1
|
Wang C, Fu X, Wang J, Yu J, Shi Y, Feng X, Liu C, Yang Z, Li B, Cao W, Du F, Shen Z, Hou H. Comprehensive characterization of Chinese beers based on chemical composition, antioxidant activity and volatile metabolomics. Sci Rep 2025; 15:10204. [PMID: 40133541 PMCID: PMC11937525 DOI: 10.1038/s41598-025-94771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Four different commercial beers in the Chinese market were compared and analyzed systematically, in order to provide more guidance for consumers. In this experimental study, various physicochemical parameters such as alcohol content, color, bitterness, total acidity, and carbohydrates were evaluated. The total phenolics content was determined using the Folin-ciocalteu method, while the total flavone and melanoidins were measured using colorimetric and spectrophotometric methods, respectively. The antioxidant capacity was determined by ORAC, DPPH and ABTS assays. Non-targeted metabolomics was used to analyze the composition and differences of volatile compounds in different beers. The results indicated significant physicochemical variations among the four different commercial beers. The higher the chroma of beer, the greater the content of active substances, and the corresponding antioxidant capacity in vitro was also stronger. The alcohol content of the four beers ranged from 4.23 to 7.54% (ABV), the color values of the four beers ranged from 4.8 to 141.5 EBC, and the bitterness ranged from 11.2 to 36.6 IBU. The total phenolics content varied between 159.10 mg/ L and 269.13 mg/ L, the total flavone content was in the range of 39.94 -144.59 mg/L, and the melanoidins content was in the range of 271.07-296.68 mg/L. The antioxidant activity ranged from 0.570 mmol TE/L to 0.873 mmol TE/L (ABTS), from 3.700 mmol TE/L to 26.73 mmol TE/L (ORAC), and from 26.12 to 86.72% (DPPH clearance rate). A total of 453 volatile compounds were detected in the four beers, primarily comprising terpenoids (21.24%), esters (19.47%), heterocyclic compound (14.16%), alcohol (9.96%) and hydrocarbons (9.96%), etc. Compared to Premium lager beer, the other three kinds of beers had unique and common metabolites, with only 9 common metabolites. The flavors of the differential metabolites were mainly green, floral, sweet, fruity, etc.
Collapse
Affiliation(s)
- Changwei Wang
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Xueyuan Fu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Jianfeng Wang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Yaqi Shi
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Xiaomei Feng
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Chuyi Liu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaoxia Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China.
| | - Bafang Li
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Wanxiu Cao
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Fen Du
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaopeng Shen
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Hu Hou
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| |
Collapse
|
2
|
Fu C, Bian C, Chen J, Zhang Q, Qin D, Li J, Zhang P, Huo J, Gang H. LcMYB5, an R2R3-MYB family gene from Lonicera caerulea L., enhances drought and salt tolerance in transgenic tobacco and blue honeysuckle. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154409. [PMID: 39708440 DOI: 10.1016/j.jplph.2024.154409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle (Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization. LcMYB5 overexpression was vastly enhanced drought and salt tolerance in both blue honeysuckle and tobacco seedlings. After drought stress, transgenic tobacco exhibited an average survival rate of 70.30%, while most wild-type (WT) plants perished, resulting in a survival rate of only 15.33%. Following salt stress, the average survival rate for transgenic tobacco reached 77.24%, compared to just 22.47% for WT plants. Measurements indicated, that transgenic tobacco had higher proline content than WT, as well as higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity. Transgenic tobacco decreased chlorophyll content less dramatically than WT tobacco, despite both tobaccos having decreased chlorophyll content. Furthermore, the level of malondialdehyde (MDA) and relative conductivity were lower in transgenic tobacco compared to WT. Furthermore, LcMYB5 overexpression significantly increased the expression levels of key genes related to drought stress (NCED1, NCED2, PYL4, PYL8, and CBL1) and salt stress (NHX1, SOD, CAT1, SOS1, and HSP17.8), thus improving transgenic tobacco's stress tolerance. Compared to WT blue honeysuckle, transiently transformed LcMYB5-expressing blue honeysuckle exhibited milder damage under stress conditions, a significant increase in chlorophyll and proline content was observed, the activities of SOD, POD and CAT were also significantly increased, the increase in MDA content and relative conductivity is relatively small. Additionally, In addition, transient expression of LcMYB5 can also positively regulate the expression of these five key genes of drought stress and five key genes of salt stress, so as to improve the resistance of transgenic blue honeysuckle to drought and salt stress. In summary, our study reveals the important regulatory role of LcMYB5 in plant resistance to drought and salt stress, providing theoretical support and potential application value for further improving crop stress resistance.
Collapse
Affiliation(s)
- Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyang Bian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Qian Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, 300384, China
| | - Peng Zhang
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, 300384, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Wang J, Wang J, Hao J, Jiang M, Zhao C, Fan Z. Antioxidant Activity and Structural Characterization of Anthocyanin-Polysaccharide Complexes from Aronia melanocarpa. Int J Mol Sci 2024; 25:13347. [PMID: 39769111 PMCID: PMC11728365 DOI: 10.3390/ijms252413347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anthocyanins and polysaccharides are among the primary components of numerous foodstuffs, and their interaction exerts a considerable influence on the texture and nutritional value of foods. In order to improve the antioxidant properties and stability of anthocyanins as well as their bioavailability, in this study, anthocyanin-polysaccharide complexes with varying compounding ratios (1:0.5, 1:1.0, 1:1.5, 1:2.0, 1:2.5, 1:3.0) were prepared from Aronia melanocarpa anthocyanins and polysaccharides derived from the fruit pomace of Aronia melanocarpa. These compounds were characterized, and their antioxidant capacity was determined. The findings demonstrated that the antioxidant activity of anthocyanins was markedly enhanced through the process of compounding with polysaccharides. The most efficacious antioxidant effect was determined by measuring the IC50 of the antioxidant activity of mixtures at different anthocyanin/polysaccharide complexing ratios. The results of ultraviolet-visible spectroscopy, infrared spectroscopy, and scanning electron microscopy revealed the features of the anthocyanin-polysaccharide complexes with ratios of 1:0.5, 1:1.0, 1:1.5, and 1:2.5. The anthocyanins and polysaccharides were observed to enhance the intensity of ultraviolet absorption with respect to that of the individual molecules, and it was noted that they were able to bond to each other through hydrogen bonding. Additionally, the morphology of the compositions differed from that of the individual components. This provides a theoretical foundation for the structural design of anthocyanin-polysaccharide-containing foods and the development and utilization of novel food ingredients.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jingyi Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jiahui Hao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Miao Jiang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Congcong Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Ziluan Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
4
|
Zhou Z, Huang X, Zhang B. Analysis of the Preventive Effect of Lonicera caerulea Pomace and Its Isolated Components on Colitis in Mice Based on Gut Microbiota and Serum Metabolomics. Antioxidants (Basel) 2024; 13:1478. [PMID: 39765807 PMCID: PMC11672951 DOI: 10.3390/antiox13121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD), including relapsing-remitting ulcerative colitis and Crohn's disease, is a non-specific chronic intestinal inflammatory disease. Lonicera caerulea, which is rich in polyphenolic compounds, has been shown to exert antioxidative and anti-inflammatory effects. The research evaluates the dietary impacts of Lonicera caerulea pomace, its polyphenol-rich extract, and fiber-rich residue on colitis symptoms. Colitis was induced with 2.5% DSS (dextran sulfate sodium) aqueous solution after continuous feeding of customized Lonicera caerulea feed for 2.5 weeks. The results indicate that the intake of the polyphenol-rich extract has an effect in preventing colitis in mice, but the effect is less than that by the pomace itself, and the fiber residue alone does not prevent the condition when ingested. The pomace and polyphenol-rich extract have a positive regulatory effect on the gut microbiota of mice with colitis, and the intake of Lonicera caerulea pomace significantly restores 15 metabolites in mice with colitis, significantly improving five metabolic pathways, including steroid biosynthesis, with the regulation of metabolites and metabolic pathways being significantly correlated with the gut microbiota.
Collapse
Affiliation(s)
- Zinuo Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
| | - Xinwen Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
| | - Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Li L, Zhang S, Yu B, Liu SQ, Xiong Y. Fractionating the Flavonoids in Lonicerae japonicae Flos and Lonicerae flos via Solvent Extraction Coupled with Automated Solid-Phase Extraction. Foods 2024; 13:3861. [PMID: 39682933 DOI: 10.3390/foods13233861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Due to the structural diversity of flavonoids in functional plant foods and the inherent limitations of existing techniques, it is important to develop a simple and green (environmentally friendly) method of extracting flavonoids from plant foods. In this study, a method involving solvent extraction followed by automated solid-phase extraction was developed for extracting flavonoids from Lonicerae japonicae flos (JYH) and Lonicerae flos (SYH), both of which are widely used functional plant-based foods in Asian countries. For the optimisation of the solvent extraction method, solvent concentration (0.0, 20.0, 40.0, 60.0, 80.0 and 100.0% (v/v) of ethanol-water solution), extraction temperature (40, 60 and 80 °C) and extraction time (15.0, 30.0, 60.0, 90.0 and 120.0 min) were evaluated via design of experiment after screening. For solid-phase extraction, five cartridges (Strata-X, InertSep RP-2, InertSep RP-C18, Bond Elut-ENV, Oasis Prime HLB) were evaluated and different elution steps were optimised to obtain high recoveries (79.69-140.67%) for eight target flavonoids, including rutin, isoquercetin and luteolin. Antioxidant capacity assays revealed that JYH samples demonstrated superior antioxidant potential compared to SYH. The optimised extraction method provides a valuable tool for industrial-scale flavonoid production.
Collapse
Affiliation(s)
- Lingyi Li
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Shanbo Zhang
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Bin Yu
- Mane SEA Pte Ltd., 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Yancai Xiong
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
6
|
Jiang Q, Sun Y, Si X, Cui H, Li J, Bao Y, Wang L, Li B. Anthocyanin-loaded milk-derived extracellular vesicles nano-delivery system: Stability, mucus layer penetration, and pro-oxidant effect on HepG2 cells. Food Chem 2024; 458:140152. [PMID: 38944922 DOI: 10.1016/j.foodchem.2024.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Anthocyanin (ACN) has attracted considerable attention due to its wide range of physiological effects. However, challenges such as poor stability and limited bioavailability have hindered its utilization in functional foods. To address these issues, this research utilized milk-derived extracellular vesicles (MEV) as carriers for encapsulating and binding ACN through various techniques, including ultrasonic, electroporation, saponin treatment, incubation, and freeze-thaw cycles. The objective of these approaches was to enhance the stability of ACN and improve its oral delivery. Notably, the ACN-loaded MEV (MEV-ACN) prepared through ultrasonic exhibited small particle sizes and good stability under processing, storage, and simulated digestion conditions. Cellular studies revealed that MEV-ACN exhibited pro-oxidant properties and induced oxidative stress, leading to cell apoptosis with greater efficacy compared to free ACN. These findings suggest that encapsulating ACN within MEV can significantly enhance its processing and oral stability, as well as strengthening its dietary defense capabilities in anti-tumor applications.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang 110001, China..
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Li Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| |
Collapse
|
7
|
Michalska-Ciechanowska A, Brzezowska J, Nowicka P, Tkacz K, Turkiewicz IP, Hendrysiak A, Oszmiański J, Andlauer W. Advantages of Spray Drying over Freeze Drying: A Comparative Analysis of Lonicera caerulea L. Juice Powders-Matrix Diversity and Bioactive Response. Molecules 2024; 29:3586. [PMID: 39124991 PMCID: PMC11313881 DOI: 10.3390/molecules29153586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.
Collapse
Affiliation(s)
- Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| |
Collapse
|
8
|
Bora L, Lombrea A, Batrina SL, Buda VO, Esanu OM, Pasca O, Dehelean CA, Dinu S, Diaconeasa Z, Danciu C. A Systematic Review of Cardio-Metabolic Properties of Lonicera caerulea L. Antioxidants (Basel) 2024; 13:694. [PMID: 38929133 PMCID: PMC11201247 DOI: 10.3390/antiox13060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the light of growing concerns faced by Western societies due to aging, natality decline, and epidemic of cardio-metabolic diseases, both preventable and treatable, new and effective strategical interventions are urgently needed in order to decrease their socio-economical encumbrance. The recent focus of research has been redirected towards investigating the potential of haskap (Lonicera caerulea L.) as a novel functional food or superfruit. Therefore, our present review aims to highlight the latest scientific proofs regarding the potential of Lonicera caerulea L. (LC), a perennial fruit-bearing plant rich in polyphenols, in reversing cardio-metabolic dysfunctions. In this regard, a systematic search on two databases (PubMed and Google Scholar) from 1 January 2016 to 1 December 2023 was performed, the keyword combination being Lonicera caerulea L. AND the searched pharmacological action, with the inclusion criteria consisting of in extenso original articles, written in English. The health-enhancing characteristics of haskap berries have been examined through in vitro and in vivo studies from the 35 included original papers. Positive effects regarding cardiovascular diseases and metabolic syndrome have been assigned to the antioxidant activity, hypolipidemic and hypoglycemic effects, as well as to the hepatoprotective and vasoprotective potential. Latest advances regarding LCF mechanisms of action are detailed within this review as well. All these cutting-edge data suggest that this vegetal product would be a good candidate for further clinical studies.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefan Laurentiu Batrina
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Valentina Oana Buda
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy, Pharmaceutical Care, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Oana-Maria Esanu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Oana Pasca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Cristina Adriana Dehelean
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
9
|
Li F, Zhang X, Liu X, Zhang J, Zang D, Zhang X, Shao M. Interactions between corn starch and lingonberry polyphenols and their effects on starch digestion and glucose transport. Int J Biol Macromol 2024; 271:132444. [PMID: 38797300 DOI: 10.1016/j.ijbiomac.2024.132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This study investigated the interaction mechanism between corn starch (CS) and lingonberry polyphenols (LBP) during starch gelatinization, focusing on their effects on starch structure and physicochemical properties. Moreover, it explored the effect of this interaction on starch digestion and glucose transport. The results indicated that LBP interacted non-covalently with CS during starch gelatinization, disrupted the short-range ordered structure of starch, decreased gelatinization enthalpy of starch, and formed a dense network structure. Furthermore, the incorporation of LBP remarkably reduced the digestibility of CS. In particular, the addition of 10 % LBP decreased the terminal digestibility (C∞) from 77.87 % to 60.43 % and increased the amount of resistant starch (RS) by 21.63 %. LBP was found to inhibit α-amylase and α-glucosidase in a mixed manner. Additionally, LBP inhibited glucose transport in Caco-2 cells following starch digestion. When 10 % LBP was added, there was a 34.17 % decrease in glucose transport compared with starch digestion without LBP. This study helps establish the foundation for the development of LBP-containing starch or starch-based healthy foods and provides new insights into the mechanism by which LBP lowers blood glucose.
Collapse
Affiliation(s)
- Fengfeng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xu Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dandan Zang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Tan H, Cui B, Zheng K, Gao N, An X, Zhang Y, Cheng Z, Nie Y, Zhu J, Wang L, Shimizu K, Sun X, Li B. Novel inhibitory effect of black chokeberry ( Aronia melanocarpa) from selected eight berries extracts on advanced glycation end-products formation and corresponding mechanism study. Food Chem X 2024; 21:101032. [PMID: 38235343 PMCID: PMC10792186 DOI: 10.1016/j.fochx.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Numerous health hazards have been connected to advanced glycation end products (AGEs). In this investigation, using reaction models including BSA-fructose, BSA- methylglyoxal (MGO), and BSA-glyoxal (GO), we examined the anti-glycation potential of eight different berry species on AGEs formation. Our results indicate that black chokeberry (Aronia melanocarpa) exhibited the highest inhibitory effects, with IC50 values of 0.35 ± 0.02, 0.45 ± 0.03, and 0.48 ± 0.11 mg/mL, respectively. Furthermore, our findings suggest that black chokeberry inhibits AGE formation by binding to BSA, which alleviates the conformation alteration, prevents protein cross-linking, and traps reactive α-dicarbonyls to form adducts. Notably, three major polyphenols, including cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, and procyanidin B2 from black chokeberry, showed remarkably inhibitory effect on MGO/GO capture, and new adducts formation was verified through LC-MS/MS analysis. In summary, our research provides a theoretical basis for the use of berries, particularly black chokeberry, as natural functional food components with potential anti-glycation effects.
Collapse
Affiliation(s)
- Hui Tan
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Baoyue Cui
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Kexin Zheng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Xuening An
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Yu Zhang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Yujie Nie
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Jinyan Zhu
- Zhuanghe Food Inspection and Monitoring Center, Dalian, Liaoning 116400, China
| | - Li Wang
- Liaoning Lingxiu Mountain Shenghui Industrial Group Co. LTD, Liaoyang, Liaoning Province 111008, China
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Xiyun Sun
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China
| |
Collapse
|
11
|
Ștefănescu BE, Socaci SA, Fărcaș AC, Nemeș SA, Teleky BE, Martău GA, Călinoiu LF, Mitrea L, Ranga F, Grigoroaea D, Vodnar DC, Socaciu C. Characterization of the Chemical Composition and Biological Activities of Bog Bilberry ( Vaccinium uliginosum L.) Leaf Extracts Obtained via Various Extraction Techniques. Foods 2024; 13:258. [PMID: 38254559 PMCID: PMC10814626 DOI: 10.3390/foods13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Silvia Amalia Nemeș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Bernadette Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Floricuța Ranga
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Dan Grigoroaea
- Călimani National Park Administration, Șaru Dornei, 727515 Suceava, Romania;
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| |
Collapse
|
12
|
Guo L, Qiao J, Zhang L, Yan W, Zhang M, Lu Y, Wang Y, Ma H, Liu Y, Zhang Y, Li J, Qin D, Huo J. Critical review on anthocyanins in blue honeysuckle (Lonicera caerulea L.) and their function. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108090. [PMID: 37847973 DOI: 10.1016/j.plaphy.2023.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is an emerging commercial fruit in the world, has been known for its multiple anthocyanins in the berries, cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and it makes up 76-92% of the total anthocyanins content, with high antioxidant capacity, and widely used in food products. In this review, recent studies related to anthocyanins in blue honeysuckle were sorted out, including the current status of research on anthocyanins in blue honeysuckle berries, especially C3G, qualitative and quantitative analysis of anthocyanins in berries, extraction and purification methods of anthocyanins from blue honeysuckle, in addition, biological effects of blue honeysuckle, and recommended utilization. Blue honeysuckle contains polyphenols, flavonoids, anthocyanins, minerals, and multiple bioactive compounds, it has been extensively reported to have significant antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, and anti-diabetic functions, and has been used in a variety of food products as raw materials.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Heilongjiang Green Food Science Research Institute, 150023, China
| | - Weijiao Yan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Meihui Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yongchuan Lu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yutong Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Hexi Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jichuan Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
13
|
Lonicera caerulea polyphenols inhibit fat absorption by regulating Nrf2-ARE pathway mediated epithelial barrier dysfunction and special microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Candido SL, Siri M, Achilli E, Moreno JC, Lillo C, Risso PH, Bodycomb J, Martínez L, Montanari J, Alonso SDV, Alvira FC. Rheological, Physical, and Spectroscopical Characterization of Gamma-Irradiated Albumin Nanoparticles Loaded with Anthocyanin. J Phys Chem B 2023. [PMID: 37289558 DOI: 10.1021/acs.jpcb.3c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anthocyanins are the main active compounds in blueberry. However, they have poor oxidation stability. If anthocyanins are encapsulated in protein nanoparticles, their oxidation resistance could be increased as a result of the slowing down of the oxidation process. This work describes the advantages of using a γ-irradiated bovine serum albumin nanoparticle bound to anthocyanins. The interaction was characterized biophysically, mainly by rheology. By computational calculation and simulation based on model nanoparticles, we estimated the number of molecules forming the albumin nanoparticles, which allowed us to infer the ratio of anthocyanin/nanoparticles. Measurements by UV-vis spectroscopy, FTIR spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), ζ potential, electron transmission microscopy, and rheology at room (25 °C) and physiological (37 °C) temperatures were performed. The spectroscopy measurements allowed identifying additional hydrophobic sites created during the irradiation process of the nanoparticle. On the basis of the rheological studies, it was observed that the BSA-NP trend is a Newtonian flow behavior type for all the temperatures selected, and there is a direct correlation between dynamic viscosity and temperature values. Furthermore, when anthocyanins are added, the system increases its resistance to the flow as reflected in the morphological changes observed by TEM, thus confirming the relationship between viscosity values and aggregate formation.
Collapse
Affiliation(s)
- Sofia L Candido
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| | - Macarena Siri
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| | - Estefanía Achilli
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| | - Juan C Moreno
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnolágicas, Argentina, Godoy Cruz 2290, 1425 Ciudad Autánoma de Buenos Aires, Argentina
- Departamento de Tecnología y Administracián, Ingeniería en Informática, Universidad Nacional de Avellaneda, España 350, 1870 Avellaneda, Buenos Aires, Argentina
| | - Cristian Lillo
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- CONICET, Instituto de Investigaciones Fisicoquímicas Teáricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Patricia H Risso
- UNR Departamento de Química Física, Rosario, Universidad Nacional de Rosario, Maipú 1065, 2000 Rosario, Santa Fe, Argentina
| | - Jeffrey Bodycomb
- Horiba Instruments, Inc., 9755 Research Dr., Irvine, California 92618, United States
| | - Luis Martínez
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| | - Jorge Montanari
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
- Universidad Nacional de Hurlingham, Laboratorio de Nanosistemas y Aplicacián Biotecnolágica (LANSAB), Teniente Origone 151, Villa Tesei 1688, Buenos Aires, Argentina
| | - Silvia Del V Alonso
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| | - Fernando C Alvira
- Universidad Nacional de Quilmes, Dpto. de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
- IMBICE, CONICET-CCT La Plata-UNLP-CICPBA, GBEyB, Grupo de Biología Estructural y Biotecnología, Instituto Multidisciplinario de Biología Celular, Calle 526 y Camino Belgrano, 1900 La Plata, Argentina
| |
Collapse
|
15
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
16
|
Zhang M, Ma X, Xiao Z, Sun A, Zhao M, Wang Y, Huang D, Sui X, Huo J, Zhang Y. Polyphenols in twenty cultivars of blue honeysuckle (Lonicera caerulea L.): Profiling, antioxidant capacity, and α-amylase inhibitory activity. Food Chem 2023; 421:136148. [PMID: 37087994 DOI: 10.1016/j.foodchem.2023.136148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The polyphenols extracted from 20 blue honeysuckle cultivars were comprehensively characterized and quantified by HPLC-DAD and HPLC-ESI-QTOF-MS2 analyses and evaluated for antioxidant capacity (ABTS, DPPH, FRAP) and α-amylase inhibitory activity. The 17 anthocyanins and 59 non-anthocyanin phenolics were characterized. Among them, cyanidin-3-glucoside, quercetin-3-galactoside, myricetin-3-galactoside, and 3-caffeoylquinic acid were the major polyphenols. These polyphenols not only contributed to the antioxidant capacity, but were also good α-amylase inhibitors. 'Lanjingling' showed the strongest antioxidant capacity evaluated by FRAP, while 'CBS-2' and '14-13-1' showed the strongest antioxidant capacity evaluated by ABTS and DPPH. All the twenty cultivars showed α-amylase inhibitory activity, and the IC50 values ranged from 0.12 ± 0.01 to 0.69 ± 0.02 mg/mL. 'Lanjingling' showed the most potent α-amylase inhibitory activity. Additionally, principal component analysis indicated that Lonicera. caerulea subsp. emkuyedao bred in Japan differed markedly in phenolics and bioactivity compared to the other four subspecies bred in China and Russia.
Collapse
Affiliation(s)
- Meng Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiumei Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Xiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ao Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Mengchen Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yaru Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Zhou Y, Li J, Li Z, Ma Q, Wang L. Extraction of anthocyanins from haskap using cold plasma-assisted enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2186-2195. [PMID: 36418203 DOI: 10.1002/jsfa.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Haskap berries (Lonicera caerulea L.) are rich in anthocyanins. Cold plasma-assisted enzyme method (CPEM) is an innovative method for green extraction of anthocyanins, which was optimized by an artificial neural network-genetic algorithm (ANN-GA) to maximize the yield. In this study, seven factors were screened using by Plackett-Burman design based on single-factor experiments and optimized by ANN-GA. RESULTS The results showed that the maximum total anthocyanin content (TAC, 42.45 ± 0.25 g cyanidin-3-glucoside equivalent (C3G) kg-1 dry weight, DW) was obtained under optimal pretreatment power of 192 W, pretreatment time of 29 s and liquid-to-solid ratio of 39 mL g-1 . Cleavage and porosity appeared on the surface of the treated sample. The active ingredients and antioxidant capacity of the CPEM extracts were identified by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Compared with other extraction technologies, CPEM presents the advantages of shortening the extraction time, reducing the solvent volume, and significantly increasing active ingredients and antioxidant activity. CONCLUSION The ANN-GA has better predictive and higher accuracy than the response surface methodology (RSM) model and is more suitable for optimizing the CPEM by greatly improving the process yield and the utilization of biomass, thus contributing to the sustainability of the agri-food chain. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiangfei Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zongping Li
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Qingshu Ma
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
18
|
Fan L, Lin L, Zhang Y, Li S, Tang Z. Component characteristics and reactive oxygen species scavenging activity of anthocyanins from fruits of Lonicera caerulea L. Food Chem 2023; 403:134391. [DOI: 10.1016/j.foodchem.2022.134391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
19
|
Guo H, Weng W, Zhang S, Rinderknecht H, Braun B, Breinbauer R, Gupta P, Kumar A, Ehnert S, Histing T, Nussler AK, Aspera-Werz RH. Maqui Berry and Ginseng Extracts Reduce Cigarette Smoke-Induced Cell Injury in a 3D Bone Co-Culture Model. Antioxidants (Basel) 2022; 11:2460. [PMID: 36552669 PMCID: PMC9774157 DOI: 10.3390/antiox11122460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoking-induced oxidative stress has harmful effects on bone metabolism. Maqui berry extract (MBE) and ginseng extract (GE) are two naturally occurring antioxidants that have been shown to reduce oxidative stress. By using an osteoblast and osteoclast three-dimensional co-culture system, we investigated the effects of MBE and GE on bone cells exposed to cigarette smoke extract (CSE). The cell viability and function of the co-culture system were measured on day 14. Markers of bone cell differentiation and oxidative stress were evaluated at gene and protein levels on day 7. The results showed that exposure to CSE induced osteoporotic-like alterations in the co-culture system, while 1.5 µg/mL MBE and 50 µg/mL GE improved CSE-impaired osteoblast function and decreased CSE-induced osteoclast function. The molecular mechanism of MBE and GE in preventing CSE-induced bone cell damage is linked with the inhibition of the NF-κB signaling pathway and the activation of the Nrf2 signaling pathway. Therefore, MBE and GE can reduce CSE-induced detrimental effects on bone cells and, thus, prevent smoking-induced alterations in bone cell homeostasis. These two antioxidants are thus suitable supplements to support bone regeneration in smokers.
Collapse
Affiliation(s)
- Huizhi Guo
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, China
| | - Weidong Weng
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Shuncong Zhang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, China
| | - Helen Rinderknecht
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Bianca Braun
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Regina Breinbauer
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Purva Gupta
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabrina Ehnert
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Tina Histing
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Andreas K. Nussler
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Romina H. Aspera-Werz
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Ponder A, Najman K, Aninowski M, Leszczyńska J, Głowacka A, Bielarska AM, Lasinskas M, Hallmann E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186083. [PMID: 36144816 PMCID: PMC9502526 DOI: 10.3390/molecules27186083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
Blue honeysuckle berries are a rich source of polyphenols with strong antioxidant properties. The purpose of this research was to determine the effect of organic and conventional cultivation on the polyphenols, antioxidant and allergenic potency of blue honeysuckle berry cultivars: ‘No 30’, ‘Jolanta’ and ‘Indygo’ in two growing seasons. Identification of individual polyphenols was performed using the HPLC method; the total polyphenols content and antioxidant activity were determined by spectrophotometric methods. The determination of allergic potency was tested by ELISA. In the second year of the study the total polyphenols were significantly higher in organic blue honeysuckle than in the conventional blue honeysuckle. In both growing seasons, the ‘Indygo’ cv. was characterized by the highest concentration of all bioactive compounds 3241.9 mg and 3787.2 mg per 100 g−1 D.W. A strong correlation was found between the polyphenol content and the antioxidant activity for organic fruit in both years, as well as for allergenic potency. Contrary to the best bioactive properties was ‘Indigo’ cv., with the highest allergenic potency (108.9 and 139.2 ng g−1 D.W.). The lowest content of specific allergens was found in the ‘No 30’ cv. Since honeysuckle is still a new cultivated plant, information about its allergenic potency is insufficient.
Collapse
Affiliation(s)
- Alicja Ponder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Najman
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Mateusz Aninowski
- Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Joanna Leszczyńska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Agnieszka Głowacka
- Cultivar Testing, Nursery and Gene Bank Resources Department, The National Institute of Horticulture Research, Konstytucji 3, 96-100 Skierniewice, Poland
| | - Agnieszka Monika Bielarska
- Warsaw Department of Burns, Plastic and Reconstructive Surgery, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland
| | - Marius Lasinskas
- Agriculture Academy, Department of Agrobiology and Food Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Agriculture Academy, Bioeconomy Research Institute, Vytautas Magnus University, K. Donelaičio Str. 58, 44248 Kanuas, Lithuania
- Correspondence: ; Tel.: +48-225-937-036
| |
Collapse
|
21
|
Lin S, Meng X, Tan C, Tong Y, Wan M, Wang M, Zhao Y, Deng H, Kong Y, Ma Y. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method. ULTRASONICS SONOCHEMISTRY 2022; 89:106102. [PMID: 36030674 PMCID: PMC9428855 DOI: 10.1016/j.ultsonch.2022.106102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 05/25/2023]
Abstract
A time-saving, efficient, and environmentally friendly ultrasonic-microwave-assisted natural deep eutectic solvent (UMAE-NADES) extraction method was developed for the extraction of anthocyanins from Aronia melanocarpa. Eight different natural eutectic solvents were screened initially, and choline chloride-glycerol was selected as the extraction solvent. The extraction conditions were optimized using the response surface methodology, and the extraction rate of anthocyanins was higher than those achieved using the traditional ethanol method, natural deep eutectic solvent extraction method, and ultrasonic-microwave-assisted ethanol method. Six anthocyanins, including cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-xyloside, cyanidin-3,5-O-dihexoside, and the dimer of cyanidin-hexoside were identified and extracted at a purity of 448.873 mg/g using high performance liquid chromatography-mass spectrometry (HPLC-MS). The compounds extracted using UMAE-NADES had higher antioxidant capacities than those extracted by the other three methods. The UMAE-NADES demonstrated significant efficiency toward the extraction of bioactive substances and has potential utility in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sixu Lin
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Xianjun Meng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, People's Republic of China
| | - Yuqi Tong
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Meizhi Wan
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Mingyue Wang
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Yang Zhao
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Haotian Deng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Yanwen Kong
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Yan Ma
- Experimental Teaching Center, Shenyang Normal University, No.253 Huanghe North Street, Huanggu District, Shenyang City 110034, People's Republic of China.
| |
Collapse
|
22
|
Structural Characteristics and the Antioxidant and Hypoglycemic Activities of a Polysaccharide from Lonicera caerulea L. Pomace. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel polysaccharide, LPP, was obtained from Lonicera caerulea L. pomace by ultrasonic-assisted heating and was purified by Sephadex G-100. The structural characteristics of LPP showed that the molecular weight (Mw) was 8.53 × 104 Da; that it was mainly composed of galacturonic acid, followed by galactose; that it possessed the characteristic functional groups of polysaccharides; and that it had an absence of O-glycosidic bonds and crystalline and triple helix structures. Furthermore, LPP exhibited a favorable thermodynamic stability and antioxidant, hypoglycemic, and hypolipidemic activities in a dose-dependent manner in vitro, demonstrating that LPP can be used as an agent to regulate glycolipid metabolism. Additionally, the relationship between its bio-activities is discussed in this paper. The results revealed that the RP, •OH, and NO2− radicals had synergistic promoting effects, and polysaccharides with a strong antioxidant ability may have excellent hypoglycemic and hypolipidemic effects. Collectively, these results suggest that LPP has a strong bio-activity, and that Lonicera caerulea L. pomace can be used as a potential polysaccharide source.
Collapse
|
23
|
LUO J, FAN Z, YANG X, BAO YH, LIANG M, GUO Y. Anthocyanins and antioxidant activity of Lonicera caerulea berry wine during different processes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Xue YANG
- Northeast Forestry University, China
| | - Yi-hong BAO
- Northeast Forestry University, China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, China
| | - Min LIANG
- Northeast Forestry University, China
| | - Yang GUO
- Northeast Forestry University, China
| |
Collapse
|
24
|
Cui H, Si X, Tian J, Lang Y, Gao N, Tan H, Bian Y, Zang Z, Jiang Q, Bao Y, Li B. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: stability, antioxidant capacity, and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
CHEN Y, GONG M, NIE X, QI Z, LIU X, JIN Q, ZHANG X, YANG D. Characterization of botanical origin of selected popular purple Eleutherococcus tea grown in Yunnan province of China and quantification of Its anthocyanins using spectrophotometric method. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.91121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yue CHEN
- Zhejiang Sci-Tech University, China
| | - Majie GONG
- Zhejiang Sci-Tech University, China; Natural Medicine Institute of Zhejiang Yang Sheng Tang CO., LTD., China
| | | | | | | | - Qinghao JIN
- Natural Medicine Institute of Zhejiang Yang Sheng Tang CO., LTD., China
| | | | | |
Collapse
|
26
|
Zang Z, Chou S, Geng L, Si X, Ding Y, Lang Y, Cui H, Gao N, Chen Y, Wang M, Xie X, Xue B, Li B, Tian J. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: Color stability, antioxidant activity, in vitro simulation, and protein functionality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Liu X, Lv Y, Zheng M, Yin L, Wang X, Fu Y, Yu B, Li J. Polyphenols from blue honeysuckle (Lonicera caerulea var. edulis) berry inhibit lipid accumulation in adipocytes by suppressing lipogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114403. [PMID: 34245835 DOI: 10.1016/j.jep.2021.114403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blue honeysuckle (Lonicera caerulea var. edulis) berry has been used in folk medicine for the treatment of bacterial infections, gastrointestinal disorders, and metabolic diseases. There is evidence to support its pharmacological effects in improving diabetes, fatty liver, and obesity. AIM OF STUDY To investigate the effect of blue honeysuckle berry extract (BHBE) on lipid accumulation in adipocytes and the underlying mechanism. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) was applied to analyze the polyphenolic compounds in BHBE. 3T3-L1 cells were used to induce into adipocytes. Oil Red O staining combined with triglyceride (TG) content determination were carried out to evaluate intracellular lipid accumulation. Western blot was used to determine the expression of lipogenic enzymes and transcription factors. Real-time PCR was used to determine the expression of lipolytic enzymes and adipocyte markers. RESULTS The primary polyphenols in BHBE are flavonoids (mainly flavonols and anthocyanins). BHBE dose-dependently inhibited lipid accumulation in adipocytes by reducing the expression of fatty acid synthase (FAS) and increasing the phosphorylation level of acetyl-CoA carboxylase (ACC). Moreover, BHBE was found to promote the phosphorylation of AMP-activated protein kinase (AMPK) and further reduce the expression of lipogenic transcription factors (PPARγ, C/EBPα, and SREBP-1c), while the selective AMPK inhibitor attenuated the suppressive effect of BHBE on lipogenesis. In addition, BHBE increased the expression of beige adipocyte markers (Cd137 and Tmem26) and uncoupling protein 1 (UCP1) without affecting the expression of brown adipocyte markers (Ebf3 and Eva1). CONCLUSION BHBE inhibits lipid accumulation in adipocytes by suppressing lipogenesis via AMPK activation as well as by promoting beiging of adipocytes, which supports the anti-obesity potential of blue honeysuckle berry.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Mengyu Zheng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Li Yin
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Xiqing Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Yujie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China.
| |
Collapse
|
28
|
Formation of A-type anthocyanin-epicatechin dimers by model reactions of anthocyanin extracts and epicatechin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
30
|
Bioactive Compounds, Antioxidant, and Antibacterial Properties of Lonicera caerulea Berries: Evaluation of 11 Cultivars. PLANTS 2021; 10:plants10040624. [PMID: 33806020 PMCID: PMC8064488 DOI: 10.3390/plants10040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022]
Abstract
The aim of the study was to evaluate 11 cultivars of blue honeysuckle (Lonicera caerulea L.) for bioactive compounds, antioxidant capacity, and the antibacterial activity of berries. Total phenolic contents (TPCs) and total anthocyanin contents (TACs) were established by using ethanolic extracts. For contents of organic acids and saccharides, aqueous extracts were used, and vitamin C was determined by using oxalic acid solution. DPPH• radical scavenging capacity was evaluated by using ethanolic extracts; antibacterial activity was assessed by using both ethanolic and aqueous extracts. The TPC varied from 364.02 ± 0.41 mg/100 g in ‘Vostorg’ to 784.5 ± 0.3 mg/100 g in ‘Obilnaja’, and TAC ranged from 277.8 ± 1.1 mg/100 g in ‘Čelnočnaja’ to 394.1 ± 8.4 mg/100 g in ‘Nimfa’. Anthocyanins comprised 53.8% of total phenolic contents on average. Among organic acids, citric acid was predominant, averaging 769.41 ± 5.34 mg/100 g, with malic and quinic acids amounting to 289.90 ± 2.64 and 45.00 ± 0.37 mg/100 g on average, respectively. Contents of vitamin C were 34.26 ± 0.25 mg/100 g on average. Organic acids were most effective in the inhibition of both Gram-positive and Gram-negative bacteria tested. In conclusion, berries of L. caerulea are beneficial not only for fresh consumption, but also as a raw material or ingredients of foods with high health-promoting value.
Collapse
|
31
|
Chen T, Li B, Shu C, Tian J, Zhang Y, Gao N, Cheng Z, Xie X, Wang J. Combined effect of thermosonication and high hydrostatic pressure on bioactive compounds, microbial load, and enzyme activities of blueberry juice. FOOD SCI TECHNOL INT 2021; 28:169-179. [PMID: 33765872 DOI: 10.1177/10820132211004316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study is aimed to evaluate the combined effect of thermosonication (TS) and high hydrostatic pressure (HHP) on enzyme activities (polyphenolase and peroxidase), microbial load and phenolic compounds (phenols, flavonoids, and anthocyanins) of blueberry juice. Blueberry juice has been treated with TS (40 kHz and 240 W) at different temperatures (25 °C and 45 °C) for 15 mins with subsequent different HHP (200, 400 and 600 MPa) for 5 mins at room temperature. The results revealed that a combined use of HHP of 400 MPa and 600 MPa with TS at 45 °C not only reduced microorganisms below 1 logCFU/mL, but also significantly inactivated enzymes. The treatments also increased the phenolic compounds, peroxyl radical scavenging capacity (PSC), and DPPH free radical scavenging activity to a higher level without causing any changes in soluble solids and pH. Therefore, the combination of HHP and TS can be used as a novel alternative nonthermal technology to improve the nutritional qualities of blueberry juice, which produces a desirable, healthy juice for consumers.
Collapse
Affiliation(s)
- Tianshun Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Ye Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Xu Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Shenyang, P.R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, Shenyang, P.R. China
| |
Collapse
|
32
|
Raudonė L, Liaudanskas M, Vilkickytė G, Kviklys D, Žvikas V, Viškelis J, Viškelis P. Phenolic Profiles, Antioxidant Activity and Phenotypic Characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants (Basel) 2021; 10:antiox10010115. [PMID: 33467507 PMCID: PMC7830503 DOI: 10.3390/antiox10010115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Lonicera caerulea L. is an early fruit-bearing plant that originates from harsh environments. Raw materials contain a body of different phenolic origin compounds that determine the multidirectional antioxidant and pharmacological activities. The aim of this study was to comprehensively evaluate the phenolic composition, antioxidant capacities, vegetative, pomological, and sensory properties and their interrelations of selected L. caerulea cultivars, namely ‘Amphora’, ‘Wojtek’, ‘Iga’, ’Leningradskij Velikan’, ‘Nimfa’, ‘Indigo Gem’, ‘Tundra’, ‘Tola’, and fruit powders. Combined chromatographic systems were applied for the qualitative and quantitative profiling of 23 constituents belonging to the classes of anthocyanins, flavonols, flavones, proanthocyanidins, and phenolic acids. The determined markers of phytochemical profiles were cyanidin-3-glucoside, rutin, chlorogenic, and 3,5-dicaffeoylquinic acid. Anthocyanins and the predominant compound, cyanidin-3-glucoside, were the determinants of antioxidant activity. Cultivars ‘Amphora’, ‘Indigo Gem’, and ‘Tundra’ contained the greatest total amounts of identified phenolic compounds. Phenotypic characterization revealed the superiority of cultivars ‘Wojtek’ and ’Tundra’ compared to other cultivars, although ’Wojtek’ had low phenolic content and antioxidant activity and ’Tundra’ got lower sensory evaluation scores. Coupling the results of phenotypic and phytochemical characterization, cultivar ‘Tundra’ could be suitable for commercial plantations.
Collapse
Affiliation(s)
- Lina Raudonė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
- Correspondence:
| | - Mindaugas Liaudanskas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| | - Gabrielė Vilkickytė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
| | - Darius Kviklys
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, NO-5781 Lofthus, Norway
| | - Vaidotas Žvikas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (G.V.); (V.Ž.)
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
| | - Pranas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno str. 30, Babtai, LT-54333 Kaunas, Lithuania; (D.K.); (J.V.); (P.V.)
| |
Collapse
|
33
|
Sharma A, Lee HJ. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Zhao Y, Zhang Y, Zhu Y, Liu C, Feng S, Ma W, Gao M, Zheng X. Optimization of processing technology for blue honeysuckle berry snack: From microwave vacuum concentration to freeze‐drying. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yueming Zhao
- College of Engineering Northeast Agricultural University Harbin China
| | - Yuhan Zhang
- College of Engineering Northeast Agricultural University Harbin China
| | - Yong Zhu
- College of Engineering Northeast Agricultural University Harbin China
| | - Chai Liu
- College of Engineering Northeast Agricultural University Harbin China
| | - Shaoxuan Feng
- College of Engineering Northeast Agricultural University Harbin China
| | - Wenyu Ma
- College of Engineering Northeast Agricultural University Harbin China
| | - Ming Gao
- College of Engineering Northeast Agricultural University Harbin China
| | - Xianzhe Zheng
- College of Engineering Northeast Agricultural University Harbin China
| |
Collapse
|
35
|
Li W, Zhang J, Zhang L. Assessment of the formation of A-type proanthocyanidin by model reaction to blueberry extract and epicatechin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Cao X, Zhang F, Zhu D, Zhao D, Zhao Y, Li J. Evaluation of the effects of immersion thawing methods on quality of blueberries. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuehui Cao
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| | - Fangfang Zhang
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| | - Danshi Zhu
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| | - Dongyu Zhao
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| | - Yuting Zhao
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University Jinzhou Liaoning China
| |
Collapse
|
37
|
Fujita R, Hayasaka T, Jin S, Hui SP, Hoshino Y. Comparison of anthocyanin distribution in berries of Haskap (Lonicera caerulea subsp. edulis (Turcz. ex. Herder) Hultén), Miyama-uguisukagura (Lonicera gracilipes Miq.), and their interspecific hybrid using imaging mass spectrometry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110633. [PMID: 33180712 DOI: 10.1016/j.plantsci.2020.110633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Haskap (Lonicera caerulea subsp. edulis), a shrub with violet-blue fruits, is distributed mainly in Hokkaido, Japan. Miyama-uguisukagura (Lonicera gracilipes), a species related to Haskap, produces red fruits. Interspecific hybridization of Miyama-uguisukagura and Haskap was performed to introduce novel characteristics in the resulting hybrids. The shape and color of the interspecific hybrid fruits differed from those of the parent fruits. A comparison of anthocyanin distribution among these three fruit types by imaging mass spectrometry (IMS) revealed the presence of five different anthocyanins. The average cyanidin 3,5-diglucoside and peonidin 3,5-diglucoside intensities in the interspecific hybrid fruit were higher than those of the parent fruits, whereas the average pelargonidin 3-glucoside, cyanidin 3-glucoside, and peonidin 3-glucoside intensities were the highest in Haskap. All anthocyanins were mainly accumulated in the inner and outer skins of Haskap and interspecific hybrid fruits, and in the skin of Miyama-uguisukagura fruits. The order of signal intensities of all anthocyanins among the three fruits was unchanged in different regions. Additionally, a comparison of IMS and LC/MS data from our previous study confirmed the possibility of comparing multiple fruits in the same plate by IMS. Thus, we elucidated anthocyanin distribution patterns of the interspecific hybrid and parent fruits by IMS.
Collapse
Affiliation(s)
- Ryohei Fujita
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita 11, Nishi 10, Kita-Ku, Sapporo, 060-0811, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoichiro Hoshino
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita 11, Nishi 10, Kita-Ku, Sapporo, 060-0811, Japan; Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Kita-Ku, Sapporo, 060-0811, Japan.
| |
Collapse
|
38
|
Postprandial Effect of Yogurt Enriched with Anthocyanins from Riceberry Rice on Glycemic Response and Antioxidant Capacity in Healthy Adults. Nutrients 2020; 12:nu12102930. [PMID: 32987943 PMCID: PMC7600605 DOI: 10.3390/nu12102930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The pigment of riceberry rice has been reported to contain anthocyanins which act as a free radical scavenger and inhibitor of carbohydrate digestive enzymes. Since the probiotic yogurt incorporated with the pigment of riceberry rice extract was previously developed, the present study was aimed to investigate the acute effect of riceberry rice yogurt consumption on postprandial glycemic response, antioxidant capacity, and subjective ratings in healthy adults. In a cross-over design, 19 healthy participants were randomized to consume 350 g of yogurt supplemented with 0.25% (w/w) riceberry rice extract or the control yogurt. Postprandial plasma glucose, antioxidant status, and subjective ratings were measured at fasting and intervals (0–3 h) after ingestion of yogurt. The primary outcome was glycemic response; the secondary outcomes were plasma antioxidant capacity. In comparison to the yogurt control, riceberry rice yogurt reduced plasma glucose concentration after 30 min of consumption. The incremental area under the curve (iAUC) was significantly lower after riceberry rice yogurt load than after the control yogurt load. The consumption of riceberry yogurt caused an acute increase in plasma ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), and oxygen radical absorbance capacity (ORAC) from the baseline values after 60 min of 0.25 ± 0.06 mM FeSO4, 253.7 ± 35.5 mM Trolox equivalents, and 166.8 ± 28.9 mM Trolox equivalents, respectively. Furthermore, the iAUCs for FRAP, TEAC, ORAC, and protein thiol were higher in riceberry yogurt consumption compared with the control yogurt (1.6-, 1.6-, 2.9-, and 1.9-fold, respectively). A decrease in iAUC for plasma malondialdehyde (MDA) concentration was also observed in the riceberry yogurt group. However, consumption of riceberry rice yogurt and control yogurt showed similar subjective rating scores of hunger, desire to eat, fullness, and satiety. In conclusion, acute consumption of riceberry rice yogurt suppressed postprandial glucose level and improved plasma antioxidant capacity in healthy volunteers.
Collapse
|
39
|
Nistor M, Diaconeasa Z, Frond AD, Stirbu I, Socaciu C, Pintea A, Rugina D. Comparative efficiency of different solvents for the anthocyanins extraction from chokeberries and black carrots, to preserve their antioxidant activity. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01344-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Sun X, Xu Z, Wang Y, Liu N. Protective effects of blueberry anthocyanin extracts on hippocampal neuron damage induced by extremely low-frequency electromagnetic field. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chem 2020; 334:127526. [PMID: 32702589 DOI: 10.1016/j.foodchem.2020.127526] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Blueberry anthocyanins are well-known for their diverse biological functions. However, the instability during digestion results in their weak bioavailability. The current study aimed to investigate the alteration in the stability, antioxidant capacity and bioaccessibility of blueberry anthocyanins with the addition of α-casein and β-casein in a simulated digestion system using pH differential method, HPLC-MS analysis, peroxyl scavenging capacity (PSC) assay, cellular antioxidant activity (CAA) and penetration test. The results showed that both α-casein and β-casein could increase the stability of blueberry anthocyanins during intestinal digestion and protect their antioxidant capacity. Moreover, the addition of α-casein or β-casein would enhance the bioaccessibility of blueberry anthocyanins. In conclusion, our study highlights that the interaction between α-casein or β-casein with blueberry anthocyanins can protect the compounds against influences associated with the simulated digestion.
Collapse
|
42
|
Gong ES, Liu C, Li B, Zhou W, Chen H, Li T, Wu J, Zeng Z, Wang Y, Si X, Lang Y, Zhang Y, Zhang W, Zhang G, Luo S, Liu RH. Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Food Chem 2020; 318:126484. [DOI: 10.1016/j.foodchem.2020.126484] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
|
43
|
Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants (Basel) 2020; 9:antiox9060478. [PMID: 32498420 PMCID: PMC7346222 DOI: 10.3390/antiox9060478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023] Open
Abstract
Anthocyanins are extensively studied for their health-related properties, including antibacterial activity against urinary tract infections (UTI). Among common fruits, blueberries, with their remarkable antioxidant capacity, are one of the richest sources. Anthocyanin-rich extracts were obtained from four varieties: Snowchaser, Star, Stella Blue and Cristina Blue, grown in the hot climate of Southern Spain. Their total anthocyanins contents (TAC) were determined spectrophotometrically, and the anthocyanin profile by ultra high performance liquid chromatography—tandem mass spectrometer (UHPLC-MS/MS). Their antioxidant activity was assessed by oxygen radical absorbance capacity (ORAC) assay, while antibacterial activity against strains isolated from UTI patients was assessed in vitro, helping to select the varieties with the highest bioactive potential. Star showed the highest TAC and antioxidant activity (1663 ± 159 mg of cyanidin-3-O-glucoside (cy-3-O-glu) equivalents/100 g fresh weight (FW), 6345 ± 601 μmol Trolox equivalents (TE)/100 g FW, respectively), followed by Cristina Blue, Stella Blue and Snowchaser. As far as we know, this is the first time that cyanidin-3-rutinoside has been identified in blueberries. The extracts inhibited all the tested strains, MICs ranging from 0.4 mg/mL (for Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL (for all extracts against UTI K. pneumoniae ssp. pneumoniae). This is the first study that assessed in vitro the antibacterial activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp. strains isolated from UTI.
Collapse
|
44
|
Li B, Cheng Z, Sun X, Si X, Gong E, Wang Y, Tian J, Shu C, Ma F, Li D, Meng X. Lonicera caerulea L. Polyphenols Alleviate Oxidative Stress-Induced Intestinal Environment Imbalance and Lipopolysaccharide-Induced Liver Injury in HFD-Fed Rats by Regulating the Nrf2/HO-1/NQO1 and MAPK Pathways. Mol Nutr Food Res 2020; 64:e1901315. [PMID: 32250024 DOI: 10.1002/mnfr.201901315] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/06/2020] [Indexed: 12/12/2022]
Abstract
SCOPE This study investigates the modulatory effects of Lonicera caerulea L. polyphenols (LCPs) on the intestinal environment and lipopolysaccharide (LPS)-induced liver injury via the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (HO-1)/NQO1 and mitogen-activated protein kinase (MAPK) pathways in a rat model of oxidative stress damage (OSD). METHODS AND RESULTS To examine the prebiotic properties of LCP, a model of high-fat-diet-induced OSD is established using Sprague Dawley rats. In the colon, treatment with LCP for 8 weeks ameliorates enhanced intestinal permeability (glucagon-like peptide-2 content and occludin protein increase, whereas claudin-2 protein decreases), intestinal inflammation (levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor kappa-B p65 (NF-κB p65), decrease), and intestinal OSD (through regulation of the Nrf2/HO-1/NQO1 pathway). Moreover, LCP alleviates LPS-induced liver injury by suppressing the nuclear translocation of NF-κB p65 and activation of the MAPK signaling pathway. Additionally, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, Akkermansia, Actinobacteria, Proteobacteria, Rothia, and Blautia are found to be the key intestinal microbial taxa related to intestinal OSD and LPS-induced liver injury in rats. CONCLUSION LCP treatment potentially modulates the intestinal environment and alleviates liver injury by suppressing oxidative-stress-related pathways and altering the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Ersheng Gong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| |
Collapse
|
45
|
Advantages of Liquid Nitrogen Quick Freezing Combine Gradient Slow Thawing for Quality Preserving of Blueberry. CRYSTALS 2020. [DOI: 10.3390/cryst10050368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Berries are perishable fruits with high nutritional value. Freezing is an effective way for food preservation. Freezing and thawing methods play key roles in preserving edible values and commodity values of food. This study investigated the effects of spray liquid nitrogen quick freezing (NF−20~−100 °C) and gradient thawing on the physical and functional characteristics of blueberries by using immersion and refrigerator freezing and microwave, ultrasonic, room- and low-temperature, and static-water thawing as comparisons. The results show that NF−80 °C freezing combined with −20~−5~4 °C. gradient thawing can retain more than 95% of polyphenols and other nutritional compounds (including pectin, soluble sugar, and vitamin C) in thawed blueberries compared with fresh blueberries. Besides, this method shows the best results in preserving the hardness, cell structure, and water distribution of blueberries. It is also revealed that the ultralow temperature (−100 °C) freezing does not bring a significant advantage in preserving blueberries. Rapid thawing methods such as microwave and ultrasound thawing are not suitable for blueberries, which might be due to their small size and thin skin. The results suggested that the combination of NF−80 °C freezing and −20~−5~4 °C gradient thawing is the optimal process for blueberry preservation. The outcomes of this study will serve as theoretical guidance for improving the industrial process for freezing and thawing blueberries.
Collapse
|
46
|
Boeri P, Piñuel L, Dalzotto D, Monasterio R, Fontana A, Sharry S, Barrio DA, Carrillo W. Argentine Patagonia barberry chemical composition and evaluation of its antioxidant capacity. J Food Biochem 2020; 44:e13254. [PMID: 32346894 DOI: 10.1111/jfbc.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023]
Abstract
An important portion of vitamins, minerals and polyphenols components in human diet are captured from fruit consumption. Argentinean Patagonia Berberis microphylla was characterized with the phenolic content, the proximate composition and the identification and quantification of anthocyanins, not-anthocyanins and proteins. The antioxidant capacity of berberis ethanolic extracts (EB) was determined by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. EB was used to reduce production of reactive substances species (ROS) in zebrafish. EB presented a total polyphenols content of 1,035.03 mg GAE/100 g fresh weight (FW). EB presented an ABTS value of 116.25 ± 17 μmol TE/g FW. EB presented a DPPH value of 137.80 ± 1.90 μmol TE/g FW. EB was able of reducing the ROS in zebrafish. Berberies Protein Isolate (BPI) presented proteins with bands from 15 to 62 kDa. BPI presented an ABTS value of 593.11 ± 8.60 μmol TE/g. The BPI duodenal digest presented a value of 641.07 ± 12.60 μmol TE/g digests. PRACTICAL APPLICATIONS: The practical applications of the present study are to increase scientific knowledge for consumers about the quality and benefits of the consumption of the native fruit (Berberis microphylla) from the Patagonia region of Argentine. This work describes the protein profile of berberies, their digestibility and their antioxidant activity. This study allows to better understand the phytonutrients that make up this fruit. Future studies may identify the peptides present in hydrolyzates. The bio-compounds of this fruit could be used as functional ingredients by the food industry for different purposes.
Collapse
Affiliation(s)
- Patricia Boeri
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Lucrecia Piñuel
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | | | - Romina Monasterio
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Ariel Fontana
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Sandra Sharry
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,Wood Research Laboratory (LIMAD), Faculty of Agricultural and Forestry Sciences, National University of La Plata, La Plata, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Wilman Carrillo
- Faculty of Agricultural Sciences, Technical University of Babahoyo, Babahoyo, Ecuador
| |
Collapse
|
47
|
Gołba M, Sokół-Łętowska A, Kucharska AZ. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020; 25:E749. [PMID: 32050498 PMCID: PMC7037556 DOI: 10.3390/molecules25030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lonicera caerulea L., also known as haskap or honeysuckle berry, is a fruit commonly planted in eastern Europe, Canada and Asia. The fruit was registered as a traditional food from a third country under European Union regulations only on December 2018. It is resistant to cold, pests, various soil acidities and diseases. However, its attractiveness is associated mostly with its health properties. The fruit shows anticancer, anti-inflammatory, and antioxidant activity-important factors in improving health. These features result from the diverse content of phytochemicals in honeysuckle berries with high concentrations of phytocompounds, mainly hydroxycinnamic acids, hydroxybenzoic acids, flavanols, flavones, isoflavones, flavonols, flavanones and anthocyanins but also iridoids, present in the fruit in exceptional amounts. The content and health properties of the fruit were identified to be dependent on cultivar, genotype and the place of harvesting. Great potential benefits of this nutritious food are its ability to minimize the negative effects of UV radiation, diabetes mellitus and neurodegenerative diseases, and to exert hepato- and cardioprotective activity.
Collapse
Affiliation(s)
- Marta Gołba
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.S.Ł.); (A.Z.K.)
| | | | | |
Collapse
|
48
|
Thole V, Bassard JE, Ramírez-González R, Trick M, Ghasemi Afshar B, Breitel D, Hill L, Foito A, Shepherd L, Freitag S, Nunes dos Santos C, Menezes R, Bañados P, Naesby M, Wang L, Sorokin A, Tikhonova O, Shelenga T, Stewart D, Vain P, Martin C. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics 2019; 20:995. [PMID: 31856735 PMCID: PMC6924045 DOI: 10.1186/s12864-019-6183-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.
Collapse
Affiliation(s)
- Vera Thole
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 Rue General Zimmer, 67084 Strasbourg, France
| | | | - Martin Trick
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Bijan Ghasemi Afshar
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Dario Breitel
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present address: Tropic Biosciences UK LTD, Norwich Research Park, Norwich, NR4 7UG UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | | | - Sabine Freitag
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-082 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pilar Bañados
- Facultad De Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna Ote, 4860 Macul, Chile
| | | | - Liangsheng Wang
- Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Artem Sorokin
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Olga Tikhonova
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Tatiana Shelenga
- Fruit Crops Genetic Resources Department, N. I. Vavilov Research Institute of Plant Industry, B. Morskaya Street 42-44, St. Petersburg, 190000 Russia
| | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Philippe Vain
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
49
|
Liu J, Yong H, Liu Y, Qin Y, Kan J, Liu J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100417] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|