1
|
Wang YC, Wang JL, Shu YY. Experimental-design-based optimization of dispersive liquid-liquid microextraction coupled with gas chromatography-negative-ion chemical ionization-mass spectrometry for the determination of pyrethroids in agricultural products and drinks. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:359-368. [PMID: 39792623 DOI: 10.1080/19440049.2024.2447054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Pyrethroids are synthetic chemicals that account for 16% of the international insecticide market and have been shown to be of varying toxicity to different species. There are various methods available for detecting pyrethroids in agricultural products, but these products must be pre-treated to remove interference from the food matrix, such as through dispersion liquid-liquid microextraction (DLLME). This study employed two experimental design methods to optimize the continuous and discontinuous experimental parameters of DLLME and investigated whether DLLME combined with GC-NICI-MS is effective for detecting pyrethroids in agricultural products. The Taguchi design with an L9(34) orthogonal array and response surface methodology were employed to optimize the discontinuous and continuous parameters of the DLLME process, respectively. To validate the performance of GC-NICI-MS after optimized DLLME, pyrethroids in mixed standard solutions at levels ranging from 0.02 to 50.00 µg/L were measured, and the resultant calibration curves were fitted. Adequate linearity was found for the six investigated pyrethroids (r = 0.9908-0.9960). The limits of detection and quantification ranged from 0.005 to 0.035 µg/L and 0.02 to 0.1 µg/L, respectively. The proposed approach simplifies the optimization of parameters compared to reported methods and achieves considerably lower limits of detection. The concept of mixed application based on the dual experimental design method can be applied to other regulated compounds to enhance the safety of agricultural products. The feasibility of the method was confirmed by successfully detecting pyrethroids in 13 types of teas, fruit, and vegetables.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan
- Department of Chemistry, National Central University, Taoyuan City, Taiwan
| | - Jia-Lin Wang
- Department of Chemistry, National Central University, Taoyuan City, Taiwan
| | - Youn-Yuen Shu
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| |
Collapse
|
2
|
Guo M, Zhang J, Wang Y, Chen H, Lv J, Kong D, Jin Z, Ke T, Zhang H, Luo J, Yang M. Determination of mycobiota and aflatoxin contamination in commercial bee pollen from eight provinces and one autonomous region of China. Int J Food Microbiol 2024; 411:110511. [PMID: 38043476 DOI: 10.1016/j.ijfoodmicro.2023.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The co-occurrence of fungi and mycotoxins in various foods has been frequently reported in many countries, posing a serious threat to the health and safety of consumers. In this study, the mycobiota in five types of commercial bee pollen samples from China were first revealed by DNA metabarcoding. Meanwhile, the content of total aflatoxins in each sample was investigated by high-performance liquid chromatography with fluorescence detection. The results demonstrated that Cladosporium (0.16 %-89.29 %) was the most prevalent genus in bee pollen, followed by Metschnikowia (0-81.12 %), unclassified genus in the phylum Ascomycota (0-81.13 %), Kodamaea (0-73.57 %), and Penicillium (0-36.13 %). Meanwhile, none of the assayed aflatoxins were determined in the 18 batches of bee pollen samples. In addition, the fungal diversity, community composition, and trophic mode varied significantly among five groups. This study provides comprehensive information for better understanding the fungal communities and aflatoxin residues in bee pollen from different floral origins in China.
Collapse
Affiliation(s)
- Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongkun Zhang
- Sichuan Haoyun Pharmaceutical Co., Ltd., Guangyuan 628000, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Chinese Materia Medica and Prepared Slices), Lanzhou 730070, China.
| |
Collapse
|
3
|
Rezaeefar A, Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Lotfipour F. Development of N and S doped carbon sorbent-based dispersive micro solid phase extraction method combined with dispersive liquid-liquid microextraction for selected mycotoxins from soymilk samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Alilou S, Amirzehni M, Eslami PA. A simple fluorometric method for rapid screening of aflatoxins after their extraction by magnetic MOF-808/graphene oxide composite and their discrimination by HPLC. Talanta 2021; 235:122709. [PMID: 34517582 DOI: 10.1016/j.talanta.2021.122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
Herein, a high-performance screening tool for the selective and sensitive monitoring of aflatoxins is reported based on their great quenching effect on the blue emission of graphene quantum dots (GQDs). To make a specific determination, a pre-extraction method was also developed using a new nano-sorbent based on the surface-imprinted Zr metal-organic framework on the magnetic graphene oxide (MGO/MOF-808@MIP). The adsorbing efficiency of the prepared composite was remarkably higher than the pristine MOF-808 or bare GO. The presence of GO nanosheets, as well as nanoporous MOF-808 provided a high accessible surface area to form the MIP layer. It provided a great number of MIP sites for high efficient and rapid extraction of aflatoxins. The presence of magnetic nanoparticles in the structure of nanocomposite also facilitated the extraction process using a magnetic solid-phase extraction (MSPE) system. The combination of this specific and high-performance extraction with simple fluorometric detection caused a potent screening tool for aflatoxins. The method was able to monitor the total aflatoxins content of food samples with a linear range of 0.05-8 ng mL-1, which was more sensitive than the fluorometric system without extraction (5-500 ng mL-1). More developments were made by the application of a high-performance liquid chromatography (HPLC) method for the discrimination of the extracted aflatoxins. The system showed high sensitivity and selectivity and was able to detect different aflatoxins with an acceptable resolution.
Collapse
Affiliation(s)
- Sevda Alilou
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maliheh Amirzehni
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
5
|
Rezaeefar A, Farajzadeh MA, Nemati M, Afshar Mogaddam MR, Lotfipour F. Application of new N- and S-doped amorphous carbon in D-μSPE and its combination with deep eutectic solvent-based DLLME for the extraction of some mycotoxins from soymilk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4604-4613. [PMID: 34549735 DOI: 10.1039/d1ay01057c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new amorphous carbon-based dispersive micro solid-phase extraction method was developed for the extraction and preconcentration of several mycotoxins from soymilk samples. The extracted analytes were concentrated by a deep eutectic solvent-based dispersive liquid-liquid microextraction method, and then, quantified by a high-performance liquid chromatography-fluorescence detector. The sorbent was prepared from β-cyclodextrin and methionine under mild conditions. The sorbent was doped by N and S, which improved its physicochemical properties. The optimization and validation of the method were performed using the "one-variable-at-a-time" method and International Council Harmonization guideline, respectively. Under the optimal conditions, low limits of detection and quantifications in the ranges of 0.08-0.56 and 0.27-1.9 ng L-1 were obtained, respectively. Also, intra- (n = 6) and inter-day (n = 6) precisions showed an acceptable repeatability of the present work as they were in the ranges of 3.9-6.2 and 4.6-8.9% at a concentration of 3 ng L-1 of each analyte, respectively. Finally, the proposed method was performed on different soymilk samples marketed in Tabriz city, and aflatoxin B1 was found in all samples. One soymilk was contaminated by ochratoxin A.
Collapse
Affiliation(s)
- Anahid Rezaeefar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin 10, 99138 Nicosia, North Cyprus, Turkey.
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Chmangui A, Jayasinghe GDTM, Driss MR, Touil S, Bermejo-Barrera P, Bouabdallah S, Moreda-Piñeiro A. Assessment of trace levels of aflatoxins AFB1 and AFB2 in non-dairy beverages by molecularly imprinted polymer based micro solid-phase extraction and liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3433-3443. [PMID: 34259236 DOI: 10.1039/d1ay00793a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A selective molecularly imprinted polymer (MIP) adsorbent was synthesised and used in a batch micro-solid phase extraction format for isolating aflatoxins (AFB1, and AFB2) from non-dairy beverages before liquid chromatography-tandem mass spectrometry determination. MIP synthesis (precipitation polymerization in 3 : 1 acetonitrile/toluene as a porogen) was performed with 5,7-dimethoxycoumarin (DMC), methacrylic acid (MAA) and divinylbenzene-80 (DVB) as a dummy template, functional monomer and cross-linker, respectively (1 : 4 : 20 molar ratio). 2,2'-Azobisisobutyronitrile (AIBN) was used as a polymerization initiator. The adsorbent MIP (50 mg) was enclosed in a cone-shaped polypropylene membrane (porous membrane protected molecularly imprinted micro-solid phase extraction), and parameters such as sample pH, mechanical (orbital-horizontal) shaking, the extraction time (loading stage), the composition of the eluting solution, and the desorption time were optimised. The highest extraction yields were obtained by using 5 mL of non-dairy beverages (pH adjusted at 6.0), and mechanical shaking (150 rpm) for 15 min. Elution was performed with 5 mL of an acetonitrile/formic acid (97.5 : 2.5) mixture under ultrasound (325 W, 35 kHz) for 15 min. After eluate evaporation to dryness and re-dissolution in 150 μL of the mobile phase, the pre-concentration factor of the method was 33.3, which yields limits of detection within the 0.085-0.207 μg L-1 range. In addition, the current proposal was shown to be an accurate and precise method through relative standard deviation of intraday and inter-day assays below 18% and analytical recoveries in the range of 91-104%. However, the method was found to suffer from matrix effects.
Collapse
Affiliation(s)
- Anis Chmangui
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782-Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zohdijamil Z, Reza Ahmadi Afshar SA, Khazalpour S, Hashemi M. Deep eutectic solvent based ultrasound assisted emulsification microextraction for preconcentration and voltammetric determination of aflatoxin B1 in cereal samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:946-954. [PMID: 33527929 DOI: 10.1039/d0ay02197k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new and simple deep eutectic solvent based ultrasound-assisted emulsification microextraction (DES-UAEME) procedure has been developed for preconcentration and voltammetric determination of aflatoxin B1 (AFB1) in cereal products. The method is based on the acetonitrile-based extraction of AFB1 from homogenized cereal samples followed by a DES-UAEME procedure for subsequent differential pulse voltammetry (DPV) determination in a microcell. A DES composed of choline chloride and urea (ChCl-Ur) was used as the extraction solvent and electrolyte for DPV detection. Various parameters affecting the extraction efficiency of AFB1 were evaluated and optimized. Under optimum conditions the calibration graph was linear in the range of 0.2-80.0 μg L-1 (R2 = 0.9966) and the limit of detection (3Sb) was estimated to be 0.05 μg L-1. The intra-day and inter-day precision (RSD%) for determination of 5.0 μg L-1 AFB1 were 3.4% and 3.9%, respectively. The proposed method was also successfully applied for preconcentration and determination of AFB1 in different cereal samples and good relative recoveries were obtained over a range of 94 to 104%.
Collapse
|
9
|
Liu Z, Hua Q, Wang J, Liang Z, Li J, Wu J, Shen X, Lei H, Li X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens Bioelectron 2020; 158:112178. [PMID: 32275211 DOI: 10.1016/j.bios.2020.112178] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
In this study, a smartphone-based quantitative dual detection mode device, integrated with gold nanoparticles (GNPs) and time-resolved fluorescence microspheres (TRFMs) lateral flow immunoassays (LFIA) for multiplex mycotoxins in cereals were established. The most frequently used visible light and fluorescence detection modes were integrated in one device. A user-friendly application was self-written to rapidly quantify results. GNPs-LFIA and TRFMs-LFIA were used to detect aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol (DON), T-2 toxin (T-2), and fumonisin B1 (FB1). The visible limits of detection (vLODs) were 10/2.5/1.0/10/0.5, 2.5/0.5/0.5/2.5/0.5 μg/kg for the two methods, respectively. The quantitative limits of detection (qLODs) were 0.59/0.24/0.32/0.9/0.27, 0.42/0.10/0.05/0.75/0.04 μg/kg, respectively. The recoveries of both LFIAs ranged from 84.0%-110.0%. A parallel analysis in 30 naturally contaminated cereal samples was conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the results showed good consistency, indicating the practical reliability of the established methods. The developed two smartphone-based LFIAs provide a promising technique for multiplex, highly sensitive, and on-site detection of mycotoxins.
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qicheng Hua
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zaoqing Liang
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahao Li
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxiao Wu
- Shanxi Institute of Feed and Veterinary Drug control, Taiyuan, 030000, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Ghambarian M, Tajabadi F, Yamini Y, Behbahani M, Sobhi HR, Esrafili A. An efficient sample preparation method based on dispersive liquid–liquid microextraction associated with back extraction for trace determination of acidic pharmaceuticals. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
An Automated and High-Throughput Immunoaffinity Magnetic Bead-Based Sample Clean-Up Platform for the Determination of Aflatoxins in Grains and Oils Using UPLC-FLD. Toxins (Basel) 2019; 11:toxins11100583. [PMID: 31658705 PMCID: PMC6832433 DOI: 10.3390/toxins11100583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 01/19/2023] Open
Abstract
Sample clean-up remains the most time-consuming and error-prone step in the whole analytical procedure for aflatoxins (AFTs) analysis. Herein, an automated and high-throughput sample clean-up platform was developed with a disposable, cost-effective immunoaffinity magnetic bead-based kit. Under optimized conditions, the automated method takes less than 30 min to simultaneously purify 20 samples without requiring any centrifugation or filtering steps. When coupled to ultra-high performance liquid chromatography with fluorescence detection, this new analysis method displays excellent accuracy and precision as well as outstanding efficiency. Furthermore, an interlaboratory study was performed in six laboratories to validate the novel protocol. Mean recovery, repeatability, reproducibility, and Horwitz ratio values were within 91.9%–107.4%, 2.5%–7.4%, 2.7%–10.6%, and 0.26%–0.90, respectively. Results demonstrate that the developed sample clean-up platform is a reliable alternative to most widely adopted clean-up procedures for AFTs in cereals and oils.
Collapse
|
12
|
Nouri N, Sereshti H. Electrospun polymer composite nanofiber-based in-syringe solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC-FD for determination of aflatoxins in soybean. Food Chem 2019; 289:33-39. [PMID: 30955621 DOI: 10.1016/j.foodchem.2019.03.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 01/22/2023]
Abstract
A fast method based on in-syringe solid phase extraction combined with dispersive liquid-liquid microextraction was developed for extraction of aflatoxins prior to HPLC-FD. Electrospun polyurethane nanofibers doped with graphene oxide were collected on a thin metal net sheet without using a binder, placed into a filter holder between filter papers on a syringe tip and used as an efficient adsorbent for the first time. The major parameters affecting whole extraction efficiency were investigated and optimized. Under the optimum conditions, the limits of detection and the limits of quantification were in the range of 0.09-0.15 and 0.3-0.5 µg kg-1, respectively. The linear dynamic range was 0.3-1000 µg kg-1 with determination coefficients of 0.9946-0.9965. The inter- and intra-day precisions were lower than 4.3 and 7.2%, respectively. The method was successfully applied for the determination of aflatoxins B1, B2, G1, and G2 in soybeans and satisfactory relative recoveries of 76-101% were achieved.
Collapse
Affiliation(s)
- Nina Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Sereshti H, Khodayari F, Nouri N. Simultaneous Determination of Aflatoxins in Bread by In-Syringe Dispersive Micro-Solid Phase Extraction Using Magnetic Three-Dimensional Graphene Followed by HPLC-FLD. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01582-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Piao H, Jiang Y, Li X, Ma P, Wang X, Song D, Sun Y. Matrix solid‐phase dispersion coupled with hollow fiber liquid phase microextraction for determination of triazine herbicides in peanuts. J Sep Sci 2019; 42:2123-2130. [DOI: 10.1002/jssc.201801213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Huilan Piao
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Yanxiao Jiang
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Xinpei Li
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Pinyi Ma
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Xinghua Wang
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Daqian Song
- College of ChemistryJilin University Qianjin Changchun P. R. China
| | - Ying Sun
- College of ChemistryJilin University Qianjin Changchun P. R. China
| |
Collapse
|
15
|
Alsharif AMA, Choo YM, Tan GH, Abdulra’uf LB. Determination of Mycotoxins Using Hollow Fiber Dispersive Liquid–Liquid–Microextraction (HF-DLLME) Prior to High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC - MS/MS). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1587766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Mohamed Ali Alsharif
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur , Malaysia
- Arab Centre for Desertification and Development of Saharian Societies, Murzuk, Libya
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur , Malaysia
| | - Guan Huat Tan
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur , Malaysia
| | - Lukman Bola Abdulra’uf
- Department of Chemistry, College of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| |
Collapse
|
16
|
Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method – A review. Talanta 2018; 190:335-356. [DOI: 10.1016/j.talanta.2018.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
|
17
|
Carasek E, Merib J, Mafra G, Spudeit D. A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
|
19
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Ma H, Ran C, Li M, Gao J, Wang X, Zhang L, Bian J, Li J, Jiang Y. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:772-781. [DOI: 10.1080/19440049.2017.1416182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haiyan Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Congcong Ran
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Mengjiao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jinglin Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xinyu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Lina Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jing Bian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | | | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
21
|
Nian Y, Wang H, Ying G, Yang M, Wang Z, Kong W, Yang S. Transfer rates of aflatoxins from herbal medicines to decoctions determined by an optimized high-performance liquid chromatography with fluorescence detection method. J Pharm Pharmacol 2017; 70:278-288. [DOI: 10.1111/jphp.12856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
This study aimed to explore the transfer rates of aflatoxins from several contaminated herbal medicines by fungi to their decoctions.
Methods
Five types of commonly used herbal medicines including Lilii Bulbus, Hordei Fructus Germinatus, Nelumbinis Semen, Polygalae Radix and Bombyx Batryticatus were selected as the examples. Raw herbal medicine samples were treated by ultrasonication-assisted extraction with 70% methanol and immunoaffinity column clean-up, and the decoctions were prepared following the commonly used boiling method with water for 2 h. Then, the optimized high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was validated for the quantitative analysis of four aflatoxins (AFG2, AFG1, AFB2 and AFB1) after postcolumn photochemical derivatization, which was proved to be reliable and sensitive.
Key findings
Aflatoxins were detected to be transferred from the herbal medicines to decoctions with significantly different transfer rates in the five types of herbal medicines. Quietly high transfer rates of 7.26–115.36% for AFG2, 4.37–26.37% for AFB1 and 9.64–47.68% for AFB2 were obtained. AFB1 as the most toxic aflatoxin expressed the lowest transfer rate, but still exhibited high amount in the samples.
Conclusions
Therefore, the monitoring of aflatoxins in herbal medicines and their decoctions is in great urgency to ensure the security of consumers taking decoctions.
Collapse
Affiliation(s)
- Yujiao Nian
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiwei Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangyao Ying
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ze Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Weijun Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shihai Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
22
|
Luiz Oenning A, Lopes D, Neves Dias A, Merib J, Carasek E. Evaluation of two membrane-based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection. J Sep Sci 2017; 40:4431-4438. [DOI: 10.1002/jssc.201700583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Anderson Luiz Oenning
- Departamento de Química, Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Daniela Lopes
- Departamento de Química, Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | | | - Josias Merib
- Departamento de Química, Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| |
Collapse
|
23
|
Somsubsin S, Seebunrueng K, Boonchiangma S, Srijaranai S. A simple solvent based microextraction for high performance liquid chromatographic analysis of aflatoxins in rice samples. Talanta 2017; 176:172-177. [PMID: 28917738 DOI: 10.1016/j.talanta.2017.08.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
This paper describes the development of a simple solvent based microextraction, namely vortex assisted low density solvent-microextraction (VALDS-ME), followed by high performance liquid chromatography-fluorescence detection (HPLC-FD) for the simultaneous determination of four aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 in rice samples. In VALDS-ME, a mixture of low density solvents (1-octanol and toluene) was used as the extraction solvent. The extraction was rapidly achieved with the assistance of vortex agitation and phase separation was easily obtained after the addition of Na2SO4. The effects of various parameters on the extraction efficiency were optimized. Under the optimum conditions, high enrichment factors (42-132), low limits of detection (LODs) in the range of 0.0011-0.17μgkg-1 and good precisions (RSDs lower than 6.2%) were obtained. AFB1 and AFG1 were detected in berry rice sample at 0.26 and 2.1μgkg-1, respectively. The recoveries in AFs-spiked rice samples ranged from 70% to 104%. Moreover, the present method was comparable to the conventional immunoaffinity chromatography method.
Collapse
Affiliation(s)
- Somying Somsubsin
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ketsarin Seebunrueng
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Boonchiangma
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
24
|
Colorimetric ELISA based on glucose oxidase-regulated the color of acid–base indicator for sensitive detection of aflatoxin B1 in corn samples. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Comparison of Two Ionic Liquid-Based Pretreatment Methods for Three Steroids' Separation and Determination in Water Samples by HPLC. Chromatographia 2017. [DOI: 10.1007/s10337-016-3215-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Ran C, Chen D, Ma H, Jiang Y. Graphene oxide adsorbent based dispersive solid phase extraction coupled with multi-pretreatment clean-up for analysis of trace aflatoxins in traditional proprietary Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:120-126. [PMID: 28092852 DOI: 10.1016/j.jchromb.2017.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 01/01/2017] [Indexed: 12/22/2022]
Abstract
Graphene oxide (GO)-based dispersive solid phase extraction (D-SPE) method combined with multi-step preparation has been proposed for the evaluation of trace aflatoxins in proprietary Chinese medicines (PCM). After being extracted by methanol, the sample was purified based on multi-step preparation, including dehydration with MgSO4/NaCl and cleanup with neutral alumina. Then GO was used as an adsorbent in D-SPE method for further preconcentration of aflatoxins prior to high performance liquid chromatography-fluorescence detection. The selected conditions were investigated. The Box-Behnken design (BBD) was used to optimize factors affecting adsorption procedure. Under the optimized conditions, good linear relationships had been achieved with the correlation coefficient (R2) varying from 0.9904 to 0.9990. The LODs and LOQs were ranging from 0.020 to 0.041ng/mL and 0.061 to 0.125ng/mL, respectively. The results of the recoveries were 74.0-102.7% for the four aflatoxins, while the precisions from 1.8% to 7.2% were obtained, which indicated that the method was suitable for the analysis of aflatoxins in PCM.
Collapse
Affiliation(s)
- Congcong Ran
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Dan Chen
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei, PR China
| | - Haiyan Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
27
|
Lopes D, Dias AN, Simão V, Carasek E. Determination of emerging contaminants in aqueous matrices with hollow fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) and separation/detection by liquid chromatography – Diode array detection. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Alsharif AMA, Tan GH, Choo YM, Lawal A. Efficiency of Hollow Fiber Liquid-Phase Microextraction Chromatography Methods in the Separation of Organic Compounds: A Review. J Chromatogr Sci 2016; 55:378-391. [DOI: 10.1093/chromsci/bmw188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/10/2016] [Indexed: 11/13/2022]
Affiliation(s)
- Ali Mohamed Ali Alsharif
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Arab Centre for Desertification and Development of Saharian Societies, Murzuk, Libya
| | - Guan-Huat Tan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abubakar Lawal
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Pure and Industrial Chemistry, Umaru Musa Yar'adua University Katsina, Nigeria
| |
Collapse
|
29
|
Zhao J, Zhu Y, Jiao Y, Ning J, Yang Y. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1, B2, G1, and G2in animal feeds by high-performance liquid chromatography with fluorescence detection. J Sep Sci 2016; 39:3789-3797. [DOI: 10.1002/jssc.201600671] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jiao Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Yunnan Province China
| | - Yan Zhu
- Central monitoring center of Kunming City; Yunnan Province China
| | - Yang Jiao
- Yunnan Jianniu Bio Technology Co., Ltd; Kunming China
| | - Jinyan Ning
- Yunnan Jianniu Bio Technology Co., Ltd; Kunming China
| | - Yaling Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Yunnan Province China
| |
Collapse
|
30
|
Ebrahimi R, Feizbakhsh A, Es’haghi A. Extraction and Derivatization of Chlorophenoxy Acid Pesticides: Performing Two DLLME with One Extracting Phase. Chromatographia 2016. [DOI: 10.1007/s10337-016-3042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Farajzadeh MA, Afshar Mogaddam MR, Feriduni B. Simultaneous synthesis of a deep eutectic solvent and its application in liquid–liquid microextraction of polycyclic aromatic hydrocarbons from aqueous samples. RSC Adv 2016. [DOI: 10.1039/c6ra04103e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New generation of solvents, named deep eutectic solvents, were simultaneously synthesized and used as an extraction solvent in a liquid–liquid microextraction method for the extraction and preconcentration of some polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | | | - Behruz Feriduni
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|