1
|
Cojocaru A, Carbune RV, Teliban GC, Stan T, Mihalache G, Rosca M, Rusu OR, Butnariu M, Stoleru V. Physiological, morphological and chemical changes in pea seeds under different storage conditions. Sci Rep 2024; 14:28191. [PMID: 39548205 PMCID: PMC11568257 DOI: 10.1038/s41598-024-79115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
The loss of germination, viability, and vigor of seeds under storage conditions are the main causes of the need to multiply the seed material for leguminous crops. For crop establishment, seeds obtained in propagation fields are usually used, and the coating comes from the basic seed. In the case of leguminous species, the seeds quickly lose their viability, and in accordance with international regulations, for legumes, the number of seeds increases only in the first year of propagation. Therefore, the main objective of this study was to assess the effects of variations in the storage period, temperature and humidity on the morphophysiological and chemical traits of two pea seed varieties (Gloriosa and Kelvedon Wonder). The pea seeds were harvested at the end of June 2017, 2018 and 2019 and stored for 32, 20 and 8 months at T = 4 °C and H = 8%; T = 4 °C and H = 12%; T = 8 °C and H = 8%; T = 8 °C and H = 12%; and T = 22 °C and H = 65%. The results of the morphological, chemical, and biochemical analyses showed that the highest germination rate; hypocotyl length; radicle length; lipid content; dietetic fiber content; caloric value; and Ca, Mg, K, Na, Fe and Zn contents were detected in the Gloriosa and KW seeds stored for 8 months at 4 °C and 8% humidity. Analysis of the experimental data by statistical methods revealed that increasing the storage time had an individual significant negative influence only on the germination rate of both pea varieties and on the hypocotyl length and radicle length of the KW variety, while humidity and temperature variation had individual significant influences on the lipid content. The significant effects of humidity and temperature on the germination rate, hypocotyl length and root length of KW plants were also determined. For the remaining morphophysiological and chemical traits of pea seeds, the individual and combined effects of the factors were not statistically significant. Furthermore, the comparison of means using the Tukey test showed that storage conditions related to temperature and humidity generally used by farmers (T = 22 °C × H = 65%) did not significantly affect the majority of the nutritional properties of the pea seeds. However, maintaining pea seeds under these conditions for a longer period of time significantly affects seed germination and vigor.
Collapse
Affiliation(s)
- Alexandru Cojocaru
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| | - Razvan-Vasile Carbune
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania.
| | - Gabriel-Ciprian Teliban
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| | - Teodor Stan
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| | - Gabriela Mihalache
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
- "Alexandru Ioan Cuza" University of Iași, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania
| | - Mihaela Rosca
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| | - Oana-Raluca Rusu
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" From Timisoara, 119 Calea Aradului, 300645, Timis, Romania.
| | - Vasile Stoleru
- "Ion Ionescu de La Brad" Iasi University of Life Sciences, 3 M. Sadoveanu, 700440, Iasi, Romania
| |
Collapse
|
2
|
An NTH, Namutebi P, Van Loey A, Hendrickx ME. Quantitative assessment of molecular, microstructural, and macroscopic changes of red kidney beans (Phaseolus vulgaris L.) during cooking provides detailed insights in their cooking behavior. Food Res Int 2024; 181:114098. [PMID: 38448107 DOI: 10.1016/j.foodres.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Quantitative changes at different length scales (molecular, microscopic, and macroscopic levels) during cooking were evaluated to better understand the cooking behavior of common beans. The microstructural evolution of presoaked fresh and aged red kidney beans during cooking at 95 °C was quantified using light microscopy coupled with image analysis. These data were related to macroscopic properties, being hardness and volume changes representing texture and swelling of the beans during cooking. Microstructural properties included the cell area (Acell), the fraction of intercellular spaces (%Ais), and the fraction of starch area within the cells (%As/c), reflecting respectively cell expansion, cell separation, and starch swelling. A strong linear correlation between hardness and %Ais (r = -0.886, p = 0.07), along with a significant relative change in %Ais (∼5 times), suggests that softening is predominantly due to cell separation rather than cell expansion. Regarding volume changes, substantial cell expansion (Acell increased by ∼1.5 times) during the initial 30 min of cooking was greatly associated with the increase in the cotyledon volume, while the significance of cell separation became more prominent during the later stages of cooking. Furthermore, we found that the seed coat, rather than the cotyledon, played a major role in the swelling of whole beans, which became less pronounced after aging. The macroscopic properties did not correlate with %As/c. However, the evolution of %As/c conveyed information on the swelling of the starch granules during cooking. During the initial phase, the starch granule swelling mainly filled the cells, while during the later phase, the further swelling was confined by the cell wall. This study provides strong microscopic evidence supporting the direct involvement of the cell wall/ middle lamella network in microstructural changes during cooking as affected by aging, which is in line with the results of molecular changes.
Collapse
Affiliation(s)
- Nguyen T H An
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Patricia Namutebi
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Marc E Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, Wenzl P, Bach-Pages M, Bitocchi E, Chacon Sanchez MI, Daffonchio D, Preston GM. Consistent effects of independent domestication events on the plant microbiota. Curr Biol 2024; 34:557-567.e4. [PMID: 38232731 DOI: 10.1016/j.cub.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.
Collapse
Affiliation(s)
| | - Marco Fusi
- Center for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Felix Homma
- University of Oxford, Department of Biology, Oxford, UK
| | - Luis Guillermo Santos
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Peter Wenzl
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Isabel Chacon Sanchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Biology, Oxford, UK.
| |
Collapse
|
4
|
Kong C, Duan C, Zhang Y, Wang Y, Yan Z, Zhou S. Non-starch polysaccharides from kidney beans: comprehensive insight into their extraction, structure and physicochemical and nutritional properties. Food Funct 2024; 15:62-78. [PMID: 38063031 DOI: 10.1039/d3fo03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Kidney beans (Phaseolus vulgaris L.) are an important legume source of carbohydrates, proteins, and bioactive molecules and thus have attracted increasing attention for their high nutritional value and sustainability. Non-starch polysaccharides (NSPs) in kidney beans account for a high proportion and have a significant impact on their biological functions. Herein, we critically update the information on kidney bean varieties and factors that influence the physicochemical properties of carbohydrates, proteins, and phenolic compounds. Furthermore, their extraction methods, structural characteristics, and health regulatory effects, such as the regulation of intestinal health and anti-obesity and anti-diabetic effects, are also summarized. This review will provide suggestions for further investigation of the structure of kidney bean NSPs, their relationships with biological functions, and the development of NSPs as novel plant carbohydrate resources.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yiying Wang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China.
| | - Sumei Zhou
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
5
|
Zhu L, Che AJC, Kyomugasho C, Chen D, Hendrickx M. Effect of bio-chemical changes due to conventional ageing or chemical soaking on the texture changes of common beans during cooking. Food Res Int 2023; 173:113377. [PMID: 37803715 DOI: 10.1016/j.foodres.2023.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
To establish the HTC defect development, the cooking kinetics of seeds of ten bean accessions (belonging to seven common bean market classes), fresh and conventionally aged (35 °C, 83% RH, 3 months) were compared to those obtained after soaking in specific salt solutions (in 0.1 M sodium acetate buffer at pH 4.4, 41 °C for 12 h, or 0.01 M CaCl2 at pH 6.2, 25 °C for 16 h and subsequently cooking in CaCl2 solution, or deionised water). The extent of phytate (inositol hexaphosphate, IP6) hydrolysis was evaluated to better understand the role of endogenous Ca2+ in the changes of the bean cooking kinetics. A significant decrease in the IP6 content was observed after conventional ageing and after soaking in a sodium acetate solution suggesting phytate hydrolysis (release of endogenous Ca2+). These changes were accompanied by an increase in the cooking time of the beans. Smaller changes in cooking times after soaking in a sodium acetate solution (compared to conventionally aged beans) was attributed to a lower ionisation level of the COOH groups in pectin (pH 4.4, being close to pKa value of pectin) limiting pectin Ca2+ cross-linking. In beans soaked in a CaCl2 solution, the uptake of exogenous cations increased the cooking times (with no IP6 hydrolysis). The change in cooking time of conventionally aged beans was strongly correlated with the extent of IP6 hydrolysis, although two groups of beans with low or high IP6 hydrolysis were distinguished. Comparable trends were observed when soaking in CaCl2 solution (r = 0.67, p = 0.14 or r = 0.97, p = 0.03 for two groups of beans with softer or harder texture during cooking). Therefore a test based on the Ca2+ sensitivity of the cooking times, implemented through a Ca2+ soaking experiment followed by cooking can be used as an accelerated test to predict susceptibility to HTC defect development during conventional ageing. On the other hand, a sodium acetate soaking experiment can be used to predict IP6 hydrolysis of conventionally aged bean accessions and changes of cooking times for these bean accessions (with exception of yellow bean-KATB1).
Collapse
Affiliation(s)
- Li Zhu
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Asanji Jean Claude Che
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Dongyan Chen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
6
|
Perera D, Devkota L, Garnier G, Panozzo J, Dhital S. Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chem 2023; 415:135743. [PMID: 36863234 DOI: 10.1016/j.foodchem.2023.135743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Future dietary protein demand will focus more on plant-based sources than animal-based products. In this scenario, legumes and pulses (lentils, beans, chickpeas, etc.) can play a crucial role as they are one of the richest sources of plant proteins with many health benefits. However, legume consumption is undermined due to the hard-to-cook (HTC) phenomenon, which refers to legumes that have high resistance to softening during cooking. This review provides mechanistic insight into the development of the HTC phenomenon in legumes with a special focus on common beans and their nutrition, health benefits, and hydration behaviour. Furthermore, detailed elucidation of HTC mechanisms, mainly pectin-cation-phytate hypothesis and compositional changes of macronutrients like starch, protein, lipids and micronutrients like minerals, phytochemicals and cell wall polysaccharides during HTC development are critically reviewed based on the current research findings. Finally, strategies to improve the hydration and cooking quality of beans are proposed, and a perspective is provided.
Collapse
Affiliation(s)
- Dilini Perera
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Gil Garnier
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Joe Panozzo
- Agriculture Victoria Research, Horsham, Victoria 3400, Australia.
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
7
|
Chen D, Ding A, Zhu L, Grauwet T, Van Loey A, Hendrickx M, Kyomugasho C. Phytate and mineral profile evolutions to explain the textural hardening of common beans (Phaseolus vulgaris L.) during postharvest storage and soaking: Insights obtained through a texture-based classification approach. Food Chem 2023; 404:134531. [DOI: 10.1016/j.foodchem.2022.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
8
|
Novel insights into the role of the pectin-cation-phytate mechanism in ageing induced cooking texture changes of Red haricot beans through a texture-based classification and in situ cell wall associated mineral quantification. Food Res Int 2023; 163:112216. [PMID: 36596145 DOI: 10.1016/j.foodres.2022.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
Utilization of common beans is greatly hampered by the hard-to-cook (HTC) defect induced by ageing of the beans under adverse storage. Large bean-to-bean variations exist in a single batch of beans. Therefore, a texture-based bean classification approach was applied in this detailed study on beans with known textures, to gain in-depth insights into the role of the pectin-cation-phytate mechanism in relation to the texture changes during subsequent cooking of Red haricot fresh and aged beans. For the first time, a correlation between the texture (exhibited after cooking) of a single bean seed before ageing (fresh) and its texture after ageing was established. Furthermore, scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS) based in situ cell wall associated mineral quantification revealed that the cell wall associated Ca concentration was significantly positively correlated with the texture of both fresh and aged cooked Red haricot bean cotyledons, with ageing resulting in a significant enrichment of Ca at the cell wall. These additional Ca cations originate from intracellular phytate hydrolysis during ageing, which was shown to affect the texture distribution of aged beans during cooking significantly. The relocation of the mineral cations from the cell interior to the cell wall occurs mainly during storage rather than subsequent soaking of the cotyledons. In addition, the pectin-cation-phytate hypothesis of HTC was further confirmed by demethylesterification of the cell wall pectin and increased pectin-Ca interactions upon ageing of the cotyledons, finally leading to HTC development of the cotyledon tissue.
Collapse
|
9
|
Chen D, Hu K, Zhu L, Hendrickx M, Kyomugasho C. Cell wall polysaccharide changes and involvement of phenolic compounds in ageing of Red haricot beans (Phaseolus vulgaris) during postharvest storage. Food Res Int 2022; 162:112021. [DOI: 10.1016/j.foodres.2022.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
10
|
Peng J, Bu Z, Ren H, He Q, Yu Y, Xu Y, Wu J, Cheng L, Li L. Physicochemical, structural, and functional properties of wampee (Clausena lansium (Lour.) Skeels) fruit peel pectin extracted with different organic acids. Food Chem 2022; 386:132834. [PMID: 35509166 DOI: 10.1016/j.foodchem.2022.132834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Effects of different extraction acids on physicochemical, structural, and functional properties of wampee fruit peel pectin (WFPP) were comparatively investigated. The hydrochloric acid extracted WFPP (HEP) exhibited the highest degrees of methylation (67.79%) and acetylation (86.29%) coupling with abundant monosaccharides and rhamnogalacturonan branches, but lowest molecular weight (5.58 × 105 Da). The results of SEM, X-ray diffraction, and Fourier transform infrared spectroscopy analyses showed that acid types had little effect on the surface morphology of WFPP. However, compared to commercial citrus pectin (CCP), several specific absorbance peaks (1539, 1019, 920 cm-1) were found in WFPPs, which corresponds to aromatic skeletal stretching, pyranose, and d-glucopyranosyl, respectively. Moreover, the rheological behavior revealed that WFPP solution was pseudoplastic fluid and affected by acid types. And the WFPPs exhibited higher emulsifying activity and emulsion stability than CCP. All these WFPPs presented well antioxidant activity and promoting probiotics ability, especially for HEP.
Collapse
Affiliation(s)
- Jian Peng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Zhibin Bu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Huiyan Ren
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
11
|
Chinenye NM, James E, Jude M, Nneoma O. Thermal softening kinetics of African Black Olive fruit: Influence of temperature and water absorption on the thermal maceration dynamics and thermophysical properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ndukwu Macmanus Chinenye
- Department of Agricultural and Bio‐resources Engineering Michael Okpara University of Agriculture Umuahia Nigeria
| | - Ehiem James
- Department of Agricultural and Bio‐resources Engineering Michael Okpara University of Agriculture Umuahia Nigeria
| | - Mbanasor Jude
- Department of Agribusiness Michael Okpara University of Agriculture Umuahia Nigeria
| | - Obasi Nneoma
- Department of food science and Technology Michael Okpara University of Agriculture Umuahia Nigeria
| |
Collapse
|
12
|
Selection and Optimization of an Innovative Polysaccharide-Based Carrier to Improve Anthocyanins Stability in Purple Corn Cob Extracts. Antioxidants (Basel) 2022; 11:antiox11050916. [PMID: 35624780 PMCID: PMC9138105 DOI: 10.3390/antiox11050916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
The extraction process of alcohol-insoluble polysaccharides from exhausted Moradyn cob (Zea mays L. cv. Moradyn) (EMCP), camelina cake (Camelina sativa L. Crantz) (CCP), and common bean seeds (Phaseolus vulgaris L.) (CBP) was investigated and optimized by Response Surface Methodology. Each fraction was tested at different core/carrier ratios in the encapsulation of Moradyn cob extract (MCE), a rich source of antioxidant anthocyanins, and the obtained ingredients were screened for their encapsulation efficiency (EE%) and extraction process sustainability. The ingredients containing 50% and 75% CCP had EE% higher than 60% and 80%, respectively, and were selected for further studies. Preliminary structural analysis indicated CCP was mostly composed of neutral polysaccharides and proteins in a random-coiled conformation, which was also unchanged in the ingredients. CCP-stabilizing properties were tested, applying an innovative stress testing protocol. CCP strongly improved MCE anthocyanins solid-state stability (25 °C, 30% RH), and therefore it could be an innovative anthocyanins carrier system.
Collapse
|
13
|
Wainaina I, Lugumira R, Wafula E, Kyomugasho C, Sila D, Hendrickx M. Insight into pectin-cation-phytate theory of hardening in common bean varieties with different sensitivities to hard-to-cook. Food Res Int 2022; 151:110862. [PMID: 34980398 DOI: 10.1016/j.foodres.2021.110862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
In this study, a detailed quantitative analysis of the mechanisms linked with pectin-cation-phytate hypothesis of hard-to-cook development (HTC) was evaluated to assess the plausibility of this hypothesis. Several common bean varieties with varying sensitivities to HTC were characterized for pectin, cell wall bound calcium and inositol hexaphosphate (InsP6) content before and after ageing. Ageing resulted in a significant decrease in InsP6 content (resulting in calcium release) in all varieties. Despite not significantly changing during ageing, the cell wall bound calcium content significantly increased in most aged bean varieties upon short cooking indicating enhanced internal cation migration during the early phase of cooking in contrast to during ageing and soaking. Among the parameters evaluated in this study, the relative changes in InsP6 content significantly correlated with the change in cooking times as well as changes in cell wall bound calcium content. Results obtained in this study suggest that in some bean varieties, pectin-cation-phytate hypothesis is the predominant mechanism by which hardening occurs during storage while in other varieties, the role of other factors such as phenolic crosslinking as suggested in literature cannot be ruled out.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Robert Lugumira
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium; Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Food Science and Technology, P.O. Box 62, 000-00200 Nairobi, Kenya.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Daniel Sila
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Food Science and Technology, P.O. Box 62, 000-00200 Nairobi, Kenya.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
14
|
Zhang L, Hu Y, Wang X, Abiola Fakayode O, Ma H, Zhou C, Xia A, Li Q. Improving soaking efficiency of soybeans through sweeping frequency ultrasound assisted by parameters optimization. ULTRASONICS SONOCHEMISTRY 2021; 79:105794. [PMID: 34673339 PMCID: PMC8528789 DOI: 10.1016/j.ultsonch.2021.105794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/25/2023]
Abstract
Soybean soaking is important to the processing of bean products, however, restricted by the long soaking time. Herein, the soybean soaking was assisted by 60 kHz sweeping frequency ultrasound (SFU). Shortening mechanism of soaking time and physicochemical properties of soybeans were analyzed. Results showed that soaking temperature of 37 °C, ultrasonic power of 60% (144 W), and soaking time of 214 min were optimum SFU-assisted parameters. The soaking time was reduced by 45.13%, and soluble protein content increased by 14.27% after SFU. Based on analysis of acoustic signals, the maximum voltage amplitude of SFU increased with the increment of oscillation periods of cavitation bubbles, which enlarged the intercellular space and size of soybean, and cell membrane permeability was enhanced by 4.37%. Unpleasant beany flavor compounds were reduced by 16.37%-47.6%. Therefore, SFU could significantly improve the soaking efficiency of soybeans and provide a theoretical basis for the processing enterprises of soybean products.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Agricultural and Food Engineering, University of Uyo, Uyo 520001, Akwa Ibom State, Nigeria
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Aiming Xia
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| | - Qun Li
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| |
Collapse
|
15
|
Alpos M, Leong SY, Liesaputra V, Martin CE, Oey I. Understanding In Vivo Mastication Behaviour and In Vitro Starch and Protein Digestibility of Pulsed Electric Field-Treated Black Beans after Cooking. Foods 2021; 10:foods10112540. [PMID: 34828821 PMCID: PMC8622574 DOI: 10.3390/foods10112540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to understand (i) the in vivo mastication behaviour of cooked black beans (chewing duration, texture perception, oral bolus particle size, microstructure, and salivary α-amylase) and (ii) the in vitro digestibility of starch and protein of in vivo-generated black bean oral bolus under simulated gastrointestinal condition. The beans were pre-treated using pulsed electric field (PEF) with and without calcium chloride (CaCl2) addition prior to cooking. The surface response model based on least square was used to optimise PEF processing condition in order to achieve the same texture properties of cooked legumes except for chewiness. In vivo mastication behaviour of the participants (n = 17) was characterized for the particle size of the resulting bolus, their salivary α-amylase activity, and the total chewing duration before the bolus was deemed ready for swallowing. In vitro starch and protein digestibility of the masticated bolus generated in vivo by each participant along the gastrointestinal phase were then studied. This study found two distinct groups of chewers—fast and slow chewers who masticated all black bean beans, on average, for <25 and >29 s, respectively, to achieve a bolus ready for swallowing. Longer durations of chewing resulted in boluses with small-sized particles (majorly composed of a higher number of broken-down cotyledons (2–5 mm2 particle size), fewer seed coats (5–13 mm2 particle size)), and higher activity of α-amylase. Therefore, slow chewers consistently exhibited a higher in vitro digestibility of both the starch and protein of processed black beans compared to fast chewers. Despite such distinct difference in the nutritional implication for both groups of chewers, the in vivo masticated oral bolus generated by fast chewers revealed that the processing conditions involving the PEF and addition of CaCl2 of black beans appeared to significantly (p < 0.05) enhance the in vitro digestibility of protein (by two-fold compared to untreated samples) without stimulating a considerable increase in the starch digestibility. These findings clearly demonstrated that the food structure of cooked black beans created through PEF treatment combined with masticatory action has the potential to modulate a faster hydrolysis of protein during gastrointestinal digestion, thus offering an opportunity to upgrade the quality of legume protein intake in the daily diet.
Collapse
Affiliation(s)
- Marbie Alpos
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Veronica Liesaputra
- Department of Computer Science, University of Otago, Dunedin 9054, New Zealand;
| | - Candace E. Martin
- Department of Geology, University of Otago, Dunedin 9054, New Zealand;
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
- Correspondence: ; Tel.: +64-3-479-8735
| |
Collapse
|
16
|
Duijsens D, Gwala S, Pallares AP, Pälchen K, Hendrickx M, Grauwet T. How postharvest variables in the pulse value chain affect nutrient digestibility and bioaccessibility. Compr Rev Food Sci Food Saf 2021; 20:5067-5096. [PMID: 34402573 DOI: 10.1111/1541-4337.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023]
Abstract
Pulses are increasingly being put forward as part of healthy diets because they are rich in protein, (slowly digestible) starch, dietary fiber, minerals, and vitamins. In pulses, nutrients are bioencapsulated by a cell wall, which mostly survives cooking followed by mechanical disintegration (e.g., mastication). In this review, we describe how different steps in the postharvest pulse value chain affect starch and protein digestion and the mineral bioaccessibility of pulses by influencing both their nutritional composition and structural integrity. Processing conditions that influence structural characteristics, and thus potentially the starch and protein digestive properties of (fresh and hard-to-cook [HTC]) pulses, have been reported in literature and are summarized in this review. The effect of thermal treatment on the pulse microstructure seems highly dependent on pulse type-specific cell wall properties and postharvest storage, which requires further investigation. In contrast to starch and protein digestion, the bioaccessibility of minerals is not dependent on the integrity of the pulse (cellular) tissue, but is affected by the presence of mineral antinutrients (chelators). Although pulses have a high overall mineral content, the presence of mineral antinutrients makes them rather poorly accessible for absorption. The negative effect of HTC on mineral bioaccessibility cannot be counteracted by thermal processing. This review also summarizes lessons learned on the use of pulses for the preparation of foods, from the traditional use of raw-milled pulse flours, to purified pulse ingredients (e.g., protein), to more innovative pulse ingredients in which cellular arrangement and bioencapsulation of macronutrients are (partially) preserved.
Collapse
Affiliation(s)
- Dorine Duijsens
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Andrea Pallares Pallares
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Structural conversion of pectin fractions during heat processing in relation to the ability of inhibiting lipid digestion: A case study of hawthorn pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhao Y, Bi J, Yi J, Wu X, Ma Y, Li R. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydr Polym 2021; 269:118326. [PMID: 34294338 DOI: 10.1016/j.carbpol.2021.118326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023]
Abstract
The intestinal fermentability of pectic polysaccharides is largely determined by its molecular size. In this study, fermentation properties of enzymatic-modified apple pectin (AP) and homogalacturonans (HG) with high, medium and low molecular weight (Mw) were evaluated by in vitro fermentation model, and their structural changes were also investigated. Results showed that Mw, monosaccharide contents and molecular linearity of the AP hydrolysates were reduced after microbial degradation. On the other hand, culture media supplemented with low-Mw AP (60,300 g/mol) and low-Mw HG (861 g/mol) exhibited lower pH (5.1 and 5.7, respectively) and produced higher total short-chain fatty acid contents (SCFA, 230.40 mmol/L and 187.19 mmol/L, respectively). However, reduced trends in abundance of the pectinolytic microorganisms Faecalibacterium and Eubacterium were showed as Mw of the HG decreased, whereas growth of the SCFA-producer genera Bifidobaacterium, Megasphaera and Allisonella were improved. This work confirmed that low-Mw pectin and homogalacturonan generated more beneficial metabolites, developing structure-microbiota-gut health relationship.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Ruiping Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Hebei Normal University of Science & Technology, Qin Huangdao 066000, Heibei, China.
| |
Collapse
|
19
|
Wainaina I, Wafula E, Sila D, Kyomugasho C, Grauwet T, Van Loey A, Hendrickx M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr Rev Food Sci Food Saf 2021; 20:3690-3718. [PMID: 34056842 DOI: 10.1111/1541-4337.12770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
20
|
Peng J, Bi J, Yi J, Lyu J, Zhao Y, Xu Y, Yu Y. Characterization of tissue‐specific differences in cell wall pectic polysaccharides of carrot root. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Peng
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Agricultural Products Processing/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs Guangzhou China
| | - Jinfeng Bi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Jianyong Yi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Jian Lyu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yujuan Xu
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Agricultural Products Processing/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs Guangzhou China
| | - Yuanshan Yu
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Agricultural Products Processing/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs Guangzhou China
| |
Collapse
|
21
|
Microscopic evidence for pectin changes in hard-to-cook development of common beans during storage. Food Res Int 2021; 141:110115. [PMID: 33641982 DOI: 10.1016/j.foodres.2021.110115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023]
Abstract
In this study, pectin changes during Red haricot bean storage under high temperature and high humidity conditions were investigated to understand the hard-to-cook (HTC) development from a microstructural point of view. First, to ensure repeatability of the microscopy results, a classification of the fresh and stored beans (aged at 35 °C and 83% relative humidity) into different hardening levels (the Non-aged, Aged and Very-hard aged sample) was performed based on the texture values of cooked half-cotyledons. Cell wall strength of the cotyledons was evaluated, showing that the aged samples (HTC seeds) exhibit stronger cell walls with more/stronger pectic cross-linkages than the Non-aged sample. After a sequential pectin extraction aiming at removing pectin fractions of different solubility, cell wall autofluorescence and immunolabeling of JIM7, LM9 and 2F4 epitopes in the residual materials were examined. Upon ageing, the samples exhibited an increased Ca2+-pectin and ferulic acid-pectin crosslinking, these pectic complexes being accumulated primarily at the intercellular spaces. The results suggest a contribution of both the pectin-cation-phytate hypothesis and the involvement of phenolic-pectin crosslinks in HTC development at the cotyledon during storage of common beans.
Collapse
|
22
|
Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Pallares Pallares A, Gwala S, Pälchen K, Duijsens D, Hendrickx M, Grauwet T. Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Compr Rev Food Sci Food Saf 2021; 20:1524-1553. [DOI: 10.1111/1541-4337.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Dorine Duijsens
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| |
Collapse
|
24
|
Bassett A, Hooper S, Cichy K. Genetic variability of cooking time in dry beans (Phaseolus vulgaris L.) related to seed coat thickness and the cotyledon cell wall. Food Res Int 2020; 141:109886. [PMID: 33641942 DOI: 10.1016/j.foodres.2020.109886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Dry beans are an affordable, nutritious food that often require long cooking times. Storage time and conditions, growing environment, and genotype influence cooking times. Little is known about factors underlying genetic variation for cooking time. Using fast and slow cooking genotypes from four different seed types (brown, cranberry, red mottled, yellow), the objectives of this study were to (1) characterize genetic variability for cooking time across multiple soaking time points; (2) determine the roles of seed coat and cotyledon cell wall physical traits in genetic variability for cooking time; and (3) identify seed coat and cotyledon cell wall compositional differences associated with genetic variability for cooking time. Genotypes were evaluated for cooking time on unsoaked beans and beans soaked for 3, 6, 12, 18, and 24 h. Cooking times were sharply reduced after 3 h of soaking and plateaued after 6 h of soaking. Interestingly, the genotypes in each pair that cooked faster when soaked did not necessarily cook faster when unsoaked. Greater seed coat percentage, cotyledon cell wall thickness, total and insoluble whole seed dietary fiber, and insoluble cotyledon cell wall isolate were genotypic factors associated with longer cooking times of soaked beans. Thicker seed coat macrosclereid- and osteosclereid-layers were genotypic factors associated with longer cooking times of unsoaked beans. These findings suggest that cotyledon cell wall thickness and composition have a significant role in genetic variability for cooking time of soaked beans and seed coat layer thickness relates to the genetic variability for cooking time of unsoaked beans.
Collapse
Affiliation(s)
- Amber Bassett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St, Plant and Soil Sciences Building, East Lansing, MI 48824, USA.
| | - Sharon Hooper
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St, Plant and Soil Sciences Building, East Lansing, MI 48824, USA.
| | - Karen Cichy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St, Plant and Soil Sciences Building, East Lansing, MI 48824, USA; Sugarbeet and Bean Research Unit, USDA-ARS, 1066 Bogue St, Plant and Soil Sciences Building, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Pickering Emulsions Produced with Starch Nanocrystals from Cassava (
Manihot esculenta
Crantz), Beans (
Phaseolus vulgaris
L.), and Corn (
Zea mays
L.). STARCH-STARKE 2020. [DOI: 10.1002/star.201900326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Li DD, Yang N, Tao Y, Xu EB, Jin ZY, Han YB, Xu XM. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Cominelli E, Galimberti M, Pongrac P, Landoni M, Losa A, Paolo D, Daminati MG, Bollini R, Cichy KA, Vogel-Mikuš K, Sparvoli F. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds. Food Chem 2020; 321:126680. [PMID: 32247181 DOI: 10.1016/j.foodchem.2020.126680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Abstract
Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem. We quantified the HTC phenotype of lpa1 common beans with three genetic backgrounds. The HTC phenotype in the lpa1 black bean line correlated with the redistribution of calcium particularly in the cell walls, providing support for the "phytase-phytate-pectin" theory of the HTC mechanism. Furthermore, the excess of free cations in the lpa1 mutation in combination with different PHA alleles affected the stability of PHA-L lectin.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Michela Galimberti
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy
| | - Paula Pongrac
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Michela Landoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Alessia Losa
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Maria Gloria Daminati
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Roberto Bollini
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Karen A Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of Agriculture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States.
| | - Katarina Vogel-Mikuš
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
28
|
Lindemann IDS, Lang GH, Ferreira CD, Colussi R, Elias MC, Vanier NL. Cowpea storage under nitrogen‐modified atmosphere at different temperatures: Impact on grain structure, cooking quality, in vitro starch digestibility, and phenolic extractability. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Igor da Silva Lindemann
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Gustavo Heinrich Lang
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | - Rosana Colussi
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Moacir Cardoso Elias
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Nathan Levien Vanier
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
29
|
Peng J, Bi J, Yi J, Wu X, Zhou M, Zhao Y, Liu J. Characteristics of cell wall pectic polysaccharides affect textural properties of instant controlled pressure drop dried carrot chips derived from different tissue zone. Food Chem 2019; 293:358-367. [DOI: 10.1016/j.foodchem.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/26/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
|
30
|
Effect of process-induced common bean hardness on structural properties of in vivo generated boluses and consequences for in vitro starch digestion kinetics. Br J Nutr 2019; 122:388-399. [PMID: 31266547 DOI: 10.1017/s0007114519001624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, we evaluated the effect of process-induced common bean hardness on structural properties of in vivo generated boluses and the consequences for in vitro starch digestion. Initially, the impact of human mastication on the particle size distribution (PSD) of oral boluses from common beans with different process-induced hardness levels was investigated through a mastication study. Then the effect of structural properties of selected boluses on in vitro starch digestion kinetics was assessed. For a particular process-induced hardness level, oral boluses had similar PSD despite differences in masticatory parameters between participants of the mastication study. At different hardness levels, a clear effect of processing (P<0·0001) was observed. However, the effect of mastication behaviour (P=0·1141) was not significant. Two distinctive fractions were present in all boluses. The first one was a cotyledon-rich fraction consisting of majorly small particles (40-125 µm), which could be described as individual cells based on microscopic observations. This fraction increased with a decrease in process-induced hardness. The second fraction (>2000 µm) mostly contained seed coat material and did not change based on hardness levels. The in vitro starch digestion kinetics of common bean boluses was only affected by process-induced hardness. After kinetic modelling, significant differences were observed between the reaction rate constant of boluses generated from the hardest beans and those obtained from softer ones. Overall this work demonstrated that the in vitro nutritional functionality of common beans is affected to a greater extent by structural properties induced by processing than by mechanical degradation in the mouth.
Collapse
|
31
|
Chigwedere CM, Njoroge DM, Van Loey AM, Hendrickx ME. Understanding the Relations Among the Storage, Soaking, and Cooking Behavior of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Compr Rev Food Sci Food Saf 2019; 18:1135-1165. [PMID: 33337000 DOI: 10.1111/1541-4337.12461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The world faces challenges that require sustainable solutions: food and nutrition insecurity; replacement of animal-based protein sources; and increasing demand for convenient, nutritious, and health-beneficial foods; as well as functional ingredients. The irrefutable potential of pulses as future sustainable food systems is undermined by the hardening phenomenon that develops upon their storage under adverse conditions of temperature and relative humidity. Occurrence of this phenomenon indicates storage instability. In this review, the application of a material science approach, in particular the glass transition temperature concept, is presented to explain phenomena of storage instability such as the occurrence of hardening and loss of viability under adverse storage conditions. In addition to storage (in)stability, application of this concept during processing of pulses is discussed. The state-of-the-art on how hardening occurs, that is, mechanistic insights, is provided, including a critical evaluation of some of the existing postulations using recent research findings. Moreover, the influence of hardening on the properties and processing of pulses is included. Prevention of hardening and curative actions for pulses affected by the hardening phenomenon are described in addition to the current trends on uses of pulses and pulse-derived products. Based on the knowledge progress presented in this review, suggestions for the future include: first, the need for innovation toward implementation of recommended solutions for the prevention of hardening; second, the optimization of the identified most effective and efficient curative action against hardening; and third, areas to focus on for elucidation of mechanisms of hardening, although existing analytical methods require advancement.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Daniel M Njoroge
- Inst. of Food Bioresources Technology, Dedan Kimathi Univ. of Technology, Private Bag, Dedan Kimathi, Nyeri, Kenya
| | - Ann M Van Loey
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| |
Collapse
|
32
|
Cotyledon pectin molecular interconversions explain pectin solubilization during cooking of common beans (Phaseolus vulgaris). Food Res Int 2019; 116:462-470. [DOI: 10.1016/j.foodres.2018.08.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
|
33
|
Koriyama T, Kasai M. Effect of Pre-soaking Treatment on Softening and Hardening during Cooking of Stored Beans. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takako Koriyama
- Department of Nutrition and Food Science, Graduate School of Humanities and Science, Ochanomizu University
| | - Midori Kasai
- Department of Nutrition and Food Science, Graduate School of Humanities and Science, Ochanomizu University
| |
Collapse
|
34
|
Siqueira BS, Fernandes KF, Brito PV, Santos FC. Histochemical and ultrastructural characterization of easy-to-cook and hard-to-cook carioca bean genotypes. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Pallares Pallares A, Rousseau S, Chigwedere CM, Kyomugasho C, Hendrickx M, Grauwet T. Temperature-pressure-time combinations for the generation of common bean microstructures with different starch susceptibilities to hydrolysis. Food Res Int 2018; 106:105-115. [DOI: 10.1016/j.foodres.2017.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/07/2023]
|
36
|
Pallares Pallares A, Alvarez Miranda B, Truong NQA, Kyomugasho C, Chigwedere CM, Hendrickx M, Grauwet T. Process-induced cell wall permeability modulates the in vitro starch digestion kinetics of common bean cotyledon cells. Food Funct 2018; 9:6544-6554. [DOI: 10.1039/c8fo01619d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell wall barrier role during in vitro simulated digestion of starch in common bean cotyledon cells can be modified through variation of thermal processing intensity.
Collapse
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Beatriz Alvarez Miranda
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Ngoc Quynh Anh Truong
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Clare Kyomugasho
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Claire Maria Chigwedere
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Marc Hendrickx
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Tara Grauwet
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| |
Collapse
|
37
|
Li D, Yang N, Zhou X, Jin Y, Guo L, Xie Z, Jin Z, Xu X. Characterization of acid hydrolysis of granular potato starch under induced electric field. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Koriyama T, Sato Y, Iijima K, Kasai M. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris). J Food Sci 2017; 82:1546-1556. [PMID: 28585693 DOI: 10.1111/1750-3841.13749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 11/28/2022]
Abstract
The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state.
Collapse
Affiliation(s)
- Takako Koriyama
- Dept. of Nutrition and Food Science, Graduate School of Humanities and Science, Ochanomizu Univ., 2-1-1 Otska, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Yoko Sato
- Faculty of Core Research, Natural Science Div., Ochanomizu Univ., 2-1-1 Otska, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Kumiko Iijima
- Faculty of Food Life Sciences, Toyo Univ., 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan
| | - Midori Kasai
- Faculty of Core Research, Natural Science Div., Ochanomizu Univ., 2-1-1 Otska, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|