1
|
Bilska A, Krzywdzińska-Bartkowiak M. The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats. Foods 2025; 14:380. [PMID: 39941973 PMCID: PMC11817611 DOI: 10.3390/foods14030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
In the production of meat products, animal fats, which are rich mainly in saturated fatty acids, are used as a recipe ingredient. To improve the quality and fatty acid profile of meat products, it is possible to partially replace animal fat with vegetable oils. This approach aims to achieve a more favorable PUFA/SFA ratio and n-6:n-3 PUFA ratio, bringing them closer to the values recommended by nutritional organizations. Therefore, the aim of this study was to determine the impact of replacing 20% and 40% of animal fat with selected plant fats on the change in the fat fraction composition of liver pâté-type processed meat and its oxidative stability. Fatty acid content was analyzed in the oils purchased from retailers and in experimental samples. During refrigerated storage of the experimental sausages, changes in the content of primary (peroxide value (PV)) and secondary oxidation products (TBARS), as well as changes in sensory quality, were evaluated. The analysis included cross-sectional color, aroma, texture, saltiness, and taste. The study showed that replacing 20% of animal fat with vegetable oils resulted in products with high sensory attractiveness and oxidative stability, outperforming those with 40% replacement. Among the tested vegetable oils, samples with rapeseed oil demonstrated the highest oxidative stability and the most favorable, nutrition-recommendation-approaching n-6 to n-3 fatty acid ratio, compared with samples with flaxseed, corn, sunflower, and soybean oils.
Collapse
Affiliation(s)
- Agnieszka Bilska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznan, Poland;
| | | |
Collapse
|
2
|
Vicentini‐Polette CM, Yamada BS, Ramos PR, da Silva MG, de Oliveira AL. High Pressure Extraction as a Green Alternative to the Conventional Sunflower Oil ( Helianthus annuus) Production Process - Extraction with Pressurized Ethanol in an Intermittent Process and with Supercritical Fluid. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300335. [PMID: 39545253 PMCID: PMC11557510 DOI: 10.1002/gch2.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/09/2024] [Indexed: 11/17/2024]
Abstract
This research explores green-technology alternatives to extract vegetable oils as alternatives to hexane, a non-renewable solvent, focussing on sunflower oil. It compares pressurized liquid extraction (PLE) with ethanol and supercritical fluid extraction (SFE) with CO2. Both processes aim to maximize oil yield, tocopherol content (α, β, γ, and δ), fatty acid profile (FA), and triacylglycerol (TAG) composition. Results show that SFE at 32 MPa achieves an 87.58% oil recovery, while PLE at 84 °C achieves 93.93%. PLE with ethanol extracts polar minority compounds along with the oil due to its higher temperature, favoring extraction. The total tocopherol content is 91.17 mg/100 g of oil in optimized SFE conditions, with α-tocopherol extraction influenced by temperature, γ and δ-tocopherol by pressure. PLE yields 83.16 mg/100 g of oil in tocopherols influenced less by process variables. The fatty acid (FA) profile do not vary in the oils obtained from different processes or based on the variables within each process, with linoleic and oleic acids being the most abundant. Similarly, triacylglycerols (TAGs) C54:5 and C54:6 are predominant. The optimization of SFE and PLE processes indicates a strong potential for using green solvents in the extraction of tocopherol-rich sunflower oil.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini‐Polette
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Beatriz Satie Yamada
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Paulo Rodolfo Ramos
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Marta Gomes da Silva
- Instituto de Tecnologia de Alimentos (ITAL)Centro de Ciência e Qualidade de AlimentosAv. Brasil, 2880CampinasSP13070–178Brazil
| | - Alessandra Lopes de Oliveira
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| |
Collapse
|
3
|
Borham A, Haroun M, Saleh IA, Zomot N, Okla MK, Askar M, Elmasry M, Elshahat A, Liu L, Zhao C, Wang J, Qian X. A statistical optimization for almost-complete methylene blue biosorption by Gracilaria bursa-pastoris. Heliyon 2024; 10:e34972. [PMID: 39145033 PMCID: PMC11320206 DOI: 10.1016/j.heliyon.2024.e34972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, the dried biomass of four marine algae, namely Porphyra sp., Gracilaria bursa-pastoris, Undaria pinnatifida and Laminaria sp., were screened for their ability to remove methylene blue (MB) dye from aqueous solutions. Statistical approaches of the Plackett-Burman Design (PBD) and Box-Behnken Design (BBD) were applied to optimize different environmental conditions in order to achieve the maximum MB removal percentage by Gracilaria bursa-pastoris. The biosorbent was characterized before and after adsorption process using FTIR, XRD and SEM analysis. Additionally, isotherms, kinetics and thermodynamics studies were conducted to investigate the adsorption behavior of the adsorbent. The results showed that Gracilaria bursa-pastoris achieved the highest dye removal efficiency (98.5 %) compared to 96.5 %, 93.5 % and 93.9 % for Undaria pinnatifida, Porphyra sp. and Laminaria sp., respectively. PBD analysis revealed that the agitation speed, pH, and biomass dose were found to be the significant parameters affecting MB removal onto Gracilaria dried biomass. According to the BBD results, the maximum dye removal percentage (99.68 %) was obtained at agitation speed of 132 rpm, pH 7 and biomass dose of 7.5 g/L. FTIR, XRD and SEM analysis demonstrated the participation of several functional groups in the adsorption process and changes in the cell surface morphology of the adsorbent following the dye adsorption. The adsorption isotherms showed better fit to Freundlich model (R2 = 0.9891) than the Langmuir, Temkin, and Dubinin-Radushkevich models. The adsorption kinetics were best described by the pseudo-second-order model (R2 = 0.9999), suggesting the chemical interactions between dye ions and the algal biomass. The thermodynamic parameters indicated that the adsorption of MB onto Gracilaria dried biomass was spontaneous, feasible, endothermic and random. These results indicate that dried biomass of Gracilaria bursa-pastoris is an attractive, environmentally friendly, cheap and effective agent for MB dye removal from environmental discharges.
Collapse
Affiliation(s)
- Ali Borham
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Mohammed Haroun
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mofeed Askar
- Economic Entomology Department, Faculty of Agriculture, Damietta University, Egypt
| | - Mohamad Elmasry
- Animal Production Research Institute (APRI), Agricultural Research Centre (ARC), Egypt
| | - Abdelmonem Elshahat
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Lei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Juanjuan Wang
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaoqing Qian
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
4
|
Khanramaki F, Keshtkar AR. Optimization of thorium solvent extraction process from feed solution with Cyanex 272 by response surface methodology (RSM). Sci Rep 2024; 14:15131. [PMID: 38956278 PMCID: PMC11219799 DOI: 10.1038/s41598-024-66091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Due to the limited reserves of uranium, the abundance of thorium compared to it and other advantages, the development of the thorium fuel cycle is of interest in different countries. The optimization of thorium extraction from a feed solution produced by Saghand ore with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) on a laboratory scale was evaluated by response surface method. The operating variables include Cyanex 272 concentration of 0.001 to 0.2 mol/L, pH of 0 to 2, equilibrium time of 5 to 60 min and aqueous to organic phase ratio of 0.5 to 2.5 were conducted. The value of R2 = 0.9695 and an error of less than 4% indicate the validity of the model. Therefore, the model is in good agreement with the experimental results. It can be said that there are significant interactions between operational parameters, which vindicate different feedbacks of the system in different operational conditions. The results showed that the 4 mol/L sulfuric acid was a suitable agent for recovering thorium ions from the loaded organic phase. In optimum conditions, the thorium purity percentage and thorium stripping efficiency were obtained 98.99 and 94.12%, respectively.
Collapse
Affiliation(s)
- F Khanramaki
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran.
| | - A R Keshtkar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran
| |
Collapse
|
5
|
Mohammad AA, Mehaya FM, Salem SH, Amer HM. Psyllium and okra mucilage as co-carrier wall materials for fenugreek oil encapsulation and its utilization as fat replacers in pan bread and biscuit production. Heliyon 2024; 10:e25321. [PMID: 38352795 PMCID: PMC10862519 DOI: 10.1016/j.heliyon.2024.e25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to investigate the potential use of okra and psyllium mucilage as co-carrier wall materials with whey protein and gum Arabic polymers for encapsulation of fenugreek oil to mask its undesirable flavor and promote their health benefits. Particle size, zeta potential, encapsulation efficiency, morphological properties and fatty acid profiles of crude and encapsulated oils were examined using zeta-sizer, SEM and GC-MS techniques. Crude and encapsulated fenugreek oils were added as functional ingredients during production of pan bread and biscuits. The quality characteristics (baking quality, color and organoleptic properties) of bread and biscuits as well as microbiological properties of bred samples were evaluated. Results showed that the forming microcapsules had sphere particles with the size of 5.05 and 31.64 μm for okra and pysillium mucilage, respectively and had smooth continuous surfaces with no holes or fractures. Fatty acids analysis showed that fenugreek oil is superior functional edible oil, rich in unsaturated fatty acids. The organoleptic properties of products were improved when fat replaced with encapsulated fenugreek oil with okra or psyllium mucilage. Likewise, encapsulated fenugreek oil showed antimicrobial activity in bread samples during storage period. On contrary, Bread and biscuits incorporated with crude fenugreek oil gained the lowest scores for all organoleptic parameters. Regarding these results, encapsulated fenugreek oil presents good fat alternatives in dough formulations with acceptable technological, sensory and antimicrobial properties. However, further investigations still needed regarding the biological activity of encapsulated fenugreek oil and its utilization as a food supplement in other food products.
Collapse
Affiliation(s)
- Ayman A. Mohammad
- Food Technology Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Fathy M. Mehaya
- Food Technology Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Salah H. Salem
- Food Toxicology and Contaminants Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Heba M. Amer
- Medicinal and Aromatic Plants Research Dept, National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Soares SD, Dos Santos OV, da Conceição LRV, Costi HT, Silva Júnior JOC, Nascimento FDCAD, Pena RDS. Nutritional and Technological Properties of Albino Peach Palm ( Bactris gasipaes) from the Amazon: Influence of Cooking and Drying. Foods 2023; 12:4344. [PMID: 38231871 DOI: 10.3390/foods12234344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to subject the albino peach palm to cooking and drying processes and characterize the raw pulp (RP), cooked pulp (CP), raw pulp flour (RPF), and cooked pulp flour (CPF). The product's chemical composition, bioactive compounds, and physicochemical, color, thermal, morphological, and functional-technological properties were evaluated. The proximate composition showed that carbohydrates were the main constituents of all the products (69.59-72.08 g/100 g). The cooking process decreased the lipids (10.21 to 8.63 g/100 g), dietary fiber (13.64 to 12.81 g/100 g), and total sugar content (59.18 to 49.10 g/100 g) of the CP. The colorimetric parameters indicated a significant browning of the CP and CPF, which can be attributed to the Maillard reaction and lipid oxidation. After cooking, the total phenolic compound and ascorbic acid content decreased in the pulp. The RPF and CPF displayed different thermogravimetric behaviors. The spectral patterns in the infrared region showed the characteristic bands of organic compounds that are present in the structure of starches. The scanning electron microscopy showed amyloplast and fiber bundles with starches in the RP and gelatinized starch granules in the CP and CPF. The RPF presented small and heterogeneous starch granules with isolated amyloplast. The RPF and CPF showed different granulometric patterns and technological indices. The results suggest that the pulp and flour from the pulp of albino peach palms can be exploited by the food, pharmaceutical, and biotechnological industries.
Collapse
Affiliation(s)
- Stephanie Dias Soares
- Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Orquídea Vasconcelos Dos Santos
- Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Faculty of Nutrition, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Hilton Túlio Costi
- Emílio Goeldi Museum, Coordination of Earth Sciences and Ecology, Belém 66077-830, PA, Brazil
| | | | | | - Rosinelson da Silva Pena
- Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
7
|
Mattoli L, Pelucchini C, Fiordelli V, Burico M, Gianni M, Zambaldi I. Natural complex substances: From molecules to the molecular complexes. Analytical and technological advances for their definition and differentiation from the corresponding synthetic substances. PHYTOCHEMISTRY 2023; 215:113790. [PMID: 37487919 DOI: 10.1016/j.phytochem.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Natural complex substances (NCSs) are a heterogeneous family of substances that are notably used as ingredients in several products classified as food supplements, medical devices, cosmetics and traditional medicines, according to the correspondent regulatory framework. The compositions of NCSs vary widely and hundreds to thousands of compounds can be present at the same time. A key concept is that NCSs are much more than the simple sum of the compounds that constitute them, in fact some emerging phenomena are the result of the supramolecular interaction of the constituents of the system. Therefore, close attention should be paid to produce and characterize these systems. Today many natural compounds are produced by chemical synthesis and are intentionally added to NCSs, or to formulated natural products, to enhance their properties, lowering their production costs. Market analysis shows a tendency of people to use products made with NCSs and, currently, products made with ingredients of natural origin only are not conveniently distinguishable from those containing compounds of synthetic origin. Furthermore, the uncertainty of the current European regulatory framework does not allow consumers to correctly differentiate and identify products containing only ingredients of natural origin. The high demand for specific and effective NCSs and their high-cost offer on the market, create the conditions to economically motivated sophistications, characterized by the addition of a cheap material to a more expensive one, just to increase profit. This type of practice can concern both the addition of less valuable natural materials and the addition of pure artificial compounds with the same structure as those naturally present. In this scenario, it becomes essential for producers of natural products to have advanced analytical techniques to evaluate the effective naturalness of NCSs. In fact, synthetically obtained compounds are not identical to their naturally occurring counterparts, due to the isotopic composition or chirality, as well as the presence of different trace metabolites (since pure substances in nature do not exist). For this reason, in this review, the main analytical tests that can be performed to differentiate natural compounds from their synthetic counterparts will be highlighted and the main analytical technologies will be described. At the same time, the main fingerprint techniques useful for characterizing the complexity of the NCSs, also allowing their identification and quali-quantitative evaluation, will be described. Furthermore, NCSs can be produced through different manufacturing processes, not all of which are on the same level of quality. In this review the most suitable technologies for green processes that operate according to physical extraction principles will be presented, as according to the authors they are the ones that come closest to creating more life-cycle compatible NCSs and that are well suited to the European green deal, a strategy with the aim of transforming the EU into a sustainable and resource-efficient society by 2050.
Collapse
Affiliation(s)
- Luisa Mattoli
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy.
| | | | | | - Michela Burico
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Ilaria Zambaldi
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| |
Collapse
|
8
|
Sheikhi M, Sharifzadeh M, Hennink WE, Firoozpour L, Hajimahmoodi M, Khoshayand MR, Shirangi M. Design of experiments approach for the development of a validated method to determine the exenatide content in poly(lactide-co-glycolide) microspheres. Eur J Pharm Biopharm 2023; 192:56-61. [PMID: 37783361 DOI: 10.1016/j.ejpb.2023.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Due to the lack of pharmacopeia guidelines for injectable microspheres based on poly (D, L-lactide-co-glycolide) (PLGA), an internal method validation is a critical prerequisite for quality assurance. One of the essential issues of developing peptide-based drugs loaded PLGA microspheres is the precise determination of the amount of peptide drug entrapped in the microspheres. The aim of this study is the development and optimization of a method for measuring the drug content loading of PLGA microspheres using exenatide as a model peptide drug. Exenatide-loaded PLGA microspheres were prepared by a double emulsion solvent evaporation method. The extraction method to determine exenatide content in microspheres was optimized using Design of Experiments (DoE) approach. After the initial screening of six factors, using Fractional Factorial design (FFD), four of them, including type of organic solvent, buffer/organic solvent ratio (v/v), shaking time and pH, exhibited significant effects on the response, namely the exenatide loading, and a Box-Behnken design (BBD) was subsequently applied to obtain its optimum level. The optimum level for organic solvent volume, buffer/organic solvent ratio, shaking time, and pH were 4 ml, 1, 5.6 hrs, and pH 6, respectively. The exenatide content in microspheres under these conditions was 6.4 ± 0.0 (%w/w), whereas a value of 6.1% was predicted by the derived equation. This excellent agreement between the actual and the predicted value demonstrates that the fitted model can thus be used to determine the exenatide content.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| |
Collapse
|
9
|
Di Z, Zhou B, Zhou L, Di Y, Wang L, Di L. A Gellan Gum/Sodium Alginate-based gastric-protective hydrogel loaded with a combined herbal extract consisting of Panax notoginseng, Bletilla striata and Dendrobium officinale. Int J Biol Macromol 2023; 250:126277. [PMID: 37572808 DOI: 10.1016/j.ijbiomac.2023.126277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
One Chinese herbal combination consisting of Panax notoginseng, Bletilla striata and Dendrobium officinale (PBD) is an effective Traditional Chinese Medicine (TCM) prescription and is widely used in clinics to treat gastric ulcers due to their safety and effectiveness compared with chemical agents, such as aspirin and omeprazole. Herein, an in situ forming gel (ISFG) based on Gellan Gum (GG) and Sodium Alginate (SA) was designed to deliver extracts of PBD prescription (EPBDP). The central composite design optimized prescription dosage was 0.1 % w/v of GG and 0.5 % w/v of SA. Gels prepared with this formulation demonstrated outstanding fluidity and instantaneous gel formation. In vitro release data showed that sustained drug release occurred in the gel, and the gel was pH-sensitive. The rheological tests confirmed the formation of stable gel, which exhibited strong viscosity and elasticity. In vitro adhesion assays revealed that the gel had strong gastric mucosal adhesion, while in vivo residual rate experiments of active ingredients revealed that the gel might greatly improve the gastric retention of active ingredients. Animal studies demonstrated that the gel was effective in treating gastric ulcers. Hence, the results of the study show that EPBDP-ISFG, a highly pH-sensitive sustained-release system, is effective.
Collapse
Affiliation(s)
- Zhenning Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Bingqian Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Luyao Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Yawei Di
- East Region Military Command General Hospital, China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| |
Collapse
|
10
|
Savić Gajić IM, Savić IM, Svirčev Z. Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity. Polymers (Basel) 2023; 15:2592. [PMID: 37376238 DOI: 10.3390/polym15122592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels are very attractive materials due to their multifunctional properties. Many natural polymers, such as polysaccharides, are used for the preparation of hydrogels. The most important and commonly used polysaccharide is alginate because of its biodegradability, biocompatibility, and non-toxicity. Since the properties of alginate hydrogel and its application depend on numerous factors, this study aimed to optimize the gel composition to enable the growth of inoculated cyanobacterial crusts for suppressing the desertification process. The influence of alginate concentration (0.1-2.9%, m/v) and CaCl2 concentration (0.4-4.6%, m/v) on the water-retaining capacity was analyzed using the response surface methodology. According to the design matrix, 13 formulations of different compositions were prepared. The water-retaining capacity was defined as the system response maximized in optimization studies. The optimal composition of hydrogel with a water-retaining capacity of about 76% was obtained using 2.7% (m/v) alginate solution and 0.9% (m/v) CaCl2 solution. Fourier transform infrared spectroscopy was used for the structural characterization of the prepared hydrogels, while the water content and swelling ratio of hydrogels were determined using gravimetric methods. It was concluded that alginate and CaCl2 concentrations play the most important role regarding the gelation time, homogeneity, water content, and swelling ratio of the hydrogel.
Collapse
Affiliation(s)
- Ivana M Savić Gajić
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ivan M Savić
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
11
|
Maneeboon T, Chuaysrinule C, Mahakarnchanakul W. Optimization and Validation of Dispersive Liquid-Liquid Microextraction for Simultaneous Determination of Aflatoxins B1, B2, G1, and G2 in Senna Leaves and Pods Using HPLC-FLD with Pre-Column Derivatization. Toxins (Basel) 2023; 15:277. [PMID: 37104215 PMCID: PMC10142810 DOI: 10.3390/toxins15040277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Dispersive liquid-liquid microextraction (DLLME) was optimized for the simultaneous extraction of aflatoxins (AFB1, AFB2, AFG1, and AFG2) from powdered senna leaves and pods. Detection was performed using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) and pre-column derivatization. The parameters affecting the DLLME extraction efficiency were evaluated. Chloroform (200 µL) was used as an extraction solvent, 500 µL of distilled water was used as a dispersive solvent, and the extraction was performed at pH 5.6 with no salt added. The optimized method was validated using leaves and pods according to the European Commission guidelines. The linear range for all aflatoxins was 2-50 µg/kg, with values for regression coefficients of determination exceeding 0.995. The recoveries of spiked senna leaves and pods were in the ranges of 91.77-108.71% and 83.50-102.73%, respectively. The RSD values for intra-day and inter-day precisions were in the ranges of 2.30-7.93% and 3.13-10.59%, respectively. The limits of detection and quantification varied in the ranges of 0.70-1.27 µg/kg and 2.13-3.84 µg/kg, respectively. The validated method was successfully applied for the quantification of aflatoxins in 60 real samples of dried senna leaves and pods.
Collapse
Affiliation(s)
- Thanapoom Maneeboon
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand;
| | - Chananya Chuaysrinule
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand;
| | - Warapa Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
12
|
DOS SANTOS GS, PERPÉTUO AA, DİAS SOUZA MV. Susceptibility of bacterial species isolated from mares to ozonated sunflower oil. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023. [DOI: 10.21448/ijsm.1167867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Sunflower oil is known for its therapeutic properties and culinary use. It is an important alimentary source of tocopherol and unsaturated fatty acids, and is used especially for wound healing. Studies on its antimicrobial potential, however, are lacking. The ozonation of oils of vegetable sources has been explored to enhance their therapeutic properties; however, studies that provide evidence of such benefits are still lacking. In the field of veterinary medicine, such data are even more scarce. In this study, the antimicrobial activity of ozonated sunflower oil was compared to that of non-ozonated oil, in an in vitro system, against strains of Staphylococcus aureus and Escherichia coli, isolated from intrauterine lavages of mares with endometritis. Tests were conducted using the minimum inhibitory concentration method. The ozonated oil was effective against S. aureus, whereas it was not against E. coli isolates. Our data open doors for discussion on the use of sunflower oil, with or without ozone treatment, for therapeutic purposes in veterinary medicine.
Collapse
|
13
|
Poornachandhra C, Jayabalakrishnan RM, Prasanthrajan M, Balasubramanian G, Lakshmanan A, Selvakumar S, John JE. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics. RSC Adv 2023; 13:4757-4774. [PMID: 36760285 PMCID: PMC9900603 DOI: 10.1039/d2ra08283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The development of economic and recyclable adsorbents for removing pollutants from contaminated water is gaining increasing attention. Agro residue or nature-based material sourced absorbents could revolutionize the future of wastewater treatment. Hence in this study, nanocellulose was synthesized from coconut husk fiber and immobilized onto chitosan to form hydrogel beads. The BET surface area and zeta potential of the adsorbent nanocrystalline cellulose-chitosan hydrogel (NCC-CH) bead was 25.77 m2 g-1 and +50.6 mV, respectively. The functional group analysis also confirmed that the adsorbent had functional groups appropriate for the adsorption of textile dyes. The adsorption performance of NCC-CH and also the influence of initial dye concentration, adsorbent dose, pH, and contact time was evaluated by batch adsorption studies with crystal violet (CV) and methylene blue (MB) dyes. The most favorable operational conditions achieved through I-optimal design in response surface methodology were 0.5 g NCC-CH, 1 h, 9 pH, and 60 mg L-1 for CV removal (94.75%) and 0.13 g NCC-CH, 1 h, 9 pH, and 30 mg L-1 for MB removal (95.88%). The polynomial quadratic model fits the experimental data with an R 2 value of 0.99 and 0.98 for CV and MB removal, respectively. The optimum depiction of the isotherm data was obtained using the Freundlich model for MB adsorption and Freundlich and Langmuir model for CV adsorption. The Dubinin-Radushkevich (D-R) isotherm was also a good fit to the adsorption of CV and MB dye, suggesting the physisorption due to its free energy of adsorption < 8 kJ mol-1. The kinetics were effectively explained by a pseudo-second order model for both the dyes suggesting that chemical mechanisms influenced the adsorption of CV and MB dyes onto NCC-CH. The intraparticle diffusion model best suited the MB adsorption with three stages rather than the CV with a single step process. Also, the removal efficiency of adsorbent was retained at above 60% even after seven adsorption-desorption cycles indicating the effectiveness of the NCC-CH hydrogel beads for the removal of textile dyes.
Collapse
Affiliation(s)
| | | | - Mohan Prasanthrajan
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| | | | | | - S Selvakumar
- Water Technology Centre, Tamil Nadu Agricultural University India
| | - Joseph Ezra John
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| |
Collapse
|
14
|
Mahmoud NE, Mahdi AA, Barakat AMA, Abdelhameed RM. Boosting vegetation, biochemical constituents, grain yield and anti-cancer performance of cultivated oat (Avena sativa L) in calcareous soil using oat extracts coated inside nanocarriers. BMC PLANT BIOLOGY 2022; 22:544. [PMID: 36434510 PMCID: PMC9700955 DOI: 10.1186/s12870-022-03926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Calcareous soil contains many problems such as the lack of sources of major and minor elements that are useful for plant growth and development. Plant extracts and nanoparticles are very popular as biostimulants in plant production. Here, the effect of aqueous, non-aqueous and alcoholic oat extracts on the growth, biochemical response of oats leaves and grains grown in experimental fields under new reclamation lands were studied. Moreover, different oat extracts were a pathway through the copper-dependent metal-organic framework (MOFs) to separate bioactive molecules from extracts such as salicylic acid, anthraquinone, and triacylglycerol. Additionally, the separated molecules incorporated in Cu-BTC MOFs and oats extracts missed active molecules were spray applied on oat plants. The results showed that the treated plants showed stimulatory responses in growth and physiology. The treatments improved plant growth and biomass, enhanced total protein, water-soluble carbohydrates, free phenolic compounds content in oat leaves, photosynthesis, and chlorophyll contents. The treatments also improved the level of vitamins E and K, phenolic compounds, and avenanthramides C in the oat grains. Moreover, the treatments showed an improvement in the yield of oats (grain and straw) using water and alcoholic oat extracts in which the active molecules were missed. Our findings demonstrate that Cu-BTC and oats extracts can act as a biostimulant to enhance the biological and chemical properties of oats and increase the yield in calcareous soils. The cytotoxicity study of oats (produced from AE, c@Cu-BTC, and AE-c treatments) was conducted using Vero Cell lines. The anticancer activities of different oat grains were carried out using MCF 7cell lines. The results show that the grains produced from the AE, c@Cu-BTC, and AE-c treatments possessed 94.3, 72.3, and 100% activity towards the cancer cell line. Removal of growth inhibitors from spray solutions increases grain yield and anticancer activity.
Collapse
Affiliation(s)
- Noura E Mahmoud
- Biochemistry Unit, Plant Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Asmaa A Mahdi
- Biochemistry Unit, Plant Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Ashraf M A Barakat
- Zoonotic Diseases Department, National Research Centre, 33 Bohouth Str. Dokki, Giza, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
15
|
Niu Y, Hu W, Shen T, Dong K, Wang D. Response Surface Methodology for the Optimization of Zn-Contaminated Soil Remediation by Soil Washing with Water-Soluble Chitosan. ACS OMEGA 2022; 7:41929-41936. [PMID: 36440154 PMCID: PMC9685741 DOI: 10.1021/acsomega.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Soil washing is an important method for the remediation of contaminated soil. This research presents the optimization of soil washing conditions in the remediation of Zn-contaminated soils with water-soluble chitosan (WSCS). Response surface methodology (RSM) was used to optimized the washing conditions after single factor experiments. The central composite design (CCD) with three factors and five levels was applied to the optimization of the removal efficiency of Zn from soils, and WSCS concentration, pH value, and washing time were evaluated variables in the washing process. Results indicated that the pH value (p < 0.0001) was the most significant factor which mainly affected the distribution and content of metal species in aqueous solution, ion exchange and adsorption/desorption behavior of metals, solubility of chelating agent, as well as readsorption of metal complexes. The optimal conditions for the Zn removal from soils were WSCS concentration of 1.5%, pH of 3.3, and washing time of 72 min. The removal efficiency could reach 65.4% under the optimized conditions, which was close to the predicted value of 68.3% by the response surface method. Therefore, it could be found that the response surface methodology was an effective method to determine the optimal conditions for the removal of metals from contaminated soils by soil washing.
Collapse
Affiliation(s)
- Yaolan Niu
- Department
of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin541004, GuangxiChina
| | - Wei Hu
- Department
of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin541004, GuangxiChina
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin541006, Guangxi, China
| | - Taiming Shen
- Department
of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin541004, GuangxiChina
| | - Kun Dong
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin541006, Guangxi, China
| | - Dunqiu Wang
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin541006, Guangxi, China
| |
Collapse
|
16
|
Supercritical CO2 extraction of caraway (Carum carvi L.) seed: Optimization and parametric interaction studies using design of experiments. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Mutsvene B, Chetty M, Kumari S, Bux F. Biohydrogen production from brewery wastewater in an Anaerobic Baffled Reactor. A preliminary techno-economic evaluation. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2022] Open
|
18
|
dos Santos OV, Soares SD, Dias PCS, Alves do Nascimento FDC, Vieira da Conceição LR, da Costa RS, da Silva Pena R. White peach palm (pupunha) a new Bactris gasipaes Kunt variety from the Amazon: Nutritional composition, bioactive lipid profile, thermogravimetric and morphological characteristics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
20
|
Ahmad K, Ghatak HR, Ahuja SM. Response surface methodology (RSM) and artificial neural network (ANN) approach to optimize the photocatalytic conversion of rice straw hydrolysis residue (RSHR) into vanillin and 4-hydroxybenzaldehyde. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Effective use of waste lignin is always a challenging task, technologies have been applied in the past to get value-added compounds from waste lignin. However, the existing technologies are not economical and efficient to produce the value-added chemicals. Alkali soluble lignin from rice straw hydrolysis residue (RSHR) is subjected to photocatalytic conversion into value-added compounds. Photocatalysis is one of the multifarious advanced oxidation processes (AOPs), carried out with TiO2 nanoparticles under a 125 W UV bulb. Gas chromatography mass spectroscopy (GCMS) confirmed the formation of vanillin and 4-hydroxybenzaldehyde. RSM and ANN techniques are adopted to optimize the process conditions for the maximization of the products. The response one (Y
1) vanillin (24.61 mg) and second response (Y
2) 4-hydroxybenzaldehyde (19.51 mg) is obtained at the optimal conditions as 7.0 h irradiation time, 2.763 g/L catalyst dose, 15 g/L lignin concentration, and 14.26 g/L NaOH dose for alkali treatment, suggested by face-centered central composite design (CCD). RSM and ANN models are statistically analyzed in terms of RMSE, R
2 and AAD. For RSM the R
2 0.9864 and 0.9787 while for ANN 0.9875 and 0.9847, closer to one warrant the good fitting of the models. Therefore, in terms of higher precision and predictive ability of both models the ANN model showed excellence for both responses as compared to the RSM model.
Collapse
Affiliation(s)
- Kaleem Ahmad
- Department of Chemical Engineering , Sant Longowal Institute of Engineering and Technology , Longowal 148106 , Punjab , India
| | - Himadri Roy Ghatak
- Department of Chemical Engineering , Sant Longowal Institute of Engineering and Technology , Longowal 148106 , Punjab , India
| | - S. M. Ahuja
- Department of Chemical Engineering , Sant Longowal Institute of Engineering and Technology , Longowal 148106 , Punjab , India
| |
Collapse
|
21
|
Xia Z, Li Y, Li R, He X, Chen L, Li B, Liu S, Zhang G, Dong J, Li M, Tian Y. Supercritical CO 2 extraction of fermented soybean lipids against erastin-induced ferroptosis in rat pheochromocytoma cells. Food Chem 2022; 377:132051. [PMID: 35008017 DOI: 10.1016/j.foodchem.2022.132051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
The optimum supercritical carbon dioxide (SC-CO2) extraction of fermented soybean lipids (FSE-C) was as follows: 35 °C, 30 MPa, and 2.40 ± 0.19% moisture content using response surface methodology. The fatty acid composition of FSE-C contained more palmitic acid and α-linolenic acid and less linoleic acid than unfermented soybean lipids (SE-C). FSE-C had higher contents of minor active components (phytosterols, squalene, total flavonoid, and total polyphenol) than SE-C. The protective effects of FSE-C on erastin-induced ferroptosis were investigated to reveal the potential mechanisms of action characterized by increasing cell viability and glutathione concentrations, attenuating levels of intracellular Fe2+ ion, lipid peroxidation, and ROS, as well as modifying mRNA expression (GPx4, SLC7A11, ACSL4, and LPCAT3) and lipid metabolism. These findings suggest that FSE-C is a class of active ingredients against erastin-induced ferroptosis and warrants further exploration and utilization as a functional food.
Collapse
Affiliation(s)
- Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Ruihong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Xuanhui He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Li Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shijun Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
22
|
Dhara O, Rani KNP, Chakrabarti PP. Supercritical Carbon Dioxide Extraction of Vegetable Oils – Retrospect and Prospect. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olivia Dhara
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - K N Prasanna Rani
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
| | - Pradosh Prasad Chakrabarti
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
23
|
Ahmad K, Roy Ghatak H, Ahuja S. Optimal production of vanillin and 4-hydroxybenzaldehyde from rice straw hydrolysis residue (RSHR) over TiO2/UV and ZnO/UV system. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Dat TD, Viet ND, Thanh VH, Linh NTT, Ngan NTK, Nam HM, Phong MT, Hieu NH. Optimization of Triterpenoid Extraction from
Ganoderma lucidum
by Ethanol‐Modified Supercritical Carbon Dioxide andthe Biological Properties of the Extract. ChemistrySelect 2022. [DOI: 10.1002/slct.202103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Vuong Hoai Thanh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Ngo Thi Thuy Linh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Thi Kim Ngan
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoang Minh Nam
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
25
|
Yu Y, Lu X, Zhang T, Zhao C, Guan S, Pu Y, Gao F. Tiger Nut ( Cyperus esculentus L.): Nutrition, Processing, Function and Applications. Foods 2022; 11:foods11040601. [PMID: 35206077 PMCID: PMC8871521 DOI: 10.3390/foods11040601] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, starch and other edible components; the physiochemical and functional characteristics; as well as their applications in food industry. Different extraction methods can affect functional and nutritional properties to a certain extent. At present, mechanical compression, alkaline methods and alkali extraction-acid precipitation are the most suitable methods for the production of its oil, starch and protein in the food industry, respectively. Based on traditional extraction methods, combination of innovative techniques aimed at yield and physiochemical characteristics is essential for the comprehensive utilization of nutrients. In addition, tiger nut has the radical scavenging ability, in vitro inhibition of lipid peroxidation, anti-inflammatory and anti-apoptotic effects and displays medical properties. It has been made to milk, snacks, beverages and gluten-free bread. Despite their ancient use for food and feed and the many years of intense research, tiger nuts and their components still deserve further exploitation on the functional properties, modifications and intensive processing to make them suitable for industrial production.
Collapse
|
26
|
Lichun W, Sun Y, Kang M, Zhong M, Qi B, Li Y. Effect of Pasteurization on Membrane Proteins and Oxidative Stability of Oil Bodies in Various Crops. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wu Lichun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yufan Sun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mengxue Kang
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mingming Zhong
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Baokun Qi
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yang Li
- College of Food Northeast Agricultural University Harbin 150030 China
- Harbin Institute of Green Food Science Harbin 150030 China
- Harbin Institute of Food Industry Harbin 150030 China
| |
Collapse
|
27
|
Optimization of process parameters for photoreforming of hydrogen evolution via response surface methodology (RSM): A study using Carbon@exfoliated g–C3N4. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Yang L, Chen H, Yin C, Song S, Zhang Y, Liu X, Hu Z. Research on mechanical‐structure properties during sunflower seed extrusion‐oil extraction. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liu Yang
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
| | - Huan Chen
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
| | - Chaochao Yin
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
| | - Shaoyun Song
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
- Hubei Cereals and Oils Machinery Engineering Center Wuhan China
| | - Yonglin Zhang
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
- Hubei Cereals and Oils Machinery Engineering Center Wuhan China
| | - Xiaopeng Liu
- School of Animal Science and Nutritional Engineering Wuhan Polytechnic University Wuhan China
| | - Zhigang Hu
- College of Mechanical Engineering Wuhan Polytechnic University Wuhan China
| |
Collapse
|
29
|
Medeiros Vicentini-Polette C, Rodolfo Ramos P, Bernardo Gonçalves C, Lopes De Oliveira A. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem X 2021; 12:100166. [PMID: 34825173 PMCID: PMC8604745 DOI: 10.1016/j.fochx.2021.100166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Free fatty acid profile in vegetable oils was determined. The extraction process may influence the free fatty acid profile. Linoleic and oleic acids were present in higher proportions. The methodology applied was satisfactory for qualitative analysis.
This study determined the total acidity, fatty acids profile (TFAs), and free fatty acids (FFAs) present in sunflower and soybean oils obtained by green processes (supercritical carbon dioxide-scCO2 and pressurized liquid extraction-PLE). The determination of the primary fatty acids responsible for product acidity can provide a higher quality product. Sunflower (scCO2/PLE-ethanol) and soybean (PLE-ethanol/PLE-hexane) samples were evaluated. The TFAs profile was determined by gas chromatography - mass spectrometry. The total FFAs content was determined by titrimetric method. For the qualitative determination of the FFAs present in the oils, a new technique capable of repeatably identifying the main FFAs was applied, using GC/MS. The primary fatty acids (palmitic, stearic, oleic, linoleic, eicosenoic, and linolenic) were present in all samples, both as TFAs and FFAs. However, fatty acids of lesser intensity showed variations. The applied methodology provided relevant data on the FAs that cause acidity in vegetable oils obtained by green processes.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini-Polette
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Paulo Rodolfo Ramos
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Cintia Bernardo Gonçalves
- (in memoriam) LES, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Alessandra Lopes De Oliveira
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
30
|
Optimization studies of stir casting parameters and mechanical properties of TiO 2 reinforced Al 7075 composite using response surface methodology. Sci Rep 2021; 11:19860. [PMID: 34615935 PMCID: PMC8494885 DOI: 10.1038/s41598-021-99168-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Stir casting is a common metallurgical route in the casting of aluminum composites. Series of work done in this aspect considered the development of the composites with fixed stir casting parameters without applying an optimization approach. These parameters affect the microstructure and performance of the composites. The study is focused on the optimization of the stir casting parameters in the production of Al 7075 reinforced with TiO2 microparticles for performance improvement. Three stir casting parameters of stirring temperature, speed, and time were varied and optimized using the central composite design technique of the response surface method. Properties evaluated were ultimate tensile strength, hardness, impact strength, elastic modulus, and compressive strength. ANOVA results showed that the three stir casting parameters had a significant impact on the property responses. Five quadratic models were established for the properties linking them to the factors. The models were confirmed to be statistically significant at a confidence level of 95% and variations were observed to be < 5%. The interaction profile of the parameters as per response surface was analyzed. Contour plots associated with each interaction gave different ranges of stirring parameters in which each property can be maximized. Simultaneous optimization of the properties using Minitab 19 software showcased 779.3 °C, 574.2 rpm, and 22.5 min as the optimal stir casting parameters for temperature, speed and time respectively.
Collapse
|
31
|
Rani H, Sharma S, Bala M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heena Rani
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Manju Bala
- FG & OP Division ICAR‐Central Institute of Post‐Harvest Engineering and Technology Ludhiana Punjab India
| |
Collapse
|
32
|
Activated Bio-Carbons Prepared from the Residue of Supercritical Extraction of Raw Plants and Their Application for Removal of Nitrogen Dioxide and Hydrogen Sulfide from the Gas Phase. MATERIALS 2021; 14:ma14123192. [PMID: 34207885 PMCID: PMC8227169 DOI: 10.3390/ma14123192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
The waste materials left after supercritical extraction of hop cones and marigold flowers were tested as precursors of activated bio-carbons. Adsorbents were produced by means of the physical (also called thermal) activation method using CO2 as the gasifying agent. All the activated bio-carbons were tested for the removal of NO2 and H2S from the gas phase under dry and wet conditions. The effects of the type of precursor and the activation procedure on the porous structure development, the acid-base properties of the surface, as well as the sorption capacities of the materials produced were also checked. The final products were bio-carbons of medium developed surface area with a basic surface nature, characterized by their high effectiveness in removal of gas pollutants of acidic character, especially nitrogen dioxide (sorption capacities in the range from 12.5 to 102.6 mg/g). It was proved that the toxic gas removal efficiency depends considerably on the sorption conditions and the activation procedure. All materials showed greater effectiveness in gas removal when the process of adsorption was carried out in the presence of steam.
Collapse
|
33
|
SANTOS OVD, VIEIRA ELS, SOARES SD, CONCEIÇÃO LRVD, NASCIMENTO FDCAD, TEIXEIRA-COSTA BE. Utilization of agroindustrial residue from passion fruit (Passiflora edulis) seeds as a source of fatty acids and bioactive substances. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.16220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Ece MŞ. Synthesis and characterization of activated carbon supported magnetic nanoparticles (Fe O4/AC@SiO @Sulfanilamide) and its application in removal of toluene and benzene. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
dos Santos OV, Dias PCS, Soares SD, da Conceição LRV, Teixeira-Costa BE. Artisanal oil obtained from insects’ larvae (Speciomerus ruficornis): fatty acids composition, physicochemical, nutritional and antioxidant properties for application in food. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Valdés García A, Beltrán Sanahuja A, Karabagias IK, Badeka A, Kontominas MG, Garrigós MC. Effect of Frying and Roasting Processes on the Oxidative Stability of Sunflower Seeds ( Helianthus annuus) under Normal and Accelerated Storage Conditions. Foods 2021; 10:944. [PMID: 33925837 PMCID: PMC8146532 DOI: 10.3390/foods10050944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 01/23/2023] Open
Abstract
The effect of different cooking processes such as frying and roasting on the oxidative stability of sunflower seeds was evaluated under accelerated oxidation and normal storage conditions. The fatty acid composition by GC-MS showed a higher amount of linoleic acid in fried samples due to the replacement of the seed moisture by the frying oil. On the other hand, roasted samples presented a higher oleic acid content. DSC and TGA results showed some decrease in the thermal stability of sunflower seed samples, whereas PV and AV showed the formation of primary and secondary products, with increasing oxidation time. Roasted sunflower seeds showed seven main volatile compounds characteristic of the roasting process by HS-SPME-GC-MS: 2-pentylfuran, 2,3-dimethyl-pyrazine, methyl-pyrazine, 2-octanone, 2-ethyl-6-methylpyrazine, trimethyl-pyrazine, and trans,cis-2,4-decadienal, whereas fried samples showed six volatile characteristic compounds of the frying process: butanal, 2-methyl-butanal, 3-methyl-butanal, heptanal, 1-hexanol, and trans,trans-2,4-decadienal. The generation of hydroperoxides, their degradation, and the formation of secondary oxidation products were also investigated by ATR-FTIR analysis. The proposed methodologies in this work could be suitable for monitoring the quality and shelf-life of commercial processed sunflower seeds with storage time.
Collapse
Affiliation(s)
- Arantzazu Valdés García
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| | - Ana Beltrán Sanahuja
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| | - Ioannis K. Karabagias
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - Anastasia Badeka
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| |
Collapse
|
37
|
Evaluation of quality properties and antioxidant activities of tiger nut (Cyperus esculentus L.) oil produced by mechanical expression or/with critical fluid extraction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Evaluation of different conventional lipid extraction techniques’ efficiency in obtaining oil from oleaginous seeds. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Şahin Ö, Kutluay S, Horoz S, Ece MŞ. Fabrication and characterization of 3,4-diaminobenzophenone-functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5231-5253. [PMID: 32964387 DOI: 10.1007/s11356-020-10885-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The present study, for the first time, utilized 3,4-diaminobenzophenone (DABP)-functionalized Fe3O4/AC@SiO2 (Fe3O4/AC@SiO2@DABP) magnetic nanoparticles (MNPs) synthesized as a nanoadsorbent for enhancing adsorption and desorption capacity of gaseous benzene and toluene as volatile organic compounds (VOCs). The Fe3O4/AC@SiO2@DABP MNPs used in adsorption and desorption of benzene and toluene were synthesized by the co-precipitation and sol-gel methods. The synthesized MNPs were characterized by SEM, FTIR, TGA/DTA, and BET surface area analysis. Moreover, the optimization of the process parameters, namely contact time, initial VOC concentration, and temperature, was performed by applying response surface methodology (RSM). Adsorption results demonstrated that the Fe3O4/AC@SiO2@DABP MNPs had excellent adsorption capacity. The maximum adsorption capacities for benzene and toluene were found as 530.99 and 666.00 mg/g, respectively, under optimum process parameters (contact time 55.47 min, initial benzene concentration 17.57 ppm, and temperature 29.09 °C; and contact time 57.54 min, initial toluene concentration 17.83 ppm, and temperature 27.93 °C for benzene and toluene, respectively). In addition to the distinctive adsorptive behavior, the Fe3O4/AC@SiO2@DABP MNPs exhibited a high reproducibility adsorption and desorption capacity. After the fifth adsorption and desorption cycles, the Fe3O4/AC@SiO2@DABP MNPs retained 94.4% and 95.4% of its initial adsorption capacity for benzene and toluene, respectively. Kinetic and isotherm findings suggested that the adsorption mechanisms of benzene and toluene on the Fe3O4/AC@SiO2@DABP MNPs were physical processes. The results indicated that the successfully synthesized Fe3O4/AC@SiO2@DABP MNPs can be applied as an attractive, highly effective, reusable, and cost-effective adsorbent for the adsorption of VOC pollutants.Graphical abstract.
Collapse
Affiliation(s)
- Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical & Electronics Engineering, Siirt University, 56100, Siirt, Turkey
| | - Mehmet Şakir Ece
- Vocational High School of Health Services, Mardin Artuklu University, 47100, Mardin, Turkey.
| |
Collapse
|
40
|
Cardoso-Ugarte GA, Sosa-Morales ME. Essential Oils from Herbs and Spices as Natural Antioxidants: Diversity of Promising Food Applications in the past Decade. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1872084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - María Elena Sosa-Morales
- Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, GTO, Mexico
| |
Collapse
|
41
|
Olafadehan OA, Ajayi TO, Amoo KO. Optimum Conditions for Extraction of Chitin and Chitosan from Callinectes amnicola Shell Waste. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579520060081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content and antioxidant capacity. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Kutluay S, Temel F. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Panadare D, Dialani G, Rathod V. Extraction of volatile and non-volatile components from custard apple seed powder using supercritical CO2 extraction system and its inventory analysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
LORENZO ND, SANTOS OVD, LANNES SCDS. Fatty acid composition, cardiovascular functionality, thermogravimetric-differential, calorimetric and spectroscopic behavior of pequi oil (Caryocar villosum (Alb.) Pers.). FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.16420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Wang Q, Oshita K, Takaoka M. Evaluation of flocculation performance of amphoteric flocculant when harvesting microalgae Coccomyxa sp. KJ by response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111449. [PMID: 33035942 DOI: 10.1016/j.jenvman.2020.111449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
A response surface methodology was used to investigate the flocculation performance of an amphoteric flocculant (acrylamide-methacrylic acid ester-acrylic acid copolymer [ACPAM]) for harvesting microalgae. After three potential influencing factors (pH, dosage, and the stirring speed of an intensive mixing step ω1) passed screening in experiments using a Plackett-Burman design, steepest ascent experiments were conducted to identify the parameters for Box-Behnken assessments. In those assessments, ω1, dosage, ω12, dosage2, and ω1 ∙ dosage were identified as significant factors. This model was optimized by removing nonsignificant factors and applying Box-Cox transformation, both of which significantly improved the adequacy of the model. An optimized set of conditions (pH = 9.0, ω1 = 339.3 rpm, and dosage = 28.54 mg/L) was obtained under which flocculation efficiency (FE) was predicted to be 95.85% and 98.00% for the nonsignificant factors removed and Box-Cox transformed models, respectively, compared to an experimentally determined value of 98.06%. Thermal stability analyses showed that the ACPAM was generally stable below 100 °C with some weight loss caused by moisture evaporation. However, crosslinking of its molecules by imidization and condensation started to occur at 120 °C, resulting in a lower flocculation performance. Finally, the applicability of the ACPAM was studied by comparing its FE to those of two other flocculants (AlCl3 and chitosan) when harvesting three microalgal species. The results showed flocculation performance of ACPAM varied with microalgae species, for one species the ACPAM dosage needed was highest while for another species, the dosage was lowest.
Collapse
Affiliation(s)
- Quan Wang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| |
Collapse
|
47
|
|
48
|
|
49
|
Ece MŞ, Kutluay S, Şahin Ö, Horoz S. Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03883] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mehmet Şakir Ece
- Vocational High School of Health Services, Mardin Artuklu University, 47100 Mardin, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100 Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100 Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical &Electronics Engineering, Siirt University, 56100 Siirt, Turkey
| |
Collapse
|
50
|
Ruslan FS, Susanti D, Taher M, Mohammad NF. Optimization of supercritical fluid extraction of asiaticoside from Centella asiatica using Central Composite Design (CCD). SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1845208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fatin Shazwani Ruslan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| | - Nurul Farahain Mohammad
- Department of Computational and Theoretical, Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|