1
|
Gonçalves-Filho D, De Souza D. Trends in pulse voltammetric techniques applied to foodstuffs analysis: The food additives detection. Food Chem 2024; 454:139710. [PMID: 38815328 DOI: 10.1016/j.foodchem.2024.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Food additives are chemical compounds intentionally added during foodstuff production to control technological functions, such as pH, viscosity, stability (color, flavor, taste, and odor), homogeneity, and loss of nutritional value. These compounds are fundamental in inhibition the degradation process and prolonging the shelf life of foodstuffs. However, their inadequate employment or overconsumption can adversely affect consumers' health with the development of allergies, hematological, autoimmune, and reproductive disorders, as well as the development of some types of cancer. Thus, the development and application of simple, fast, low-cost, sensitivity, and selectivity analytical methods for identifying and quantifying food additives from various chemical classes and in different foodstuffs are fundamental to quality control and ensuring food safety. This review presents trends in the detection of food additives in foodstuffs using differential pulse voltammetry and square wave voltammetry, the main pulse voltammetric techniques, indicating the advantages, drawbacks, and applicability in food analysis. Are discussed the importance of adequate choices of working electrode materials in the improvements of analytical results, allowing reliable, accurate, and inexpensive voltammetric methods for detecting these compounds in foodstuffs samples.
Collapse
Affiliation(s)
- Danielle Gonçalves-Filho
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
2
|
Yang F, Ai Y, Li X, Wang L, Zhang Z, Ding W, Sun W. Preparation of electrochemical horseradish peroxidase biosensor with black phosphorene-zinc oxide nanocomposite and their applications. RSC Adv 2023; 13:32028-32038. [PMID: 37920196 PMCID: PMC10618940 DOI: 10.1039/d3ra05148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
In this work, a novel and sensitive electrochemical biosensor was constructed based on a black phosphorene (BP) and nanosized zinc oxide (ZnO@BP) nanocomposite as a modifier, which was used for the immobilization of horseradish peroxidase (HRP) on a carbon ionic liquid electrode (CILE). The ZnO@BP nanocomposite was synthesized by a simple in situ hydrothermal method with stripped black phosphorus nanoplates and ZnO. The ZnO@BP and HRP-modified electrode was developed by a casting method. ZnO@BP with highly conductivity, large surface area and good biocompatibility could maintain the bioactivity of HRP and accelerate the electron transfer rate. Cyclic voltammetry was used to study the direct electrochemistry of HRP on the Nafion/HRP/ZnO@BP/CILE with the appearance of a pair of distinct redox peaks. The constructed electrochemical HRP biosensor exhibited excellent electrocatalytic effects on the reduction of trichloroacetic acid and sodium nitrite. Real samples were detected with satisfactory results, which demonstrated the potential applications of this electrochemical HRP biosensor.
Collapse
Affiliation(s)
- Feng Yang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Yijing Ai
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| | - Xiaoqing Li
- College of Health Sciences, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Lisi Wang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| | - Zejun Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| | - Weipin Ding
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| |
Collapse
|
3
|
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:2961. [PMID: 36991672 PMCID: PMC10054825 DOI: 10.3390/s23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor. An electrochemical sensor has been developed using one-step electrodeposited (Ed) gold nanoparticles (EdAu) for the detection of nitrite in water, which shows a low limit of detection of 0.38 µM and excellent analytical capabilities in groundwater. Experimental investigations with 10 realized sensors show a very high reproducibility enabling mass production. A comprehensive investigation of the sensor drift by calendar and cyclic aging was carried out for 160 cycles to assess the stability of the electrodes. Electrochemical impedance spectroscopy (EIS) shows significant changes with increasing aging inferring the deterioration of the electrode surface. To enable on-site measurements outside the laboratory, a compact and cost-effective wireless potentiostat combining cyclic and square wave voltammetry, and EIS capabilities has been designed and validated. The implemented methodology in this study builds a basis for the development of further on-site distributed electrochemical sensor networks.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Rohan Munjal
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christian Viehweger
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jawaid Hussain
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Sanhith Kommisetty
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
4
|
Fort CI, Cobzac SCA, Turdean GL. Second-order derivative of square-wave voltammetry for determination of vanillin at platinum electrode. Food Chem 2022; 385:132711. [PMID: 35313191 DOI: 10.1016/j.foodchem.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
A simple and sensitive method of data treatment by second-order derivative square wave voltammetry (SD-SWV) was developed for the determination of vanillin at a platinum electrode. It was shown that the irreversible oxidation reaction is controlled by the adsorption and occurs following a mechanism involving two electrons, similar to other phenolic derivatives. The experimental parameters of SWV which exert influence on vanillin determination, such as frequency, pulse amplitude, or step potential, were optimized. The calibration curve shows a linear range between 50 and 430 nM vanillin with a detection limit of about 19 nM (signal/noise = 3). The mathematical treatment of experimental data leads to enhances the sensitivity of the determination and was successfully used for the estimation of vanillin in commercial food products.
Collapse
Affiliation(s)
- Carmen Ioana Fort
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania
| | - Simona Codruta Aurora Cobzac
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| | - Graziella Liana Turdean
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Colloidal synthesis of perovskite-type lanthanum aluminate incorporated graphene oxide composites: Electrochemical detection of nitrite in meat extract and drinking water. Mikrochim Acta 2022; 189:210. [PMID: 35503583 DOI: 10.1007/s00604-022-05296-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
A novel electrochemical method has been developed for determination of nitrite using La-based perovskite-type lanthanum aluminate nanorod-incorporated graphene oxide nanosheets (LaAlO3@GO). Morphological and structural analyses of the prepared perovskite-type electrocatalyst, with and without a glassy carbon electrode (GCE) surface, were performed using various techniques, including transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, Raman spectroscopy, and electrochemical impedance spectroscopy. Under optimal conditions, the LaAlO3@GO composite-modified GCE (LaAlO3@GO/GCE) exhibited excellent electrocatalytic performance toward the electrooxidation of nitrite (pH = 7.0), with a significant increase in anodic peak currents compared with the bare GCE. Using amperometry, the fabricated sensor exhibited a wide nitrite determination range from 0.01 to 1540.5 µM, with a detection limit of 0.0041 µM. Notably, the proposed LaAlO3@GO/GCE electrode demonstrated a good nitrite detection performance in different meat and water samples. In addition, the LaAlO3@GO/GCE electrode displayed excellent selectivity, repeatability, reproducibility, storage, and operational stability toward nitrite detection.
Collapse
|
6
|
Li YS, Zhao CL, Li BL, Gao XF. Evaluating nitrite content changes in some Chinese home cooking with a newely-developed CDs diazotization spectrophotometry. Food Chem 2020; 330:127151. [DOI: 10.1016/j.foodchem.2020.127151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022]
|
7
|
A Surface Plasmon Resonance Biosensor Based on Directly Immobilized Hemoglobin and Myoglobin. SENSORS 2020; 20:s20195572. [PMID: 33003353 PMCID: PMC7582270 DOI: 10.3390/s20195572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Immobilization of proteins on a surface plasmon resonance (SPR) transducer is a delicate procedure since loss of protein bioactivity can occur upon contact with the untreated metal surface. Solution to the problem is the use of an immobilization matrix having a complex structure. However, this is at the expense of biosensor selectivity and sensitivity. It has been shown that the matrix-assisted pulsed laser evaporation (MAPLE) method has been successfully applied for direct immobilization (without a built-in matrix) of proteins, preserving their bioactivity. So far, MAPLE deposition has not been performed on a gold surface as required for SPR biosensors. In this paper we study the impact of direct immobilization of heme proteins (hemoglobin (Hb) and myoglobin (Mb)) on their bioactivity. For the purpose, Hb and Mb were directly immobilized by MAPLE technique on a SPR transducer. The bioactivity of the ligands immobilized in the above-mentioned way was assessed by SPR registration of the molecular reactions of various Hb/Mb functional groups. By SPR we studied the reaction between the beta chain of the Hb molecule and glucose, which shows the structural integrity of the immobilized Hb. A supplementary study of films deposited by FTIR and AFM was provided. The experimental facts showed that direct immobilization of an intact molecule was achieved.
Collapse
|
8
|
Abd Hamid NFH, Khan MM, Lim LH. Assessment of nitrate, nitrite and chloride in selected cured meat products and their exposure to school children in Brunei Darussalam. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Diouf A, El Bari N, Bouchikhi B. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 2020; 209:120577. [DOI: 10.1016/j.talanta.2019.120577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023]
|
10
|
Xie H, Luo G, Niu Y, Weng W, Zhao Y, Ling Z, Ruan C, Li G, Sun W. Synthesis and utilization of Co 3O 4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110209. [PMID: 31761232 DOI: 10.1016/j.msec.2019.110209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
Abstract
In this paper cobalt oxide (Co3O4) nanoparticles were mixed with polyacrylonitrile to prepare Co3O4 doped carbon nanofiber (CNF) composite by electrospinning and carbonization, which was further used to modify on carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on Co3O4-CNF/CILE surface with Nafion acted as the protective film to fabricate an electrochemical biosensor (Nafion/Hb/Co3O4-CNF/CILE). Electrochemical behavior of Hb on the electrode was investigated with a pair of quasi-reversible redox peak appeared on cyclic voltammogram and electrochemical parameters were calculated. Moreover, this biosensor had good analytical capabilities for electrocatalytic reduction of different substrates including trichloroacetic acid, potassium bromate and sodium nitrite with wider detection range from 40.0 to 260.0 mmol L-1, 0.1 to 48.0 mmol L-1 and 1.0 to 12.0 mmol L-1 by cyclic voltammetry, respectively. The proposed method showed excellent anti-interferences ability with good selectivity and was successful used for quantitative detection of real samples, which displayed the potential applications to develop into a new analytical device.
Collapse
Affiliation(s)
- Hui Xie
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Guiling Luo
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Wenju Weng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yixing Zhao
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Zhiqiang Ling
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Chengxiang Ruan
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China.
| |
Collapse
|
11
|
Gill A, Zajda J, Meyerhoff ME. Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Anal Chim Acta 2019; 1077:167-173. [PMID: 31307706 PMCID: PMC6636846 DOI: 10.1016/j.aca.2019.05.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Nitrite is a naturally occurring species present in various food samples and also present in our bodies as a product of nitric oxide (NO) oxidation. Considering the ubiquity of nitrite, its determination is of great importance in both biological and food samples. Herein, a very facile indirect method of nitrite determination in meat samples via selective reduction to nitric oxide (NO) is presented. The resulting gaseous product is quantified via portable and cost-effective electrochemical sensors. Both a novel laboratory prepared Pt-Nafion based NO sensor and a commercially available amperometric NO sensor are compared. Excellent correlations between the nitrite amount found in tested samples using both of the electrochemical sensors and a reference chemiluminescence method are demonstrated (r = 0.997 and r = 0.999 for Pt-Nafion based and commercially available NO-B4 electrochemical sensors, respectively, n = 12). Moreover, the slope of the linear regression curves are very close to unity for the comparison of the three systems tested. The amperometric sensors compared within this work exhibit good precision and accuracy and are shown to be an attractive alternative to the costly chemiluminescence detection method for accurately determining nitrite levels in food samples.
Collapse
Affiliation(s)
- Alyssa Gill
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joanna Zajda
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Lu L, Zhu Z, Hu X. Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem 2018; 260:13-18. [DOI: 10.1016/j.foodchem.2018.03.150] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 11/13/2022]
|
15
|
Synergic effect of 2D nitrogen doped reduced graphene nano-sheet and ionic liquid as a new approach for fabrication of anticancer drug sensor in analysis of doxorubicin and topotecan. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Fluorescence quenching capillary analysis for determining trace-level nitrite in food based on the citric acid/ethylenediamine nanodots/nitrite reaction. Food Chem 2018; 274:162-169. [PMID: 30372922 DOI: 10.1016/j.foodchem.2018.08.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/11/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
We found that nitrite after protonation can react with amine radical on citric acid/ethylenediamine carbon nanodots (CA/EDA-CDs) to form nitrosamines, and fluorescence quenching of CA/EDA-CDs occurred during this process. Using the reaction mechanism a fluorescence quenching capillary analysis (FQCA) was developed. After optimized reaction conditions, the following results were obtained: the required concentration of CA/EDA-CDs was 12 mg/L, HCl concentration was 32 mmol/L, and the reaction conducted in room temperature for 20 min. Under optimized conditions, FQCA has a linear response in 20-500 μg/L in which RSD was less 4.5% (n = 11), the detection limit was 6.5 μg/L and the recovery was in 95-105%. The measured results were consistent with the national standard method. FQCA has been used for determining nitrite in foods and nature waters. The capillary in FQCA was used as the container for CA/EDA-CDs/NO2- reaction and NO2- determination, and realized trace-level analysis for micro-volume samples (<10 μL/time).
Collapse
|
17
|
Karimi-Maleh H, Sheikhshoaie I, Samadzadeh A. Simultaneous electrochemical determination of levodopa and piroxicam using a glassy carbon electrode modified with a ZnO-Pd/CNT nanocomposite. RSC Adv 2018; 8:26707-26712. [PMID: 35541045 PMCID: PMC9083090 DOI: 10.1039/c8ra03460e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/11/2018] [Indexed: 11/21/2022] Open
Abstract
A highly conductive electrochemical sensor was constructed for the simultaneous electrochemical determination of levodopa and piroxicam by modification of a glassy carbon electrode with a ZnO-Pd/CNT nanocomposite (GCE/ZnO-Pd/CNTs). The ZnO-Pd/CNT nanocomposite was synthesized by the sol-gel procedure and was characterized by EDAX, MAP and SEM. The sensor was shown to improve the oxidation signal of levodopa and piroxicam by ∼70.2-fold and ∼41.5-fold, respectively. This marks the first time that the electrochemical behavior of levodopa and piroxicam have been investigated at the surface of GCE/ZnO-Pd/CNTs. The voltammogram showed a quasi-reversible signal and an irreversible redox signal for electro-oxidation of levodopa and piroxicam, respectively. The GCE/ZnO-Pd/CNTs showed a linear dynamic range of 0.6 to 100.0 μM (at a potential of ∼180 mV) and 0.1 to 90 μM (at a potential of ∼480 mV) with detection limits of 0.08 and 0.04 μM for the determination of levodopa and piroxicam, respectively. GCE/ZnO-Pd/CNTs were then applied for the determination of levodopa and piroxicam in real samples.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology Quchan Iran +98-9112540112
| | | | - Ali Samadzadeh
- Department of Chemistry, Shahid Bahonar University Kerman Iran
| |
Collapse
|
18
|
Raja Jamaluddin RZA, Yook Heng L, Tan LL, Chong KF. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin. SENSORS 2018; 18:s18051343. [PMID: 29701688 PMCID: PMC5981201 DOI: 10.3390/s18051343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb) covalently immobilized on the succinimide functionalized poly(n-butyl acrylate)-graphene [poly(nBA)-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE). The immobilized Hb on the poly(nBA)-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN) samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA)-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.
Collapse
Affiliation(s)
- Raja Zaidatul Akhmar Raja Jamaluddin
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi 43600, Selangor D. E., Malaysia.
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi 43600, Selangor D. E., Malaysia.
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor D. E., Malaysia.
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor D. E., Malaysia.
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
19
|
Balasubramanian P, Settu R, Chen SM, Chen TW, Sharmila G. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe 2O 4) clusters modified screen printed carbon electrode. J Colloid Interface Sci 2018; 524:417-426. [PMID: 29677610 DOI: 10.1016/j.jcis.2018.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe2O4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM-1 cm-2. Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ramki Settu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ganapathi Sharmila
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
20
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
21
|
Li D, Ma Y, Duan H, Deng W, Li D. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 2018; 99:389-398. [DOI: 10.1016/j.bios.2017.08.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/28/2022]
|
22
|
An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9676-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Potassium ferricyanide-incorporated branched polyethylenimine as a potential scaffold for electrocatalytic reduction and amperometric sensing of nitrite. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-1012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Wang XF, Fan JC, Ren R, Jin Q, Wang J. Rapid determination of nitrite in foods in acidic conditions by high-performance liquid chromatography with fluorescence detection. J Sep Sci 2016; 39:2263-9. [DOI: 10.1002/jssc.201600093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-fang Wang
- Hangzhou Center for Disease Control and Prevention; Hangzhou P. R. China
| | - Ji-cai Fan
- Hangzhou Center for Disease Control and Prevention; Hangzhou P. R. China
| | - Ren Ren
- Hangzhou Center for Disease Control and Prevention; Hangzhou P. R. China
| | - Quan Jin
- Hangzhou Center for Disease Control and Prevention; Hangzhou P. R. China
| | - Jing Wang
- Hangzhou Center for Disease Control and Prevention; Hangzhou P. R. China
| |
Collapse
|
25
|
Xiong Y, Wang CJ, Tao T, Duan M, Fang SW, Zheng M. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide. Anal Bioanal Chem 2016; 408:3413-23. [PMID: 26939671 DOI: 10.1007/s00216-016-9415-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
A microfluidic-capillary-waveguide-coupled fiber-optic sensor was developed for colorimetric determination of hazardous nitrite based on the Griess-Ilosvay reaction. The sensor was modularly designed by use of a light-emitting diode as the light source, silica fiber as the light transmission element, and a capillary waveguide tube as the light reaction flow cell. With the light interacting with the azo dye generated by the Griess-Ilosvay reaction between nitrite and Griess reagents, nitrite could be determined by a colorimetric method according to Beer's law. By use of the inexpensive and micro-sized elements mentioned above, the sensor provided a new low-cost and portable method for in situ and online measurement of nitrite. The sensor had a wide linear range for nitrite from 0.02 to 1.8 mg L(-1) and a low detection limit of 7 μg L(-1) (3σ), with a relative standard deviation of 0.37% (n = 10). With a low reagent demand of 200 μL, a short response time of 6.24 s, and excellent selectivity, the sensor is environmentally friendly and has been applied to nitrite determination in different water samples. The results were compared with those obtained by conventional spectrophotometry and ion chromatography, indicating the sensor's potential for practical applications.
Collapse
Affiliation(s)
- Yan Xiong
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China.,Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Cheng-Jie Wang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Tao Tao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Ming Duan
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China. .,Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan, 610500, China.
| | - Shen-Wen Fang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Min Zheng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| |
Collapse
|
26
|
Beitollahi H, Tajik S, Jahani S. Electrocatalytic Determination of Hydrazine and Phenol Using a Carbon Paste Electrode Modified with Ionic Liquids and Magnetic Core-shell Fe3O4@SiO2/MWCNT Nanocomposite. ELECTROANAL 2015. [DOI: 10.1002/elan.201501020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Pradela-Filho LA, Oliveira BC, Takeuchi RM, Santos AL. A Prussian blue-carbon paste electrode for selective cathodic amperometric determination of nitrite using a flow-injection analysis system with carrier recycling. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|