1
|
Lv R, Chen Y, Zhou J, Jiang L, Xu E, Ling J, Tang J. Green fabrication of hierarchical pore starch with controllable pore size and shape based on different amylose-amylopectin ratios. Carbohydr Polym 2024; 346:122594. [PMID: 39245486 DOI: 10.1016/j.carbpol.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Porous starch (PS) was widely prepared for its large effective surface area, pore volume, and superior hydrophilic property, but its application is limited by enzyme and chemical use. In this study, a novel method to prepare PS with controllable hierarchical pores through ultrasound-ethanol precipitation and different amylose-amylopectin ratios is proposed. As shown in porous morphology and parameters, there were macropores, mesopores and micropores in the formed PS. Moreover, we found that the content of amylose (AM) was negatively related with the total pore volume and pore diameter in PS. The different surface tensions created through ethanol evaporation and water migration during oven drying are the main mechanisms of forming pores with controllable sizes. Based on the molecular information and the long-/short-range orders reflected by crystalline pattern, lamellas, and single-/double-helices, we conclude that AM is easier to form V-type inclusion complexes with ethanol. More single helix of V-amylose was transformed from B-type polymorph after ethanol exchange, which had significantly broadened dLozentz in PS. The TG spectra proved that the novel PS has the stable thermodynamic property. Overall, the finding of an objective regular between AM and pore sizes of PS in this study may support the other work related to PS.
Collapse
Affiliation(s)
- Ruiling Lv
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Ling Jiang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jiangang Ling
- Institute of Agricultural Products Processing, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315000, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gao D, Li X, Li F, Luo R, Liao H, Man J. Changes of crystalline structure and physicochemical properties of Pueraria lobata var. thomsonii starch under water deficit. PLoS One 2024; 19:e0304373. [PMID: 38959223 PMCID: PMC11221752 DOI: 10.1371/journal.pone.0304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.
Collapse
Affiliation(s)
- Dan Gao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Xin Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Fengyu Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Haimin Liao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Zhi K, Dong W, Du Y, Tuo T, Wei J, Song S, Cui J, Zhang J. Novel and safe debranched starch-zinc complexes with endoconcave structure as zinc supplements. Carbohydr Polym 2024; 330:121826. [PMID: 38368105 DOI: 10.1016/j.carbpol.2024.121826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
Zinc deficiency is a serious risk to human health and growth, especially in children. The development of zinc supplements can effectively reduce this harm. Here, a series of debranched starch‑zinc complexes (DS-Zn) were prepared, whose zinc complexation was inversely proportional to the amylopectin content in the debranched starch (DS). The physicochemical properties of DS-Zn were characterized using the conductivity, XRD, iodine staining and thermogravimetry. Combined with XPS, solid-state 13C NMR and IR, it was elucidated that the structure of DS-Zn is endoconcave structure with 2-O and 3-O of DS on the inner side and 6-O of DS on the outer side, where zinc is located. The DS-Zn exhibits good biosafety including blood, cellular and mutagenicity. In vitro simulations of digestion and zinc-deficient cellular models showed that DS-Zn was more tolerant to the gastrointestinal environment and more effective in zinc supplementation (increased by 33 %) than inorganic zinc supplements. Utilizing the compressibility of starch, DS-Zn was prepared as a more palatable oral cartoon tablet for children. This study will provide important support to advance the development and application of novel starch-based zinc nutritional supplements.
Collapse
Affiliation(s)
- Kangkang Zhi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Wenhui Dong
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yanjing Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongtong Tuo
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Junqing Wei
- Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shen Song
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Jiajia Cui
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
4
|
Li X, Wang H, Sun S, Ji X, Wang X, Wang Z, Shang J, Jiang Y, Gong X, Qi H. Optimization of the morphological, structural, and physicochemical properties of maize starch using straw returning and nitrogen fertilization in Northeast China. Int J Biol Macromol 2024; 265:130791. [PMID: 38479666 DOI: 10.1016/j.ijbiomac.2024.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The combination of straw returning and nitrogen (N) fertilization is a popular tillage mode and essential strategy for achieving stable yield and high quality. However, the optimal combination strategy and the influence of tillage mode on the morphological, crystalline, and molecular structures of maize starch remain unclear. We conducted a long-term field experiment over 7 years in Northeast China using two tillage modes, rotary tillage with straw returning (RTS) and plow tillage with straw returning (PTS), and four N application rates. The relative crystallinity, 1045/1022 cm-1 value, and B2 and B3 chains of maize starch were higher under RTS than under PTS, resulting in increased stability of starch and improvements in gelatinization enthalpy and temperature. The surface of the starch granules induced by N fertilizer was smoother than that under the N0 (0 kg N ha-1) treatment. The proportion of amylose content, solubility, swelling power, and light transmittance increased under N2 (262 kg N ha-1) treatment, along with improvement in starch pasting properties. These results suggest that RTS combined with N2 treatment can regulate the morphological, structural, and physicochemical characteristics of maize starch, providing an essential reference for improving the quality of maize starch from an agronomic point of view.
Collapse
Affiliation(s)
- Xiangyu Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Sitong Sun
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xinjie Ji
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuelian Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Zhengyu Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Jiaxin Shang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Ying Jiang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xiangwei Gong
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Hua Qi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
5
|
Yang H, Cai X, Lu D. Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize. PLANTS (BASEL, SWITZERLAND) 2023; 13:108. [PMID: 38202416 PMCID: PMC10780669 DOI: 10.3390/plants13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Waterlogging is a common abiotic stress in global maize production. Maize flowering stage (from tasseling to silking) is more fragile to environmental stresses, and this stage frequently overlapped the plum rain season in the middle and lower reaches of Yangtze river in China and affect the yield and quality of spring-sown maize severely. In the present study, the soil moisture content under control and waterlogging conditions at the flowering stage was controlled by a negative-pressure water supply and controlling pot device in a pot trial in 2014-2015. The grain yield, starch content, and starch structural and functional properties under two soil moisture levels were compared using Suyunuo5 (SYN5) and Yunuo7 (YN7) as materials, which are the control hybrids of National waxy maize hybrid regional trials in Southern China. The results observed that the grain yield was reduced by 29.1% for SYN5 with waterlogging due to the decreased grain weight and numbers, which was significantly higher than that of YN7 (14.7%), indicated that YN7 was more tolerant to waterlogging. The grain starch content in YN7 was decreased by 9.4% when plants suffered waterlogging at the flowering stage, whereas the content in SYN5 was only decreased in 2014 and unaffected in 2015. The size of starch granules and proportion of small-molecule amylopectin with waterlogging at the flowering stage increased in SYN5 and decreased in YN7 in both years. The type of starch crystalline structure was not changed by waterlogging, whereas the relative crystallinity was reduced in SYN5 and increased in YN7. The pasting viscosities were decreased, and the pasting temperature was unaffected by waterlogging in general. The gelatinization enthalpy was unaffected by waterlogging in both hybrids in both years, whereas the retrogradation enthalpy and percentage in both hybrids were reduced by waterlogging in 2014 and unaffected in 2015. Between the two hybrids, YN7 has high pasting viscosities and low retrogradation percentage than SYN5, indicated its advantages on produce starch for more viscous and less retrograde food. In conclusion, waterlogging at the flowering stage reduced the grain yield, restricted starch accumulation, and deteriorated the pasting viscosity of waxy maize. Results provide information for utilization of waxy maize grain in food production.
Collapse
Affiliation(s)
| | | | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China
| |
Collapse
|
6
|
Xue S, Mei J, Liu Y, Ren M, Li M, Fu Z. In vitro digestibility and physicochemical properties of
Arenga pinnata
starch‐chitosan following heat‐moisture treatment. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Xue
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Jiang‐Yang Mei
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Yuan‐Sen Liu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Min‐Hong Ren
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Meng‐Yun Li
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
7
|
Zhi K, Wang R, Wei J, Shan Z, Shi C, Xia X. Self-assembled micelles of dual-modified starch via hydroxypropylation and subsequent debranching with improved solubility and stability of curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Wang J, Mao Y, Huang T, Lu W, Lu D. Water and heat stresses during grain formation affect the physicochemical properties of waxy maize starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1331-1339. [PMID: 32820541 DOI: 10.1002/jsfa.10743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maize is frequently subjected to simultaneous water (drought or waterlogging) and heat (HS) stresses during grain formation in southern China. This work examined the effect of high temperature combined with drought (HD) or waterlogging (HW) during grain formation on the starch physicochemical properties of two waxy maize hybrids, namely Suyunnuo5 (SYN5) and Yunuo7 (YN7). RESULTS Heat stress enlarged the starch granule size, and water stresses aggravated this effect. Heat stress reduced the ratio of small molecular weight fractions for both hybrids, and HD aggravated this reduction only in SYN5. Relative crystallinity in SYN5 was increased by stresses but in YN7 it was unaffected by HD, reduced by HS, and increased by HW. Fourier-transform infrared (FTIR) spectrometry results showed that the 1045/1022 cm-1 ratio in SYN5 was not influenced by HW but was increased by other stresses, and that in YN7 it was increased by all stresses, with the highest value induced by HW. Peak viscosity was decreased, whereas gelatinization temperatures and retrogradation percentage were increased by all of these stresses. These effects were exacerbated by combined heat and water stresses. The maximum decomposition rate was severely increased by HW. CONCLUSION Drought or waterlogging at grain formation stage aggravated the detrimental effects of HS on the starch physicochemical properties of waxy maize. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jue Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Yuxiang Mao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Tianqi Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| |
Collapse
|
9
|
Liu Q, Li F, Ji N, Dai L, Xiong L, Sun Q. Acetylated debranched starch micelles as a promising nanocarrier for curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106253] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality. Food Chem 2021; 347:129045. [PMID: 33486361 DOI: 10.1016/j.foodchem.2021.129045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022]
Abstract
The effects of water irrigation management including conventional irrigation (CK), constant flooding irrigation (CFI) and alternate wetting and drying (AWD) on starch structure and physicochemical properties of two indica rice cultivars with good- and poor-quality were evaluated in the field condition with two years. The results showed that AWD could significantly increase peak viscosity, breakdown and gelatinization temperature, decreased setback and gelatinization enthalpy in two indica rice cultivars. However, starch granule size and amylopectin chain length distribution were differed the trends in the rice cultivars and treatments. AWD reduced starch granules size and amylopectin short chain, especially for large starch granules, but increased medium and long chain, which might contribute to better thermal stability and pasting viscosity for good-quality cultivar. Our study indicated that water irrigation management affected starch structure and physicochemical properties of indica rice starch, and would provide favorable information for improvement of rice starch in food industry.
Collapse
|
11
|
Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Int J Biol Macromol 2020; 161:481-491. [DOI: 10.1016/j.ijbiomac.2020.06.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
|
12
|
Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105854] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Wang YS, Liu WH, Zhang X, Chen HH. Preparation of VII-type normal cornstarch-lauric acid complexes with high yield and stability using a combination treatment of debranching and different complexation temperatures. Int J Biol Macromol 2020; 154:456-465. [DOI: 10.1016/j.ijbiomac.2020.03.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 11/28/2022]
|
14
|
Yang T, Tan X, Huang S, Pan X, Shi Q, Zeng Y, Zhang J, Zeng Y. Effects of experimental warming on physicochemical properties of indica rice starch in a double rice cropping system. Food Chem 2020; 310:125981. [PMID: 31835221 DOI: 10.1016/j.foodchem.2019.125981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022]
Abstract
To evaluate the actual response of rice starch physicochemical properties to climate warming, a field warming experiment was conducted with four indica rice cultivars using free-air temperature increase (FATI) facility in a double rice cropping system. FATI facility increased rice canopy temperature by 1.4-2.1 °C during the entire growth period. The responses of starch physicochemical properties to experimental warming were basically consistent for both early and late rice. On average, experimental warming increased the starch relative crystallinity, granule average diameter, and amylopectin average chain length by 14.3%, 6.9%, and 2.4%, respectively. These resulted in starch with lower swelling power, water solubility, and pasting viscosity, but higher gelatinization temperatures and gelatinization enthalpy. Our study indicated that experimental warming affected the rice starch physicochemical properties, and would provide some useful information on how to guide the rice starch end use in food and non-food industries under climate warming.
Collapse
Affiliation(s)
- Taotao Yang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Shi
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
15
|
Atsukawa K, Kudo S, Amari S, Takiyama H. Increase of solidification rate to improve quality of productivity for xylitol/sorbitol crystalline candy products. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Effects of waterlogging at grain formation stage on starch structure and functionality of waxy maize. Food Chem 2019; 294:187-193. [DOI: 10.1016/j.foodchem.2019.05.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
|
17
|
Lu H, Xiong L, Li M, Chen H, Xiao J, Wang S, Qiu L, Bian X, Sun C, Sun Q. Separation and characterization of linear glucans debranched from normal corn, potato and sweet potato starches. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Liu Q, Li M, Xiong L, Qiu L, Bian X, Sun C, Sun Q. Characterization of Cationic Modified Debranched Starch and Formation of Complex Nanoparticles with κ-Carrageenan and Low Methoxyl Pectin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2906-2915. [PMID: 30789728 DOI: 10.1021/acs.jafc.8b05045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The functional modifications of debranched starch (DBS) has been attracting the interest of researchers. This study marks the first time that DBS was modified by cationization through the use of (3-chloro-2-hydroxypropyl) trimethylammonium chloride with the introduction of cationic functional groups. The physicochemical properties and structural characteristics of cationized debranched starch (CDBS) were systematically assessed. The results demonstrate that the maximum degree of substitution (DS) value obtained was as high as 1.14, and the corresponding CDBS exhibited significantly higher zeta potential values: approximately +35 mV. The minimal inhibitory concentration values of the CDBS of DS 1.14 against Escherichia coli and Staphylococcus aureus were 6 and 8 mg mL-1, respectively. In addition, nanoparticles were successfully prepared with a combination of CDBS and low methoxyl pectin (LMP) and a combination of CDBS and κ-carrageenan (CRG). The maximum encapsulation efficiency of nanoparticles for (-)-epigallocatechingallate can reach 87.8%.
Collapse
Affiliation(s)
- Qing Liu
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Man Li
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Liu Xiong
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Lizhong Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Xiliang Bian
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Qingjie Sun
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| |
Collapse
|
19
|
Zhu D, Wei H, Guo B, Dai Q, Wei C, Gao H, Hu Y, Cui P, Li M, Huo Z, Xu K, Zhang H. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch. Food Chem 2017; 237:936-941. [DOI: 10.1016/j.foodchem.2017.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
|
20
|
Zhang H, Zhou X, Wang T, He J, Yue M, Luo X, Wang L, Wang R, Chen Z. Enzymatically modified waxy corn starch with amylosucrase: The effect of branch chain elongation on structural and physicochemical properties. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yang H, Huang T, Ding M, Lu D, Lu W. Effects of Waterlogging Around Flowering Stage on the Grain Yield and Eating Properties of Fresh Waxy Maize. Cereal Chem 2016. [DOI: 10.1094/cchem-03-16-0044-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Huan Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengqiu Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiping Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Mir SA, Bosco SJD, Bashir M, Shah MA, Mir MM. Physicochemical and structural properties of starches isolated from corn cultivars grown in Indian temperate climate. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1184274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|