1
|
Mahmoud BG, Abualreish MJA, Ismael M, Khairy M. Synchronous analysis of acetaminophen, codeine, and caffeine in human fluids employing graphite screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3993-4001. [PMID: 38855887 DOI: 10.1039/d4ay00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A facile electrochemical approach is proposed for the synchronous determination of acetaminophen (ACP), codeine (COD) and caffeine (CAF) utilizing unmodified screen-printed electrodes (SPEs). The determination of ACP, COD and CAF has been explored across different supporting electrolytes including sulfuric acid (H2SO4), hydrochloric acid (HCl), phosphoric acid (H3PO4) and Briton Robinson (B.R) buffer solutions. It was found that a 0.05 mol L-1 sulfuric acid solution is an optimal supporting electrolyte utilized for voltammetric analysis of ACP, COD, and CAF with improved sensitivity, stability, and reproducibility. The electro-analytical sensing of ACP, COD and CAF was investigated using SPEs within linear concentration ranges of 3.0-35.0 μmol L-1, 10-160 μmol L-1 and 10-160 μmol L-1 and revealed competitively low limits of detection (3S/N) of 0.9, 4.8 and 6.3 μmol L-1 for ACP, COD and CAF, respectively. The results indicated the possibility of such a simple and quick electroanalytical protocol for online monitoring of pharmaceutical formulations comprising ACP, COD, and CAF drugs in human fluids with satisfactory recovery.
Collapse
Affiliation(s)
- Bahaa G Mahmoud
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| | - Mustafa J A Abualreish
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| | - Mohamed Khairy
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| |
Collapse
|
2
|
de Freitas Araújo KC, de Araújo Costa ECT, de Araújo DM, Santos EV, Martínez-Huitle CA, Castro PS. Probing the Use of Homemade Carbon Fiber Microsensor for Quantifying Caffeine in Soft Beverages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1928. [PMID: 36903043 PMCID: PMC10004175 DOI: 10.3390/ma16051928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In the development of electrochemical sensors, carbon micro-structured or micro-materials have been widely used as supports/modifiers to improve the performance of bare electrodes. In the case of carbon fibers (CFs), these carbonaceous materials have received extensive attention and their use has been proposed in a variety of fields. However, to the best of our knowledge, no attempts for electroanalytical determination of caffeine with CF microelectrode (µE) have been reported in the literature. Therefore, a homemade CF-µE was fabricated, characterized, and used to determine caffeine in soft beverage samples. From the electrochemical characterization of the CF-µE in K3Fe(CN)6 10 mmol L-1 plus KCl 100 mmol L-1, a radius of about 6 µm was estimated, registering a sigmoidal voltammetric profile that distinguishes a µE indicating that the mass-transport conditions were improved. Voltammetric analysis of the electrochemical response of caffeine at the CF-µE clearly showed that no effects were attained due to the mass transport in solution. Differential pulse voltammetric analysis using the CF-µE was able to determine the detection sensitivity, concentration range (0.3 to 4.5 µmol L-1), limit of detection (0.13 μmol L-1) and linear relationship (I (µA) = (11.6 ± 0.09) × 10-3 [caffeine, μmol L-1] - (0.37 ± 0.24) × 10-3), aiming at the quantification applicability in concentration quality-control for the beverages industry. When the homemade CF-µE was used to quantify the caffeine concentration in the soft beverage samples, the values obtained were satisfactory in comparison with the concentrations reported in the literature. Additionally, the concentrations were analytically determined by high-performance liquid chromatography (HPLC). These results show that these electrodes may be an alternative to the development of new and portable reliable analytical tools at low cost with high efficiency.
Collapse
Affiliation(s)
- Karla Caroline de Freitas Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Emily Cintia Tossi de Araújo Costa
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Danyelle Medeiros de Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Elisama V. Santos
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
- School of Science and Technology, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Carlos A. Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Pollyana Souza Castro
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| |
Collapse
|
3
|
Tasić ŽZ, Petrović Mihajlović MB, Simonović AT, Radovanović MB, Antonijević MM. Recent Advances in Electrochemical Sensors for Caffeine Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9185. [PMID: 36501886 PMCID: PMC9735645 DOI: 10.3390/s22239185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review.
Collapse
|
4
|
Altunay N, Tuzen M, Hazer B, Elik A. Synthesized of a novel xanthate functionalized polypropylene as adsorbent for dispersive solid phase microextraction of caffeine using orbital shaker in mixed beverage matrices. Food Chem 2022; 393:133464. [PMID: 35751221 DOI: 10.1016/j.foodchem.2022.133464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
A newly synthesized xanthate functionalized chlorinated polypropylene (PP-Xa) was used as adsorbent for the orbital shaker based on dispersive solid phase microextraction (OS-DSPME) of caffein from several tea, coffee, energy drink, coca-cola and chocolate samples using UV-vis. spectrophotometer. Synthesized PP-Xa was characterized using Fourier Transform Infrared spectroscopy (FTIR-ATR) and nuclear magnetic resonance spectroscopy (1H NMR). Various parameters like pH, PP-Xa amount, extraction time, type of eluent and its volume were optimized. Linear range, detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD), recovery values, and enrichment factor (EF) were found 90-1000 μgL-1, 27.3 µg L-1, 90 µg L-1, 1.9-2.6%, 98 ± 2%, and 167, respectively. Adsorption capacity of PP-Xa was found 271.9 mg g-1. Standard addition and reference method were used for confirm the accuracy of present method.
Collapse
Affiliation(s)
- Nail Altunay
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Marine Studies, Dhahran 31261, Saudi Arabia.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Adil Elik
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
5
|
Trung VQ, Hung HM, Van Khoe L, Duc LM, Bich Viet NT, Linh DK, Huong VT, Dat ND, Yen Oanh DT, Luong NX, Chinh NT, Thai H, Tuyet Lan HT, Van CL, Ţălu Ş, Trong DN. Synthesis and Characterization of Polypyrrole Film Doped with Both Molybdate and Salicylate and Its Application in the Corrosion Protection for Low Carbon Steel. ACS OMEGA 2022; 7:19842-19852. [PMID: 35721967 PMCID: PMC9202266 DOI: 10.1021/acsomega.2c01561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polypyrrole (PPy) films doped with molybdate and salicylate have been successfully electropolymerized on low carbon steel in aqueous solutions containing both molybdate and salicylate in a one-step process that did not require any pre-treatment of the steel substrate. Salicylate-doped PPy films were synthesized in the same way for comparison. The steel surface was rapidly inhibited and the PPy-based films were formed on it easily. The PPy-based films were characterized by Fourier transform infrared, scanning electron microscopy, energy dispersive X-ray, and thermal gravimetric analysis methods. The corrosion protection performance of the coatings was investigated with electrochemical impedance spectroscopy, open circuit potential (OCP), salt spray test, and Tafel polarization. It was found that in the presence of both molybdate and salicylate as dopants, the films on steel could present a better corrosion resistance than PPy film doped with only salicylate. The self-healing property of PPy-based films was observed on the OCP measurement with the fluctuation of rest potential. The salt spray test results showed that the PPy film doped with both salicylate and molybdate was more salt-resistant than the PPy film doped with only salicylate. The results suggest that the PPy coatings doped with both molybdate and salicylate are potential for application as metallic anti-corrosion coatings.
Collapse
Affiliation(s)
- Vu Quoc Trung
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan
Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Ha Manh Hung
- Faculty
of General Education, Hanoi University of
Mining and Geology, Duc Thang Ward, BacTu Liem District, Hanoi 100000, Vietnam
| | - Le Van Khoe
- Faculty
of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa City 100000, Vietnam
| | - Le Minh Duc
- Branch
of National Institute of Occupational Safety and Health & Environmental
Protection in Central of Vietnam, 178 Trieu Nu Vuong, Hai Chau, Da Nang 540000, Vietnam
| | - Nguyen Thi Bich Viet
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan
Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Duong Khanh Linh
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan
Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Vu Thi Huong
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan
Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Nguyen Dang Dat
- Faculty
of Chemistry, Hanoi National University
of Education, 136 Xuan
Thuy, Cau Giay District, Hanoi 100000, Vietnam
| | - Doan Thi Yen Oanh
- Publishing
House for Science and Technology, Vietnam
Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Ngo Xuan Luong
- Faculty
of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa City 100000, Vietnam
| | - Nguyen Thuy Chinh
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hoang Thai
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hoang Thi Tuyet Lan
- Faculty
of Basic Sciences, University of Transport
and Communications, No 3 Cau Giay Street, Hanoi 100000, Vietnam
| | - Cao Long Van
- Institute
of Physics, University of Zielona Góra, Prof. Szafrana 4a, Zielona Góra 65-516, Poland
| | - Ştefan Ţălu
- The
Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu Street, Cluj-Napoca 400020, Cluj
county, Romania
| | - Dung Nguyen Trong
- Institute
of Physics, University of Zielona Góra, Prof. Szafrana 4a, Zielona Góra 65-516, Poland
- Faculty of Physics, Hanoi National University
of Education, 136 Xuan Thuy, Cau giay, Ha Noi 100000, Vietnam
| |
Collapse
|
6
|
Sadok I, Tyszczuk-Rotko K, Mroczka R, Kozak J, Staniszewska M. Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode - Application in Samples Delivered from Human Cancer Cells. Int J Tryptophan Res 2021; 14:11786469211023468. [PMID: 34276216 PMCID: PMC8256253 DOI: 10.1177/11786469211023468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, development of analytical methods responding to a need for rapid and
accurate determination of human metabolites is highly desirable. Herein, an
electrochemical method employing a Nafion-coated glassy carbon electrode
(Nafion/GCE) has been developed for reliable determination of kynurenine (a key
tryptophan metabolite) using a differential pulse adsorptive stripping
voltammetry. To our knowledge, this is the first analytical method to allow for
kynurenine determination at the Nafion-coated electrode. The methodology
involves kynurenine pre-concentration in 0.1 M H2SO4 in
the Nafion film at the potential of +0.5 V and subsequent stripping from the
electrode by differential pulse voltammetry. Under optimal conditions, the
sensor can detect 5 nM kynurenine (for the accumulation time of 60 seconds), but
the limit of detection can be easily lowered to 0.6 nM by prolonging the
accumulation time to 600 seconds. The sensor shows sensitivity of
36.25 μAμM−1cm−2 and
185.50 μAμM−1cm−2 for the accumulation time of 60 and
600 seconds, respectively. The great advantage of the proposed method is easy
sensor preparation, employing drop coating method, high sensitivity, short total
analysis time, and no need for sample preparation. The method was validated for
linearity, precision, accuracy (using a high-performance liquid chromatography),
selectivity (towards tryptophan metabolites and different amino acids), and
recovery. The comprehensive microscopic and electrochemical characterization of
the Nafion/GCE was also conducted with different methods including atomic force
microscopy (AFM), optical profilometry, time-of-flight secondary ion mass
spectrometry (TOF-SIMS), electrochemical impedance spectroscopy (EIS), and
cyclic voltammetry (CV). The method has been applied with satisfactory results
for determination of kynurenine concentration in a culture medium collected from
the human ovarian carcinoma cells SK-OV-3 and to measure IDO enzyme activity in
the cancer cell extracts.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Robert Mroczka
- Laboratory of X-ray Optics, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Applicability of Cork as Novel Modifiers to Develop Electrochemical Sensor for Caffeine Determination. MATERIALS 2020; 14:ma14010037. [PMID: 33374209 PMCID: PMC7794975 DOI: 10.3390/ma14010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5-1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.
Collapse
|
8
|
Tyszczuk-Rotko K, Pietrzak K, Sasal A. Adsorptive stripping voltammetric method for the determination of caffeine at integrated three-electrode screen-printed sensor with carbon/carbon nanofibers working electrode. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00116-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Novel cork-graphite electrochemical sensor for voltammetric determination of caffeine. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Furtado LDA, Gonçalves MCDO, Inocêncio CVM, Pinto EM, Martins DDL, Semaan FS. Electrodeposition of 4-Benzenesulfonic Acid onto a Graphite-Epoxy Composite Electrode for the Enhanced Voltammetric Determination of Caffeine in Beverages. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8596484. [PMID: 30809415 PMCID: PMC6364101 DOI: 10.1155/2019/8596484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Caffeine is widely present in food and drinks, such as teas and coffees, being also part of some currently commercialized medicines, but despite its enhancement on several functions of human body, its exceeding use can promote many health problems. In order to develop new fast approaches for the caffeine sensing, graphite-epoxy composite electrodes (GECE) were used as substrate, being modified by different diazonium salts, synthetized as their tetraflouroborate salts. An analytical method for caffeine quantification was developed, using sware wave voltammetry (SWV) in Britton-Robinson buffer pH 2.0. Detection limits for bare electrode and 4-benzenesulfonic modified electrode were observed circa 145 µmol·L-1 and 1.3 µmol·L-1, respectively. The results have shown that the modification shifts the oxidation peaks to lower potential. Kinetics of the reaction limited by diffusion was more expressive when caffeine was added to the solution, resulting in decreases of impedance, characterized by lower R ct. All results for caffeine determination were compared to a reference chromatographic procedure (HPLC), showing no statistical difference. Analytical parameters for validation were suitably determined according to local legislation, leading to a linear behaviour from 5 to 150 µmol·L-1; precision of 4.09% was evaluated based on the RDC 166/17, and accuracy was evaluated in comparison with the reference method, with recovery of 98.37 ± 2.58%.
Collapse
Affiliation(s)
- Leonardo de A. Furtado
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Mariana C. de O. Gonçalves
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Carlos V. M. Inocêncio
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | | | - Daniela de L. Martins
- Grupo de Pesquisas em Catálise e Síntese (Laboratório 413), Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Felipe S. Semaan
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| |
Collapse
|
11
|
Shishov A, Volodina N, Nechaeva D, Gagarinova S, Bulatov A. An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Redivo L, Stredanský M, De Angelis E, Navarini L, Resmini M, Švorc Ĺ. Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172146. [PMID: 29892400 PMCID: PMC5990824 DOI: 10.1098/rsos.172146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Food quality control is a mandatory task in the food industry and relies on the availability of simple, cost-effective and stable sensing platforms. In the present work, the applicability of bare glassy carbon electrodes for routine analysis of food samples was evaluated as a valid alternative to chromatographic techniques, using caffeine as test analyte. A number of experimental parameters were optimized and a differential pulse voltammetry was applied for quantification experiments. The detection limit was found to be 2 × 10-5 M (3σ criterion) and repeatability was evaluated by the relative standard deviation of 4.5%. The influence of sugars, and compounds structurally related to caffeine on the current response of caffeine was evaluated and found to have no significant influence on the electrode performance. The suitability of bare carbon electrodes for routine analysis was successfully demonstrated by quantifying caffeine content in seven commercially available drinks and the results were validated using a standard ultra-high performance liquid chromatography method. This work demonstrates that bare glassy carbon electrodes are a simple, reliable and cost-effective platform for rapid analysis of targets such as caffeine in commercial products and they represent therefore a competitive alternative to the existing analytical methodologies for routine food analysis.
Collapse
Affiliation(s)
- Luca Redivo
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | - Marina Resmini
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ĺubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava 812 37, Slovak Republic
| |
Collapse
|
13
|
|
14
|
Ören T, Anık Ü. Carboxylic acid functionalized multi-walled carbon nanotube assisted centri-voltammetry as a new approach for caffeine detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj02506h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Centri-voltammetry provides centrifugation and voltammetry in a single cell and was applied to the caffeine detection for the first time.
Collapse
Affiliation(s)
- Tuğba Ören
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli/Muğla
- Turkey
| | - Ülkü Anık
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli/Muğla
- Turkey
| |
Collapse
|
15
|
Yiğit A, Yardım Y, Çelebi M, Levent A, Şentürk Z. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta 2016; 158:21-29. [DOI: https:/doi.org/10.1016/j.talanta.2016.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
16
|
Yiğit A, Yardım Y, Çelebi M, Levent A, Şentürk Z. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta 2016; 158:21-29. [DOI: 10.1016/j.talanta.2016.05.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/27/2022]
|
17
|
Tyszczuk-Rotko K, Sadok I. The New Application of Boron Doped Diamond Electrode Modified with Nafion and Lead Films for Simultaneous Voltammetric Determination of Dopamine and Paracetamol. ELECTROANAL 2016. [DOI: 10.1002/elan.201600099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Ilona Sadok
- Faculty of Chemistry; Maria Curie-Skłodowska University; 20-031 Lublin Poland
| |
Collapse
|