the MAPK and NF-κB signaling pathways, presumably related to up-regulation of the AMPK and Nrf2 signaling pathways. Furthermore, 2'O-galloylhyperin is a potential protective antioxidant to protect lung tissues from the acute injury.
Collapse
Affiliation(s)
- Sun-Dong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Peng Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Li-Ping Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040766] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With growing consumer demand for natural products, greener extraction techniques are found to be potential alternatives especially for pharmaceutical, nutraceutical, and cosmetic manufacturing industries. Cavitation-based technology has drawn immense attention as a greener extraction method, following its rapid and effective extraction of numerous natural products compared to conventional techniques. The advantages of cavitation-based extraction (CE) are to eliminate the application of toxic solvents, reduction of extraction time and to achieve better extraction yield, as well as purity. The cavitational phenomena enhance the extraction efficiency via increased mass transfer rate between the substrate and solvent, following the cell wall rupture, due to the intense implosion of bubbles. This review includes a detailed overview of the ultrasound-assisted extraction (UAE), negative pressure cavitation (NPC) extraction, hydrodynamic cavitation extraction (HCE) and combined extractions techniques which have been implemented for the extraction of high-value-added compounds. A list of essential parameters necessary for the maximum possible extraction yield has been discussed. The optimization of parameters, such as ultrasonic power density, frequency, inlet pressure of HC, extraction temperature and the reactor configuration denote their significance for better efficiency. Furthermore, the advantages and drawbacks associated with extraction and future research directions have also been pointed out.
Collapse
|
14
|
Hu X, Li H, Fu L, Liu F, Wang H, Li M, Jiang C, Yin B. The protective effect of hyperin on LPS-induced acute lung injury in mice. Microb Pathog 2018; 127:116-120. [PMID: 30502516 DOI: 10.1016/j.micpath.2018.11.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
Hyperin, a flavonoid compound found in natural plants, has been reported that it have anti-inflammatory properties. However, the protective effects and mechanisms of hyperin on acute lung injury have not been reported so far. This research was designed to investigate the protective effects of hyperin on lipopolysaccharide-induced acute lung injury (ALI) in mice. The mice were stimulated with LPS in the presence or absence of hyperin and the MPO activity, lung wet/dry ratio, inflammatory cells in BALF, and cytokines, as well as NF-κB expression were assessed in lung tissue. Results showed that hyperin significantly inhibited LPS-induced histological changes, inflammatory cell infiltration, MPO activity and lung wet/dry ratio. Additionally, hyperin distinctly reduced the production of TNF-α, IL-1β and IL-6 and the activation of NF-κB signaling pathways in LPS-induced ALI in mice. In conclusion, hyperin is an effective suppressor of inflammation and may be a promising potential therapeutic reagent for ALI treatment.
Collapse
Affiliation(s)
- Xiansheng Hu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China; Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin, 132101, China.
| | - Hongjin Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Lianjun Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Fang Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Mushen Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Cheng Jiang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|
15
|
Wang P, Gao C, Guo N, Zhang SD, Wang W, Yao LP, Zhang J, Efferth T, Fu YJ. 2'- O-Galloylhyperin Isolated From Pyrola incarnata Fisch. Attenuates LPS-Induced Inflammatory Response by Activation of SIRT1/Nrf2 and Inhibition of the NF-κB Pathways in Vitro and Vivo. Front Pharmacol 2018; 9:679. [PMID: 29997508 PMCID: PMC6030669 DOI: 10.3389/fphar.2018.00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
2′-O-galloylhyperin, a major compound of Pyrola incarnata Fisch., possesses a variety of biological and pharmacological activities, including anti-oxidative and anti-inflammatory activities. Nevertheless, the underlying molecular mechanisms of 2′-O-GH in microbial infection and sepsis are not clear. In this study, we investigated the anti-inflammatory effects of 2′-O-GH. We found that 2′-O-GH significantly reduced the production of TNF-α, IL-6, and nitric oxide (NO), suppressed the expression levels of iNOS, blocked the translocation of NF-κB from the cytosol to nucleus, and decreased the MAPK activation in LPS-activated RAW 264.7 cells. 2′-O-GH also enhanced the nuclear translocation of Nrf2 and up-regulated the expression of heme oxygenase-1 (HO-1) and SIRT1. In addition, the administration of 2′-O-GH attenuated the TNF-α and IL-6 production in the serum, infiltration of inflammatory cells, liver tissue damage, and the mortality rate of LPS-challenged mice. Moreover, 2′-O-GH significantly upregulated Nrf2 and SIRT1 expression and inhibited the inflammatory responses in the liver of septic mice. The collective data indicate that 2′-O-GH could potentially be a novel functional food candidate in the treatment of sepsis.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chang Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Sun-Dong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Li-Ping Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnata. Carbohydr Polym 2018; 181:560-569. [DOI: 10.1016/j.carbpol.2017.11.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/22/2022]
|
17
|
Dong F, Liu T, Jin H, Wang W. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways. Can J Physiol Pharmacol 2018; 96:1-7. [PMID: 28177668 DOI: 10.1139/cjpp-2016-0522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Feng Dong
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Tingting Liu
- Pediatric Intensive Care Unit, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Hao Jin
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Wenbo Wang
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| |
Collapse
|
18
|
Ekezie FGC, Sun DW, Cheng JH. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Roohinejad S, Koubaa M, Barba FJ, Greiner R, Orlien V, Lebovka NI. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Chimaphilin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines through insulin-like growth factor-I receptor (IGF-IR) signaling. Chem Biol Interact 2015; 237:25-30. [DOI: 10.1016/j.cbi.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/26/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|