1
|
Shi JY, Gu KH, Yang SM, Wei WH, Dai X. Effects of 6-methoxybenzoxazolinone (6-MBOA) on animals: state of knowledge and open questions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:45. [PMID: 39141101 DOI: 10.1007/s00114-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-β-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.
Collapse
Affiliation(s)
- Jia-Yi Shi
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Ke-Han Gu
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Sutour S, Doan VC, Mateo P, Züst T, Hartmann ER, Glauser G, Robert CAM. Isolation and Structure Determination of Drought-Induced Multihexose Benzoxazinoids from Maize ( Zea mays). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3427-3435. [PMID: 38336361 PMCID: PMC10885146 DOI: 10.1021/acs.jafc.3c09141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Benzoxazinoids (BXDs) are plant specialized metabolites exerting a pivotal role in plant nutrition, allelopathy, and defenses. Multihexose benzoxazinoids were previously observed in cereal-based food products such as whole-grain bread. However, their production in plants and exact structure have not been fully elucidated. In this study, we showed that drought induced the production of di-, tri-, and even tetrahexose BXDs in maize roots and leaves. We performed an extensive nuclear magnetic resonance study and elucidated the nature and linkage of the sugar units, which were identified as gentiobiose units β-linked (1″ → 6') for the dihexoses and (1″ → 6')/(1‴ → 6″) for the trihexoses. Drought induced the production of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and HDMBOA-2Glc. The induction was common among several maize lines and the strongest in seven-day-old seedlings. This work provides ground to further characterize the BXD synthetic pathway, its relevance in maize-environment interactions, and its impact on human health.
Collapse
Affiliation(s)
- Sylvain Sutour
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Van Cong Doan
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern 3012, Switzerland
- Plant Physiology Unit, The Department of Life Sciences and Systems Biology of the University of Turin, Via Accademia Albertina 13, Torino 10123, Italy
| | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich 8008, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern 3012, Switzerland
| |
Collapse
|
3
|
Yang Y, Zhou Y, Lyu Y, Shao B, Xu Y. High-throughput multitarget quantitative assay to profile the whole grain-specific phytochemicals alkylresorcinols, benzoxazinoids and avenanthramides in whole grain and grain-based foods. Food Chem 2023; 426:136663. [PMID: 37352717 DOI: 10.1016/j.foodchem.2023.136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Currently, there is a growing interest in using whole grain (WG)-specific phytochemicals to perform WG research, including research on dietary assessment, health mechanisms, and quality control. However, the current approaches used for WG-specific phytochemical analysis cannot simultaneously achieve coverage, specificity, and sensitivity. In the present study, a series of WG-specific phytochemicals (alkylresorcinols (ARs), benzoxazinoids (BXs) and avenanthramides (AVAs)) were identified, and their mass spectrometry (MS) fragmentation mechanism was studied by TOF MS. Based on diagnostic fragmentation ions and retention time prediction models, a LC-MS/MS method was developed. Through this method, 56 ARs, 13 BXs, and 19 AVAs in WGs and grain-based foods were quantified for the first time. This method was validated and yielded excellent specificity, high sensitivity and negligible matrix effects. Finally, we established WG-specific phytochemical fingerprints in a variety of WG and grain-based foods. This method can be used for WG quality control and WG precision nutrition research.
Collapse
Affiliation(s)
- Yunjia Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China
| | - Ying Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO. 38 Xueyuan Road, Beijing 100083, China.
| |
Collapse
|
4
|
Živković A, Gođevac D, Cigić B, Polak T, Požrl T. Identification and Quantification of Selected Benzoxazinoids and Phenolics in Germinated Spelt ( Triticum spelta). Foods 2023; 12:foods12091769. [PMID: 37174307 PMCID: PMC10178788 DOI: 10.3390/foods12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the effects of germination on the secondary metabolite composition in spelt grains. Germination significantly increased the content of various metabolites in free and bound forms. Benzoxazinoids were the most important compounds in the free fraction of the 96 h germinated grains (MBOA content as the predominant compound was 277.61 ± 15.29 µg/g DW). The majority of phenolic acids were present in the bound fraction, with trans-ferulic acid as the main component, reaching 753.27 ± 95.87 µg/g DW. The often neglected cis-isomers of phenolic acids accounted for about 20% of the total phenolic acids. High levels of apigenin di-C-glycosides were found in spelt grains, and the schaftoside content was most affected by germination, increasing threefold. The accumulation of secondary metabolites significantly increased the antioxidant activity of germinated spelt. According to the results of this study, the content of most bioactive compounds was highest in spelt grains after 96 h of germination. These data suggest that germinated spelt could potentially be valuable for the production of functional foods.
Collapse
Affiliation(s)
- Andrej Živković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Blaž Cigić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Polak
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Požrl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| |
Collapse
|
5
|
Calvi A, Preiti G, Poiana M, Marconi O, Gastl M, Zarnkow M. Multi-Response Optimization of the Malting Process of an Italian Landrace of Rye ( Secale cereale L.) Using Response Surface Methodology and Desirability Function Coupled with Genetic Algorithm. Foods 2022; 11:foods11223561. [PMID: 36429155 PMCID: PMC9689978 DOI: 10.3390/foods11223561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Rye is used in some applications in the food and beverage industry and for the preparation of functional foods. It is an interesting raw material in malting and brewing due to its characteristic contribution to the beer's color, turbidity, foam and aroma. The aim of this work was to optimize the micro-malting process of a rye landrace. The response surface methodology (RSM) was applied to study the influence of three malting parameters (germination time, germination temperature and degree of steeping) on the quality traits of malted rye. Long germination times at high temperatures resulted in an increase in the extract and Kolbach index. The model for the apparent attenuation limit showed a particular pattern, whereby time and temperature inversely influenced the response. The lowest viscosities were determined in the worts produced from highly modified malts. Optimization of the variables under study was achieved by means of a desirability function and a genetic algorithm. The two methodologies provided similar results. The best combination of parameters to optimize the malting process on the rye landrace under study was achieved at 6 days, 12 °C and 44 g/100 g.
Collapse
Affiliation(s)
- Antonio Calvi
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
- Correspondence: ; Tel.: +39-320-8012298
| | - Giovanni Preiti
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Marco Poiana
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy
| | - Martina Gastl
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
6
|
Matos P, Paranhos A, Batista MT, Figueirinha A. Synergistic Effect of DIBOA and Verbascoside from Acanthus mollis Leaf on Tyrosinase Inhibition. Int J Mol Sci 2022; 23:13536. [PMID: 36362321 PMCID: PMC9653606 DOI: 10.3390/ijms232113536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/29/2023] Open
Abstract
Overexpression of melanin contributes to darkening of plant and fruit tissues and skin hyperpigmentation, leading to melasma or age spots. Although melanin biosynthesis is complex and involves several steps, a single enzyme known as tyrosinase is key to regulating this process. The melanogenesis pathway is initiated by oxidation of the starting material l-tyrosine (or l-DOPA) to dopaquinone by tyrosinase; the resulting quinone then serves as a substrate for subsequent steps that eventually lead to production of melanin. Medicinal plants are considered a good source of tyrosinase inhibitors. This study investigated the tyrosinase inhibitory activity of A. mollis leaf extracts and their phytochemicals. Significant activity was verified in the ethanol extract -EEt (IC50 = 1.21 µg/mL). Additionally, a kinetic study showed that this tyrosinase inhibition occurs by DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and verbascoside contribution through a non-competitive reaction mechanism. A synergistic effect on tyrosinase inhibition was observed in the binary combination of the compounds. In conclusion, both EEt and a mixture of two of its phytochemicals can be effective tyrosinase inhibitors and can be used as a bleaching agent for cosmetic formulations in the future.
Collapse
Affiliation(s)
- Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, 3000-213 Coimbra, Portugal
| | - António Paranhos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, 3000-213 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Kaur P, Singh Sandhu K, Singh Purewal S, Kaur M, Kumar Singh S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res Int 2021; 150:110769. [PMID: 34865784 DOI: 10.1016/j.foodres.2021.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Rye (Secale cereale) is a rich source of macromolecules, especially starch, fiber, and proteins which encourages the researchers and industries to use it for various purposes including bakery products, beverages and edible films formulation. However, despite many nutritional and health benefiting properties, rye has not been explored up to its full potential. Interest of consumers in formulating foods with high fiber and phenolic compounds has generated our interest in compiling the detailed information on rye. The present review on rye grains summarizes the existing scientific data on rye macronutrients (starch, arabinoxylan, β-glucan, fructan and proteins) and their corresponding industrial importance. Detailed description in this review unfolds the potential of rye grains for human nutrition. This review provides comprehensive knowledge and fills the remaining gap between the previous and latest scientific findings. Comprehensive information on rye nutrients along with health benefits will help to open a new era for scientific world and industrial sectors.
Collapse
Affiliation(s)
- Pinderpal Kaur
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
8
|
Pieczonka SA, Paravicini S, Rychlik M, Schmitt-Kopplin P. On the Trail of the German Purity Law: Distinguishing the Metabolic Signatures of Wheat, Corn and Rice in Beer. Front Chem 2021; 9:715372. [PMID: 34354980 PMCID: PMC8329485 DOI: 10.3389/fchem.2021.715372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Here, we report a non-targeted analytical approach to investigate the influence of different starch sources on the metabolic signature in the final beer product. An extensive sample set of commercial beers brewed with barley, wheat, corn and/or rice were analyzed by both direct infusion Fourier transform ion cyclotron mass spectrometry (DI-FTICR MS, 400 samples) and UPLC-ToF-MS (100 samples). By its unrivaled mass resolution and accuracy, DI-FTICR-MS was able to uncover the compositional space of both polar and non-polar metabolites that can be traced back to the use of different starch sources. Reversed phase UPLC-ToF-MS was used to access information about molecular structures (MS2-fragmentation spectra) and isomeric separation, with a focus on less polar compounds. Both analytical approaches were able to achieve a clear statistical differentiation (OPLS-DA) of beer samples and reveal metabolic profiles according to the starch source. A mass difference network analysis, applied to the exact marker masses resolved by FTICR, showed a network of potential secondary metabolites specific to wheat, corn and rice. By MS2-similarity networks, database and literature search, we were able to identify metabolites and compound classes significant for the use of the different starch sources. Those were also found in the corresponding brewing raw materials, confirming the potential of our approach for quality control and monitoring. Our results also include the identification of the aspartic acid-conjugate of N-β-D-glucopyranosyl-indole-3-acetic acid as a potential marker for the use of rice in the brewing industry regarding quality control and food inspection purposes.
Collapse
Affiliation(s)
- Stefan A Pieczonka
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Sophia Paravicini
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
9
|
Gaikar N, Raval M, Patel S, Patel P, Hingorani L. Isolation, characterization and estimation of benzoxazinoid glycoside from seeds of
Blepharis persica
(Burm.f) O. Kuntze. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nilesh Gaikar
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Manan Raval
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Preksha Patel
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | | |
Collapse
|
10
|
Koistinen VM, Tuomainen M, Lehtinen P, Peltola P, Auriola S, Jonsson K, Hanhineva K. Side-stream products of malting: a neglected source of phytochemicals. NPJ Sci Food 2020; 4:21. [PMID: 33311514 PMCID: PMC7733442 DOI: 10.1038/s41538-020-00081-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Whole grain consumption reduces the risk of several chronic diseases. A major contributor to the effect is the synergistic and additive effect of phytochemicals. Malting is an important technological method to process whole grains; the main product, malted grain, is used mainly for brewing, but the process also yields high amounts of side-stream products, such as rootlet. In this study, we comprehensively determined the phytochemical profile of barley, oats, rye, and wheat in different stages of malting and the subsequent extraction phases to assess the potential of malted products and side-streams as a dietary source of bioactive compounds. Utilizing semi-quantitative LC-MS metabolomics, we annotated 285 phytochemicals from the samples, belonging to more than 13 chemical classes. Malting significantly altered the levels of the compounds, many of which were highly increased in the rootlet. Whole grain cereals and the malting products were found to be a diverse and rich source of phytochemicals, highlighting the value of these whole foods as a staple. The characterization of phytochemicals from the 24 different sample types revealed previously unknown existence of some of the compound classes in certain species. The rootlet deserves more attention in human nutrition, rather than its current use mainly as feed, to benefit from its high content of bioactive components.
Collapse
Affiliation(s)
- Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Marjo Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pekka Lehtinen
- Senson Oy Ltd, Niemenkatu 18, P.O. Box 95, FI-15141, Lahti, Finland
| | - Petri Peltola
- Senson Oy Ltd, Niemenkatu 18, P.O. Box 95, FI-15141, Lahti, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Karin Jonsson
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96, Gothenburg, Sweden
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96, Gothenburg, Sweden
- Food Chemistry and Food Development unit, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Abstract
The compositional space of a set of 120 diverse beer samples was profiled by rapid flow-injection analysis (FIA) Fourier transform ion cyclotron mass spectrometry (FTICR-MS). By the unrivaled mass resolution, it was possible to uncover and assign compositional information to thousands of yet unknown metabolites in the beer matrix. The application of several statistical models enabled the assignment of different molecular pattern to certain beer attributes such as the beer type, the way of adding hops and the grain used. The dedicated van Krevelen diagrams and mass difference networks displayed the structural connectivity of the annotated sum formulae. Thereby it was possible to provide a base of knowledge of the beer metabolome far above database-dependent annotations. Typical metabolic signatures for beer types, which reflect differences in ingredients and ways of brewing, could be extracted. Besides, the complexity of isomeric compounds, initially profiled as single mass values in fast FIA-FTICR-MS, was resolved by selective UHPLC-ToF-MS2 analysis. Thereby structural hypotheses based on FTICR’s sum formulae could be confirmed. Benzoxazinoid hexosides deriving from the wheat’s secondary metabolism were uncovered as suitable marker substances for the use of whole wheat grains, in contrast to merely wheat starch or barley. Furthermore, it was possible to describe Hydroxymethoxybenzoxazinone(HMBOA)-hexosesulfate as a hitherto unknown phytoanticipin derivative in wheat containing beers. These findings raise the potential of ultrahigh resolution mass spectrometry for rapid quality control and inspection purposes as well as deep metabolic profiling, profound search for distinct hidden metabolites and classification of archeological beer samples.
Collapse
|
12
|
Humia BV, Santos KS, Barbosa AM, Sawata M, Mendonça MDC, Padilha FF. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019; 24:molecules24081568. [PMID: 31009997 PMCID: PMC6515478 DOI: 10.3390/molecules24081568] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022] Open
Abstract
The production and consumption of beer plays a significant role in the social, political, and economic activities of many societies. During brewing fermentation step, many volatile and phenolic compounds are produced. They bring several organoleptic characteristics to beer and also provide an identity for regional producers. In this review, the beer compounds synthesis, and their role in the chemical and sensory properties of craft beers, and potential health benefits are described. This review also describes the importance of fermentation for the brewing process, since alcohol and many volatile esters are produced and metabolized in this step, thus requiring strict control. Phenolic compounds are also present in beer and are important for human health since it was proved that many of them have antitumor and antioxidant activities, which provides valuable data for moderate dietary beer inclusion studies.
Collapse
Affiliation(s)
- Bruno Vieira Humia
- Biomaterials Laboratory (LBMat), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
| | - Klebson Silva Santos
- Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
| | - Andriele Mendonça Barbosa
- Biomaterials Laboratory (LBMat), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
| | - Monize Sawata
- Biomaterials Laboratory (LBMat), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
| | - Marcelo da Costa Mendonça
- Biomaterials Laboratory (LBMat), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Avenida Beira-mar, 3.250, Aracaju 49025-040, Sergipe, Brazil.
| | - Francine Ferreira Padilha
- Biomaterials Laboratory (LBMat), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil.
| |
Collapse
|
13
|
Matos P, Figueirinha A, Paranhos A, Nunes F, Cruz P, Geraldes CFGC, Cruz MT, Batista MT. Bioactivity of Acanthus mollis - Contribution of benzoxazinoids and phenylpropanoids. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:198-205. [PMID: 30201231 DOI: 10.1016/j.jep.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis is a plant native to the Mediterranean region, traditionally used as diuretic, anti-inflammatory and soothing of the mucous membranes of the digestive and urinary tract and externally as healing of wounds and burns, also demonstrating analgesic and anti-inflammatory activities. However, studies focused on its phytochemical composition as well as scientific proof of Acanthus mollis efficacy are scarce. AIM OF THE STUDY The proposed work aims to perform a phytochemical characterization and evaluation of the therapeutic potential of Acanthus mollis, based on biological properties that support its traditional uses. MATERIAL AND METHODS In this study, an 96% ethanol extract from Acanthus mollis leaves was obtained and its phytochemical composition evaluated using High Performance Liquid Chromatography with Photodiode Array Detector coupled to Electrospray Ionization Mass Spectrometry (HPLC-PDA-ESI/MSn). The chemical structure of the compound isolated was elucidated using 1H and 13C Nuclear Magnetic Resonance (NMR), 1H-correlation spectroscopy (1H-COSY), heteronuclear single quantum correlation (HSQC) and heteronuclear multiple-bond correlation (HMBC). The quantification of the constituents was performed using two external standards (2,4-dihydroxy-1,4-benzoxazin-3-one and verbascoside). The antioxidant activity was determined by the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) assay. Anti-inflammatory activity was determined measuring the inhibition of nitric oxide production by RAW 264.7 macrophages stimulated with the TLR4 agonist lipopolysaccharide (LPS) and through lipoxygenase (LOX) inhibition assay. The cytotoxicity was screened on two lines (RAW 264.7 and HaCaT) using the resazurin assay. RESULTS Compounds such as verbascoside and its derivatives, as well as benzoxazinoids were found as the main constituents. A percentage of 5.58% was verified for the 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) derivatives. DIBOA was the main compound of the extract. Significant concentrations were also found for phenylpropanoids, which constitute about 4.39% of the total compounds identified. This extract showed antioxidant capacity against DPPH (IC50 = 40.00 ± 1.59 μg/mL) and superoxide anion (IC50 = 29.42 ± 1.99 μg/mL). It also evidenced anti-inflammatory potential in RAW 264.7 macrophages, presenting capacity for nitric oxide reduction (IC50 = 28.01 μg/mL). Moreover, in vitro studies have shown that this extract was able to inhibit the lipoxygenase, with an IC50 of 104.39 ± 4.95 µg/mL. Importantly, all effective concentrations were devoid of cytotoxicity in keratinocytes, thus highlighting the safety of the extract for the treatment of skin inflammatory related diseases. Concerning macrophages it was also possible to disclose concentrations showing anti-inflammatory activity and without cytotoxicity (up to 30 µg/mL). The benzoxazinoid DIBOA demonstrated a considerable anti-inflammatory activity suggesting its important contribution to this activity. CONCLUSIONS These results corroborate the anti-inflammatory properties traditionally attributed to this plant. Among the compounds identified in this study, benzoxazinoids exhibited a significant anti-inflammatory activity that was never previously described. Ethanol seems to be a good option for the extraction of these bioactive compounds, since relevant antioxidant/anti-radical and anti-inflammatory activities were found for this extract.
Collapse
Affiliation(s)
- P Matos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - A Figueirinha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - A Paranhos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - F Nunes
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - P Cruz
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - C F G C Geraldes
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
| | - M T Cruz
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M T Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
14
|
de Bruijn WJC, Gruppen H, Vincken JP. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. PHYTOCHEMISTRY 2018; 155:233-243. [PMID: 30218957 DOI: 10.1016/j.phytochem.2018.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Benzoxazinoids, comprising the classes of benzoxazinones and benzoxazolinones, are a set of specialised metabolites produced by the plant family Poaceae (formerly Gramineae), and some dicots. The family Poaceae in particular contains several important crops like maize and wheat. Benzoxazinoids play a role in allelopathy and as defence compounds against (micro)biological threats. The effectivity of benzoxazinones in these functionalities is largely imposed by the subclasses (determined by N substituent). In this review, we provide an overview of all currently known natural benzoxazinoids and a summary of the current state of knowledge of their biosynthesis. We also evaluated their antimicrobial activity based on minimum inhibitory concentration (MIC) values reported in literature. Monomeric natural benzoxazinoids seem to lack potency as antimicrobial agents. The 1,4-benzoxazin-3-one backbone, however, has been shown to be a potential scaffold for designing new antimicrobial compounds. This has been demonstrated by a number of studies that report potent activity of synthetic derivatives of 1,4-benzoxazin-3-one, which possess MIC values down to 6.25 μg mL-1 against pathogenic fungi (e.g. C. albicans) and 16 μg mL-1 against bacteria (e.g. S. aureus and E. coli). Observations on the structural requirements for allelopathy, insecticidal, and antimicrobial activity suggest that they are not necessarily conferred by similar mechanisms.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
15
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
16
|
Pihlava JM, Hellström J, Kurtelius T, Mattila P. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
|
18
|
Gao Q, Ma R, Chen L, Shi S, Cai P, Zhang S, Xiang H. Antioxidant profiling of vine tea (Ampelopsis grossedentata): Off-line coupling heart-cutting HSCCC with HPLC–DAD–QTOF-MS/MS. Food Chem 2017; 225:55-61. [DOI: 10.1016/j.foodchem.2016.11.122] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
|
19
|
Zhu Y, Sang S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol Nutr Food Res 2017; 61. [PMID: 28155258 DOI: 10.1002/mnfr.201600852] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Accumulated evidence in epidemiological studies has consistently shown that consumption of whole grains (WGs) is inversely associated with risk of major chronic diseases such as certain types of cancer, type 2 diabetes, and cardiovascular diseases. Dietary fiber (DF) has been reported to be responsible for the health effects of WG consumption. Evidence from in vitro and in vivo studies is emerging that, in addition to DF and minerals, the unique phytochemicals in WGs may in part contribute to these health-promoting effects. WGs are rich sources of various phytochemicals. However, phytochemical contents and profiles in WG wheat are not systematically summarized yet, and the rapid rate of discovery of wheat phytochemicals necessitates an update on the current state of this field. Furthermore, the biological roles of phytochemicals in protective effects of WGs are also relatively underestimated compared to DFs. This manuscript summarized current research literature regarding phytochemicals that have been identified and characterized from wheat grains and wheat bran, and their corresponding contributions to the major health benefits of WG wheat consumption.
Collapse
Affiliation(s)
- Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, USA
| |
Collapse
|
20
|
Steffensen SK, Pedersen HA, Adhikari KB, Laursen BB, Jensen C, Høyer S, Borre M, Pedersen HH, Borre M, Edwards D, Fomsgaard IS. Benzoxazinoids in Prostate Cancer Patients after a Rye-Intensive Diet: Methods and Initial Results. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8235-8245. [PMID: 27718574 DOI: 10.1021/acs.jafc.6b03765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rye bread contains high amounts of benzoxazinoids, and in vitro studies have shown suppressive effects of selected benzoxazinoids on prostate cancer cells. Thus, research into benzoxazinoids as possible suppressors of prostate cancer is demanded. A pilot study was performed in which ten prostate cancer patients received a rye-enriched diet 1 week prior to prostatectomy. Plasma and urine samples were collected pre- and postintervention. Ten prostate biopsies were obtained from each patient and histologically evaluated. The biopsies exhibited concentrations above the detection limit of seven benzoxazinoids ranging from 0.15 to 10.59 ng/g tissue. An OPLS-DA analysis on histological and plasma concentrations of benzoxazinoids classified the subjects into two clusters. A tendency of higher benzoxazinoid concentrations toward the benign group encourages further investigations. Benzoxazinoids were quantified by an optimized LC-MS/MS method, and matrix effects were evaluated. At low concentrations in biopsy and plasma matrices the matrix effect was concentration-dependent and nonlinear. For the urine samples the general matrix effects were small but patient-dependent.
Collapse
Affiliation(s)
- Stine K Steffensen
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Hans A Pedersen
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Khem B Adhikari
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Bente B Laursen
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Claudia Jensen
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Søren Høyer
- Department of Pathology, Aarhus University Hospital , Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital , Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Helene H Pedersen
- Department of Urology, Aarhus University Hospital , Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Mette Borre
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital , Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - David Edwards
- Department of Molecular Biology and Genetics, Aarhus University , Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University , Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|