1
|
Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Variety and year: Two key factors on amino acids and biogenic amines content in grapes. Food Res Int 2024; 175:113721. [PMID: 38128986 DOI: 10.1016/j.foodres.2023.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Amino acids have proved to play a key role in the development of volatile compounds present in wine with determining repercussions on the final wine bouquets. Biogenic amines originate from the chemical transformations of amino acids found in various foods, a phenomenon that has given rise to several health-related concerns among consumers. In the present research, the evaluation of two of the most influential factors: variety (genetic) and year (climatic conditions) on these compounds in grapes has been performed. Eight Vitis vinifera varieties have been collected during three years and the content of nineteen amino acids, two biogenic amines, and the ammonium ion has been quantified using the HPLC-PDA technique. The genetic factor has proved to be an influential variable (p-value < 0.05) with mean values of amino acids ranging from 896.89 to 1713.79 mg/L and of biogenic amines ranging from 10.61 to 22.28 mg/L. The climatic conditions have shown to be an influential factor as well (p-value < 0.05), being the low temperatures and rainfall and the high solar radiation favour the development of the amino acid and avoid biogenic amines accumulation in grapes.
Collapse
Affiliation(s)
- Rocío Gutiérrez-Escobar
- IFAPA Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cañada de la Loba, 11471 Jerez de la Frontera, Cádiz, Spain.
| | - María José Aliaño-González
- IFAPA Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cañada de la Loba, 11471 Jerez de la Frontera, Cádiz, Spain; Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, Puerto Real, Cadiz 11510, Spain.
| | - Emma Cantos-Villar
- IFAPA Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cañada de la Loba, 11471 Jerez de la Frontera, Cádiz, Spain.
| |
Collapse
|
2
|
Methner Y, Weber N, Kunz O, Zarnkow M, Rychlik M, Hutzler M, Jacob F. Investigations into metabolic properties and selected nutritional metabolic byproducts of different non-Saccharomyces yeast strains when producing nonalcoholic beer. FEMS Yeast Res 2022; 22:6675809. [PMID: 36007922 PMCID: PMC9629496 DOI: 10.1093/femsyr/foac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic beers are becoming increasingly popular, in part due to consumers' awareness of a healthier lifestyle. Additionally, consumers are demanding diversification in the product range, which can be offered by producing nonalcoholic beers using non-Saccharomyces yeasts for fermentation to create a wide variety of flavors. So far, little is known about the nutritionally relevant byproducts that these yeasts release during wort fermentation and whether these yeasts can be considered safe for food fermentations. To gain insights into this, the B vitamins of four different nonalcoholic beers fermented with the yeast species Saccharomycodes ludwigii, Cyberlindnera saturnus (two strains), and Kluyveromyces marxianus were analyzed. Furthermore, a total of 16 beers fermented with different non-Saccharomyces yeast strains were analyzed for biogenic amines. Additionally, stress tolerance tests were performed at 37°C and in synthetic human gastric juice in vitro. B vitamins were found in the four nonalcoholic beers in nutritionally relevant amounts so they could serve as a supplement for a balanced diet. Biogenic amines remained below the limit of determination in all 16 beers, and thus likely had no influence, while the stress tolerance tests gave a first indication that seven yeast strains could possibly tolerate the human gastric juice milieu.
Collapse
Affiliation(s)
- Yvonne Methner
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Nadine Weber
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Oliver Kunz
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 306 Carmody Road, St Lucia QLD 4072, Australia
| | - Mathias Hutzler
- Corresponding author: Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany. Tel: +49 8161 71-3100; Fax: +49 8161 71-4181; E-mail:
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
3
|
Maciel LS, Marengo A, Rubiolo P, Leito I, Herodes K. Derivatization-targeted analysis of amino compounds in plant extracts in neutral loss acquisition mode by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1656:462555. [PMID: 34571278 DOI: 10.1016/j.chroma.2021.462555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
Amino compounds, such as amino acids and biogenic amines, are important metabolites that can be found in diverse natural matrices. The most common method for amino compound analysis nowadays is reversed-phase liquid chromatography tandem mass spectrometry (RPLC-MS/MS). However, due to the polar and the basic nature of amines, their RPLC retention is often insufficient or peaks are tailing. Derivatization is a way to overcome the issue and in the present work amino compounds are derivatized with diethyl ethoxymethylenemalonate (DEEMM) and analyzed by a RPLC triple quadrupole MS system in neutral loss scan (NLS) mode (loss of 46). This allows to target all compounds in the sample that undergo derivatization with DEEMM, so that the amino compound profile of the sample is obtained. To the best of our knowledge, the NLS acquisition mode has never been employed to target amino compounds after DEEMM derivatization. In the first part of the study, eight amino acids (arginine, aspartic acid, threonine, proline, tyrosine, tryptophan, phenylalanine and isoleucine) were employed as model compounds for method optimization, with good results in terms of DEEMM derivatives detection and repeatability. The developed method was successfully applied to a complex extract from the plant species Carduus nutans subsp. macrocephalus (Desf.) Nyman, with 18 amino acids and 3 other amines being identified. The proposed approach could be employed for straightforward identification of known and unknown amino compounds in different types of matrices.
Collapse
Affiliation(s)
| | - Arianna Marengo
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia; Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy.
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia
| |
Collapse
|
4
|
Zhao Z, Wu X, Chen H, Liu Y, Xiao Y, Chen H, Tang Z, Li Q, Yao H. Evaluation of a strawberry fermented beverage with potential health benefits. PeerJ 2021; 9:e11974. [PMID: 34513326 PMCID: PMC8388556 DOI: 10.7717/peerj.11974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Background Functional fermented beverages are popular worldwide due to their potential to promote health. Starter culture is the main determinant of the final quality and flavor of fermented beverages. The co-cultivation of lactic acid bacteria (LAB) and yeast makes a significant contribution to the safe flavor of fermented beverages. However, the research on the potential of antioxidant, antimicrobial, and anti-biofilm formation of strawberry fermented beverage obtained by combining the LAB and yeast as starter cultures has not been well explored. Methods In this study, LAB and yeast were combined as starter culture to obtain strawberry fermented beverage. Fourier transform infrared (FTIR ) spectroscopy was used for the qualitative analysis of the fresh strawberry juice and fermented beverage. From the changes in antioxidant content, free radical scavenging ability, total superoxide dismutase (T-SOD) activity and total antioxidant capacity (T-AOC) to evaluate the antioxidant capacity of fermented beverage in vitro. The antibacterial ability was tested by the Oxford cup method. The biofilms of Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538 under fermented beverages treatment was observed by Fluorescence microscope. In addition, sensory analysis was conducted in this study. Results In this study, the absorption peaks of Fourier transform infrared between 1,542 cm-1 and 976 cm-1, suggest the existence of organic acids, sugars and ethanol. The total phenols and total flavonoids content decreased by 91.1% and 97.5%, respectively. T-SOD activity increased by 33.33%.The scavenging ability of fermented beverage on superoxide anion free radicals was enhanced, and the scavenging ability on DPPH free radicals, hydroxyl free radicals, and ABTS free radicals was weakened. However, the T-AOC increased from 4.15 ± 0.81 to 8.43 ± 0.27 U/mL. Fermented beverage shows antibacterial activity against four pathogens. The minimum inhibitory concentration (MIC) values of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 were 0.05 mL/mL and 0.025 mL/mL, respectively, and the minimum bactericidal concentration (MBC) were both 0.2 mL/mL. It was observed by fluorescence microscope that the green fluorescence area of the two biofilms is greatly reduced after being treated with fermented beverage. Sensory analysis results show that the average scores of fermented beverage in color, appearance and taste were increased. The overall impression and flavor were decreased. Conclusion These results demonstrated that strawberry fermented beverage has potential benefits such as an antioxidant, antibacterial, and anti-biofilm formation, providing the potential for the fermented beverage to become promising candidates for natural antioxidants, antibacterial agents and anti-biofilm agents.
Collapse
Affiliation(s)
- Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, China
| | - Hong Chen
- College of Food Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
5
|
Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes (Basel) 2021. [DOI: 10.3390/pr9061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the phenolic profile and the antioxidant capacity of strawberries (Fragaria x ananassa Duch., cv. Primoris) cultivated under reduction of nitrogen and adverse irrigation conditions (high salinity), such as those prevailing in Almeria (south-eastern Spain). The phenolic compound and anthocyanin profiles were analysed by HPLC-DAD-ESI/MSn, and the antioxidant activity. Nineteen phenolic compounds were quantified, mainly ellagitannins, anthocyanins, and flavan-3-ols. The total phenolic content ranged from 731 to 1521 mg/100 g of dried weight. The flavan-3-ols group compounds from the strawberries were positively affected by saline stress, especially the afz-(e)Catechin content in the first sampling. The reduction of nitrogen and the adverse irrigation conditions for the cultivation of strawberries (cv. Primoris) partially affected the phenolic composition, with the harvesting dates having a greater influence.
Collapse
|
6
|
Li Y, Nguyen TTH, Jin J, Lim J, Lee J, Piao M, Mok IK, Kim D. Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast ( Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria ( Lactobacillus plantarum). Food Sci Biotechnol 2021; 30:555-564. [PMID: 33936847 DOI: 10.1007/s10068-021-00883-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Co-fermentation using yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and the bacteria (Lactobacillus plantarum) as starters isolated from spontaneous sourdough was conducted for the brewing of glucuronic acid (GlcA)-enriched apple cider. The concentration of GlcA in the apple cider co-fermented for 14 d with commercial S. cerevisiae and L. plantarum was 37.7 ± 1.7 mg/mL while a concentration of 62.8 ± 3.1 mg/mL was recorded for fermentation with P. kudriavzevii and L. plantarum, which was higher than the corresponding single yeast fermentation. The co-fermented apple cider revealed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 171.67 ± 0.79 µg trolox equivalents (TE)/mL using P. kudriavzevii and L. plantarum, compared to the control (143.89 ± 7.07 µg TE/mL) just using S. cerevisiae. Thus, the co-fermentation of S. cerevisiae and L. plantarum and P. kudriavzevii and L. plantarum provided a new strategy for the development of GlcA-enriched apple cider with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109 People's Republic of China
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Juhui Jin
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Jiyeon Lee
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Meizi Piao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109 People's Republic of China
| | - Il-Kyoon Mok
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Doman Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| |
Collapse
|
7
|
Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res Int 2021; 144:110341. [PMID: 34053537 DOI: 10.1016/j.foodres.2021.110341] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Fermented and/or protein-rich foods, the most widely consumed worldwide, are the most susceptible to the presence of high levels of biogenic amines (BAs). Many reviews have focused on BAs toxicity and presence in foods; however, technological strategies such as evaluation of physical parameters, the addition of natural or synthetic compounds or the use of specific starter cultures of BAs reduction, and quick detection methods have been scarcely approached. In current research, there has been a focus on fast detection of BAs through colorimetric methods that allow these compounds to be quickly and easily identified by consumers. To reduce BAs presence in food, several alternatives have been developed and investigated with the aim of preventing negative effects caused by their intake, which can be applied before, during, or after processing. Food safety is one of the most important concerns of consumer and sanitary authorities. Therefore, detecting toxins such as BAs in food has become a priority for research. Recent reports that focus on the development of rapid detection methods of BAs are reviewed in this analysis. These methods have been successfully applied to food matrices with little to no sample pretreatment. Several alternatives for BAs reduction in food was also summarized. These findings will help the food industry to improve its processes for developing safe food.
Collapse
Affiliation(s)
- Yari Jaguey-Hernández
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Carr. Tepatepec-San Juan Tepa km. 2, 42660 Francisco I. Madero, Hgo., Mexico
| | - Deyanira Ojeda-Ramirez
- Universidad Autonoma del Estado de Hidalgo, Veterinary Medicine Department, Rancho Universitario Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, 43600 Tulancingo, Hgo., Mexico
| | - Javier Añorve-Morga
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Luis Guillermo González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Araceli Castañeda-Ovando
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico.
| |
Collapse
|
8
|
Xue C, Yu TH, Ng IS. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Fact 2017; 16:109. [PMID: 28619110 PMCID: PMC5472864 DOI: 10.1186/s12934-017-0717-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. Results In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane fluidity, stability and integrity. Conclusions The present work is the study to show the effectiveness of Asp and Glu on metabolism and acid stress resistance of A. pasteurianus as well as their working mechanism. The research results will be helpful for development of nutrient salts, the optimization and regulation of high concentration of cider vinegar production process. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0717-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisong Yin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin, 300350, People's Republic of China
| | - Renkuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Xiaolei Bai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Jun Mou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Ordóñez JL, Troncoso AM, García-Parrilla MDC, Callejón RM. Recent trends in the determination of biogenic amines in fermented beverages – A review. Anal Chim Acta 2016; 939:10-25. [DOI: 10.1016/j.aca.2016.07.045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
|
11
|
Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00621-16. [PMID: 27365351 PMCID: PMC4929514 DOI: 10.1128/genomea.00621-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose.
Collapse
|
12
|
Ordóñez JL, Cañete-Rodríguez AM, Callejón RM, Santos-Dueñas MI, Troncoso AM, García-García I, García-Parrilla MC. Effect of Gluconic Acid Submerged Fermentation of Strawberry Purée on Amino Acids and Biogenic Amines Profile. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José L. Ordóñez
- Área de Nutrición y Bromatología. Facultad de Farmacia; Universidad de Sevilla; C/ P. García González nº2 41012 Sevilla Spain
| | - Ana M. Cañete-Rodríguez
- Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias; Label Campus Universitario de Rabanales; Universidad de Córdoba, Ctra. (a) de Madrid, km 396 14071 Córdoba Spain
| | - Raquel M. Callejón
- Área de Nutrición y Bromatología. Facultad de Farmacia; Universidad de Sevilla; C/ P. García González nº2 41012 Sevilla Spain
| | - M. Inés Santos-Dueñas
- Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias; Label Campus Universitario de Rabanales; Universidad de Córdoba, Ctra. (a) de Madrid, km 396 14071 Córdoba Spain
| | - Ana M. Troncoso
- Área de Nutrición y Bromatología. Facultad de Farmacia; Universidad de Sevilla; C/ P. García González nº2 41012 Sevilla Spain
| | - Isidoro García-García
- Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias; Label Campus Universitario de Rabanales; Universidad de Córdoba, Ctra. (a) de Madrid, km 396 14071 Córdoba Spain
| | - M. Carmen García-Parrilla
- Área de Nutrición y Bromatología. Facultad de Farmacia; Universidad de Sevilla; C/ P. García González nº2 41012 Sevilla Spain
| |
Collapse
|
13
|
Hornedo-Ortega R, Krisa S, Carmen García-Parrilla M, Richard T. Effects of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|