1
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Wang K, Xu L, Wang X, Chen A, Xu Z. Discrimination of beef from different origins based on lipidomics: A comparison study of DART-QTOF and LC-ESI-QTOF. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Angelis ED, Pilolli R, Bejjani A, Guagnano R, Garino C, Arlorio M, Monaci L. Optimization of an Untargeted DART-HRMS Method Envisaging Identification of Potential Markers for Saffron Authenticity Assessment. Foods 2021; 10:foods10061238. [PMID: 34072324 PMCID: PMC8230169 DOI: 10.3390/foods10061238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Saffron is one of the most expensive agricultural products in the world and as such, the most commonly adulterated spice, with undeclared plant-based surrogates or synthetic components simulating color and morphology. Currently, saffron quality is certificated in the international trade market according to specific ISO guidelines, which test aroma, flavor, and color strength. However, it has been demonstrated that specific adulterants such as safflower, marigold, or turmeric up to 20% (w/w) cannot be detected under the prescribed approach; therefore, there is still a need for advanced and sensitive screening methods to cope with this open issue. The current investigation aims to develop a rapid and sensitive untargeted method based on an ambient mass spectrometry ionization source (DART) and an Orbitrap™high-resolution mass analyzer to discriminate pure and adulterated saffron samples with either safflower or turmeric. The metabolic profiles of pure and adulterated model samples prepared at different inclusion levels were acquired. Unsupervised multivariate analysis was carried out based on hierarchical cluster analysis and principal component analysis as first confirmation of the discriminating potential of the metabolic profile acquired under optimized DART-HRMS conditions. In addition, a preliminary selection of potential markers for saffron authenticity was accomplished, identifying compounds able to discriminate the type of adulteration down to a concentration level of 5%.
Collapse
Affiliation(s)
- Elisabetta De Angelis
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Rosa Pilolli
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Alice Bejjani
- Lebanese Atomic Energy Commission, National Council for Scientific Research, Riad El Solh 107 2260 Beirut, Lebanon;
| | - Rocco Guagnano
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Cristiano Garino
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”(UPO), Largo Donegani, 2, 28100 Novara, Italy; (C.G.); (M.A.)
- German Federal Institute for Risk Assessment (BfR), D-14191 Berlin, Germany
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”(UPO), Largo Donegani, 2, 28100 Novara, Italy; (C.G.); (M.A.)
| | - Linda Monaci
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
- Correspondence: ; Tel.: +39-0805929343
| |
Collapse
|
4
|
Integrating untargeted metabolomics and targeted analysis for not from concentrate and from concentrate orange juices discrimination and authentication. Food Chem 2020; 329:127130. [DOI: 10.1016/j.foodchem.2020.127130] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/10/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
|
5
|
Gross JH. Saccharose cluster ions as mass calibrants in positive-ion direct analysis in real time-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:324-331. [PMID: 32921168 DOI: 10.1177/1469066720958535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In positive-ion direct analysis in real time-mass spectrometry (DART-MS), mono-, di, and trisaccharides form [M+NH4]+ ions. Some of them, in addition, yield abundant [Mn+NH4]+ cluster ions (n = 1-6)), and thus, can serve for mass calibration. Saccharose, C12H22O11, the most common sugar, also termed sucrose, is among the [Mn+NH4]+ cluster ion forming species. Saccharose may therefore be employed as a cheap and ubiquitous mass calibration standard. The extent of saccharose cluster ion formation depends on the temperature of the DART gas, sample load, and instrumental parameters like trapping conditions of ions prior to mass analysis. This study identifies optimized experimental conditions and demonstrates the application of saccharose cluster ion-based mass calibration for accurate mass measurements in DART mode on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Scalone GLL, Ioannidis AG, Lamichhane P, Devlieghere F, De Kimpe N, Cadwallader K, De Meulenaer B. Impact of whey protein hydrolysates on the formation of 2,5-dimethylpyrazine in baked food products. Food Res Int 2020; 132:109089. [PMID: 32331666 DOI: 10.1016/j.foodres.2020.109089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/28/2022]
Abstract
Peptides have been reported to serve as precursors in the generation of alkylpyrazines, key aroma compounds in heated foods. Most previous studies, concerned with the generation of pyrazines via the Maillard reaction, were conducted using model systems of varying complexities. However, the formation of pyrazines in real food systems has received less attention. The aim of this study was to investigate the impact of adding protein hydrolysates as precursors for the generation of alkylpyrazines in baked food products such as bread and cookies. Two whey protein hydrolysates, obtained using either trypsin or proteinase from Aspergillus melleus, were used in the presented study. 2,5-Dimethylpyrazine was produced in both food systems. Therefore, its formation was quantitatively monitored using a stable isotope dilution assay. Additionally, sensory evaluation was performed. Results demonstrated that the addition of the protein hydrolysates were effective in promoting the generation of 2,5-dimethylpyrazine and other aroma compounds in two well-known food products.
Collapse
Affiliation(s)
- Gustavo Luis Leonardo Scalone
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Angelos Gerasimos Ioannidis
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Food Technology, Safety and Health, Food Microbiology and Food Preservation Research Unit, Member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Prabin Lamichhane
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Food Technology, Safety and Health, Food Microbiology and Food Preservation Research Unit, Member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Norbert De Kimpe
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Keith Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois, 1302 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Bruno De Meulenaer
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
7
|
Effects of Formulation and Baking Process on Acrylamide Formation in Kolompeh, a Traditional Cookie in Iran. J CHEM-NY 2019. [DOI: 10.1155/2019/1425098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thermal treatments and recipes are two critical aspects for the formation of acrylamide at ordinary household cooking conditions and industrial level. Kolompeh is a traditional Iranian cookie, and the aim of this study was to monitor acrylamide formation in four different recipes: traditional sugary Kolompeh (TSK), traditional simple Kolompeh (TSIK), industrial sugary Kolompeh (ISK), and industrial simple Kolompeh (ISIK). Along with the measurement of reducing sugars, moisture, and pH, acrylamide was quantified by gas chromatography mass spectrometry (GC-MS). Results indicated that acrylamide content was 1758, 1048, 888, and 560 μg/kg for TSK, TSIK, ISK, and ISIK, respectively, revealing that the kind of thermal treatment in combination with higher concentrations of reducing sugars were the major driver for acrylamide formation. In particular, acrylamide concentration in TSIK direct heating was 1.87 times higher than industrial indirect heating treatment, highlighting that domestic preparation of Kolompeh required a specific attention as a source of potential toxic molecule formation.
Collapse
|
8
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
|
10
|
Troise AD, Wiltafsky M, Fogliano V, Vitaglione P. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products. Food Chem 2018; 247:29-38. [PMID: 29277225 DOI: 10.1016/j.foodchem.2017.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022]
Abstract
The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products (APs) was compared to the percentage of blocked lysine by using chemometric tools. Eighty thermally treated soybean samples were analyzed by mass spectrometry to measure the concentration of free amino acids, free APs and the protein-bound markers of the Maillard reaction (furosine, Nε-(carboxymethyl)-l-lysine, Nε-(carboxyethyl)-l-lysine, total lysine). Results demonstrated that Discriminant Analysis (DA) and Correlated Component Regression (CCR) correctly estimated the percent of blocked lysine in a validation and prediction set. These findings indicate that the measure of free markers reflects the extent of protein damage in soybean samples and it suggests the possibility to obtain rapid information on the quality of the industrial processes.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
| | | | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
|
12
|
Leiva-Valenzuela GA, Mariotti M, Mondragón G, Pedreschi F. Statistical pattern recognition classification with computer vision images for assessing the furan content of fried dough pieces. Food Chem 2018; 239:718-725. [DOI: 10.1016/j.foodchem.2017.06.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/12/2017] [Accepted: 06/17/2017] [Indexed: 11/30/2022]
|
13
|
|
14
|
Jakob A, Crawford EA, Gross JH. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:298-304. [PMID: 27041660 DOI: 10.1002/jms.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n + NH4 ](+) in the m/z 800-1900 range.
Collapse
Affiliation(s)
- Andreas Jakob
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Elizabeth A Crawford
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct 2016; 6:1752-72. [PMID: 25989363 DOI: 10.1039/c5fo00320b] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
16
|
The role of direct high-resolution mass spectrometry in foodomics. Anal Bioanal Chem 2015; 407:6275-87. [DOI: 10.1007/s00216-015-8812-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022]
|
17
|
Senyuva HZ, Gökmen V, Sarikaya EA. Future perspectives in Orbitrap™-high-resolution mass spectrometry in food analysis: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1568-606. [DOI: 10.1080/19440049.2015.1057240] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Gross JH. Polydimethylsiloxane extraction from silicone rubber into baked goods detected by direct analysis in real time mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:313-319. [PMID: 26307711 DOI: 10.1255/ejms.1333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Flexible baking molds and other household utensils are made of polydimethylsiloxane (PDMS), also known as silicone rubber. PDMS is prone to release oligomers upon elongated contact with fats, e.g., in the process of baking dough. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) provides an efficient tool for the analysis of PDMS up to m/z 3000. Here, DART ionization is employed in combination with Fourier transform ion cyclotron resonance MS to detect PDMS released into muffins when baked in silicone rubber baking molds. Intensive signals caused by PDMS do occur in the m/z 700-1500 range of DART mass spectra obtained from the crusty surface of muffins after the use of such silicone rubber molds. In addition, triacylglyceroles (TAGs) present as natural ingredients of the analyzed muffins were detected as [TAG+NH(4)](+) ions.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|