1
|
Duan R, Liu Y, Li J, Yan S. Mechanism for gel formation of pectin from mealy and crisp lotus rhizome induced by Na + and D-glucono-d-lactone. Int J Biol Macromol 2024; 254:127818. [PMID: 37918602 DOI: 10.1016/j.ijbiomac.2023.127818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Lotus rhizome residue, a cell wall material produced during the production of lotus rhizome starch, has long been underutilized. This study aims to extract pectin-rich polysaccharides from the cell wall of lotus rhizome and investigate their gelation mechanism in order to improve their industrial applicability. The results indicated that both CP and MP (pectin extracted from crisp and mealy lotus rhizome) exhibited a highly linear low methoxyl pectin structure, with the primary linkage mode being →4)-GalpA-(1→. The pectin chains in MP were found to be more flexible than those in CP. Then the impact of Na+, D-glucono-d-lactone (GDL), urea, sodium dodecyl sulfate (SDS), either individually or in combination, on the rheological characteristics of gels was evaluated. The results indicated that gels induced by GDL exhibited favorable thermoreversible properties, whereas the thermoreversibility of Na+-induced gels is poor. In addition to hydrogen bonding and ionic interactions, hydrophobic interactions also play a significant role in the formation of pectin gels. This study offers theoretical guidance and methodologies to improve the utilization rate of lotus rhizome starch processing by-products, while also provides novel insights into the correlation between LMP structure and gelation mechanism.
Collapse
Affiliation(s)
- Ruibing Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Aquatic Vegetable Preservation & Processing Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Aquatic Vegetable Preservation & Processing Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Aquatic Vegetable Preservation & Processing Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Aquatic Vegetable Preservation & Processing Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Wang J, Pei YP, Chen C, Yang XH, An K, Xiao HW. High-humidity hot air impingement blanching (HHAIB) enhances drying behavior of red pepper via altering cellular structure, pectin profile and water state. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Teng X, Zhang M, Mujumdar AS, Wang H. Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in hawthorn pomace: A comparison of different extraction methods. Food Chem 2022; 393:133344. [PMID: 35689920 DOI: 10.1016/j.foodchem.2022.133344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
Abstract
The objective of this study was to investigate whether non-extractable phenols (NEP) prepared by acid, enzymatic and alkaline hydrolysis in hawthorn pomace could reduce the nitrite content in prepared vegetable dishes (PVDs), analyzed through ultraviolet spectrophotometry and high performance liquid chromatography. The results showed that on the seventh day of storage, compared with the control group, the nitrite content of the samples added with acid, enzymatic and alkaline hydrolyzed NEP decreased by 40%, 28% and 19%, respectively, depending on different contents and chemical compositions of the recovered NEP. The nitrite reduction caused by NEP was mainly attributed to the growth inhibition of microorganisms producing nitrite (e.g., Escherichia coli and Pseudomonas aeruginosa) and the direct scavenging effect on nitrite, rather than affecting the activities of nitrate reductases and nitrite reductases in plant tissues. Use of hawthorn pomace is potentially a promising option to reduce nitrite in PVDs.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Hongqiang Wang
- Tianwei Food Group Incorporated Company, Chengdu, Sichuan 610000, China
| |
Collapse
|
4
|
Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Liu Y, Liu J, Liu G, Duan R, Sun Y, Li J, Yan S, Li B. Sodium bicarbonate reduces the cooked hardness of lotus rhizome via side chain rearrangement and pectin degradation. Food Chem 2022; 370:130962. [PMID: 34555774 DOI: 10.1016/j.foodchem.2021.130962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
In this study, 0.1% (W/V) sodium bicarbonate (SB) solution was used to soften lotus rhizome, and the mechanism was characterized by monoclonal antibodies labeling (mAbs) and atomic force microscopy (AFM). The results showed that the cell wall of lotus rhizome was disintegrated under SB treatment. In addition, the mAbs results revealed that low-esterified homogalacturonan (HG) at the tricellular junction was degraded, the rearrangement of Ara and the interaction between Gal and cellulose may be related to the texture changes. Compared with distilled water treatment, SB treatment reduced the relative content of pectin from 34.1% to 19.1% while increased that of cellulose from 65.9% to 80.9%. AFM results revealed that the height of CSF skeleton decreased from about 32 nm to 1.5 nm. These results clearly demonstrate that cooking with 0.1% SB can soften lotus rhizome through degradation of pectin and arrangement of side chains of rhamnogalacturonan-Ⅰ (RG-Ⅰ).
Collapse
Affiliation(s)
- Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gongji Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ruibing Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangyang Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Huagui Food Co. Ltd, Honghu, Hubei 433207, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Wang J, Chen Y, Wang H, Wang S, Lin Z, Zhao L, Xu H. Ethanol and blanching pretreatments change the moisture transfer and physicochemical properties of apple slices via microstructure and cell-wall polysaccharides nanostructure modification. Food Chem 2022; 381:132274. [PMID: 35121323 DOI: 10.1016/j.foodchem.2022.132274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
Abstract
The impacts of ethanol pretreatment and blanching on moisture transfer, microstructure, and nanostructure of cell-wall polysaccharides of apple slices were studied. The physicochemical properties, namely, color, rehydration, and antioxidant capacity were also evaluated. The results corroborated that the use of ethanol and blanching reduced drying time 45-60% and 21-42% at various drying temperatures (50, 60, 70, and 80 °C), respectively, compared to controls. Ethanol loosened the cell wall structure, thereby reducing the internal resistance of moisture diffusion, and the changes in cell wall structure caused by blanching were mainly due to the β-elimination degradation of pectins. Both samples of ethanol pretreatment and blanching possessed lower browning index and higher antioxidant capacity compared with the untreated ones. Overall, ethanol pretreated products exhibited the shortest drying time, less color change and higher antioxidant capacity. These results provide new insights on possible mechanisms about ethanol pretreatment and blanching to improve drying.
Collapse
Affiliation(s)
- Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuxian Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Roadc, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Zina Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Showkat QA, Majid D, Rather JA, Naqash S, Dar BN, Makroo HA. Drying of lotus rhizome slices: Influence of drying conditions on Fourier transform infrared spectroscopy, rheology, functional, and physicochemical characteristics of lotus rhizome powder. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qazi A. Showkat
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Darakshan Majid
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Jahangir A. Rather
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Saadiya Naqash
- Division of Food Science and Technology SKUAST‐K Srinagar India
| | - Basharat N. Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Hilal A. Makroo
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| |
Collapse
|
8
|
Dong Y, Gao M, Qiu W, Song Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125055. [PMID: 33482507 DOI: 10.1016/j.jhazmat.2021.125055] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 05/06/2023]
Abstract
Current research on the migration of microplastics into plants is in its most important phase; however, there is no such research on root vegetables, even though the edible parts of root vegetables are in direct contact with microplastics. Considering arsenic (As)-containing groundwater used in hydroponics and the degradation of plastic materials in hydroponic facilities, we investigated the impacts of As and polystyrene (PS) microplastics on carrot growth. We found that PS microplastics sized 1 µm can enter carrot roots and accumulate in the intercellular layer but are unable to enter the cells; those sized 0.2 µm can migrate to the leaves. Larger microplastics can enter the roots (PS particles sized 1219.7 nm) and leaves (607.2 nm) in presence of As (III). Gaussian analysis shows that As increases the negatively charged area of PS and causes a greater amount of microplastics to enter the carrot. As also causes cell walls to distort and deform, allowing PS particles (< 200 nm) to enter the cells. PS and 4 mg L-1 As can induce oxidative bursts in carrot tissue, reducing the carrot quality. Moreover, As exacerbates the effect of PS on carrots. Molecular docking results show that the presence of PS in carrots destroys the tertiary structure of pectin methyl esterase and causes carrots to lose their crispness. These findings indicate that plastic material in hydroponic facilities can be leached to crops. Microplastics produced by the degradation of such materials not only reduce the nutritional value of carrots, leading to economic losses, but also pose potential risks to human health. The presence of As in the hydroponic solution results in more PS entering the carrot tissue and even the cells, bringing greater health threats for the consumers.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
9
|
Cao D, Lin Z, Huang L, Damaris RN, Yang P. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics 2021; 22:171. [PMID: 33750315 PMCID: PMC7945336 DOI: 10.1186/s12864-021-07473-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background The AP2/ERF family is widely present in plants and plays a crucial regulatory role in plant growth and development. As an essential aquatic horticultural model plant, lotus has an increasingly prominent economic and research value. Results We have identified and analysed the AP2/ERF gene family in the lotus. Initially, 121 AP2/ERF family genes were identified. By analysing their gene distribution and protein structure, and their expression patterns during the development of lotus rhizome, combined with previous studies, we obtained an SNP (megascaffold_20:3578539) associated with lotus rhizome phenotype. This SNP was in the NnADAP gene of the AP2 subfamily, and the changes in SNP (C/T) caused amino acid conversion (proline/leucine). We constructed a population of 95 lotus varieties for SNP verification. Through population typing experiments, we found that the group with SNP CC had significantly larger lotus rhizome and higher soluble sugar content among the population. Conclusions In conclusion, we speculate that the alteration of the SNP in the NnADAP can affect the size and sugar content of the lotus rhizome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07473-w.
Collapse
Affiliation(s)
- Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Longyu Huang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
10
|
Min T, Niu LF, Feng XY, Yi Y, Wang LM, Zhao Y, Wang HX. The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root. Food Chem 2021; 348:129109. [PMID: 33524694 DOI: 10.1016/j.foodchem.2021.129109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/21/2023]
Abstract
Lotus root (Nelumbo nucifera G.) is a high economic value crop in the world. In this study, the storage characteristics (color, sensory, texture, and fatty acids) of lotus root ("Elian No.5″) were evaluated at different harvest periods (September 2018, October 2018, November 2018, December 2018, and January 2019). Moreover, the storage characteristics were evaluated after the short- term and long-term storage of lotus root at 4 °C and 20 °C. The hardness of lotus root significantly decreased at both temperatures (4 °C and 20 °C) during the first 3 days of storage. In contrast, the decrease in hardness delayed at 4 °C (beyond 3 days of storage). Further, genes related to hardness at different storage temperatures were identified using the RNA-seq and qRT-PCR. The results of this study provide a reference for lotus root storage and a basis for the molecular breeding of longterm-storable lotus root.
Collapse
Affiliation(s)
- Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
| | - Li-Fang Niu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiang-Yang Feng
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
| | - Li-Mei Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yun Zhao
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hong-Xun Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China.
| |
Collapse
|
11
|
Showkat QA, Rather JA, Abida Jabeen, Dar BN, Makroo HA, Majid D. Bioactive components, physicochemical and starch characteristics of different parts of lotus (
Nelumbo nucifera
Gaertn.) plant: a review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qazi A. Showkat
- Department of Food Technology IUST Awantipora Kashmir192122India
| | | | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir190025India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - Darakshan Majid
- Department of Food Technology IUST Awantipora Kashmir192122India
| |
Collapse
|
12
|
Tian Y, Chen Z, Zhu Z, Sun DW. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. ULTRASONICS SONOCHEMISTRY 2020; 67:105162. [PMID: 32413684 DOI: 10.1016/j.ultsonch.2020.105162] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 05/20/2023]
Abstract
The rapid freezing technique for porous foods using tissue pre-degassing followed by ultrasound-assisted freezing (UF) was developed, and its effects on quality attributes of radishes including tissue air volume, hardness, total calcium contents, bonded calcium contents, retention rates of bonded calcium and microstructures were investigated. To evaluate the freezing efficiency, parameters including total freezing time, phase transition time, and the increases of freezing rate and phase transition rate were determined. Besides, multivariate statistical analyses including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were performed to visualize and further analyze the quality differences of radishes under different treatments. Results suggested that decreasing tissue air volumes can significantly shorten the phase transition time of UF. Samples treated by pre-degassing for 5 min at -0.09 MPa followed by UF (D-0.09MPa5min-UF) showed the freezing rate and phase transition rate increased by 28.8% and 29.8%, respectively, as compared with the same pre-degassed samples frozen by immersion freezing (D-0.09MPa5min-IF). Retention rates of bonded calcium positively correlated with the sample hardness, announcing the importance of bonded calcium maintenance during radish freezing. Both PCA and HCA indicated that D-0.09MPa5min-UF endowed radishes with quality attributes more similar to the fresh ones, which was further verified by microstructure analysis, showing remarkably alleviated plasma membrane puncture, cell separation and deformation in D-0.09MPa5min-UF samples. The current study proved that the technique of tissue pre-degassing followed by UF could effectively improve the freezing efficiency and quality attributes of frozen radishes, and thus have great potentials in rapid freezing of porous foods.
Collapse
Affiliation(s)
- You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhubing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. http://www.ucd.ie/refrig
| |
Collapse
|
13
|
Liu G, Liu Y, Yan S, Li J. Acetic acid reducing the softening of lotus rhizome during heating by regulating the chelate-soluble polysaccharides. Carbohydr Polym 2020; 240:116209. [PMID: 32475543 DOI: 10.1016/j.carbpol.2020.116209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Lotus rhizomes were used to study on the relationship between the cell wall polysaccharides and cooked texture by adding acetic acid. Hardness and scanning electron microscopy results showed that acetic acid treatment can maintain higher hardness and the integrity of the cell wall. Then, the cell walls were sequentially extracted and divided into water-soluble fraction, chelate-soluble fraction (CSF), sodium carbonate-soluble fraction and hemicellulose fraction. The pectin fraction contents, monosaccharides composition, esterification degree and sugar ratios in different groups were evaluated, the results showed that acetic acid increased the total amount of CSF, decreased the esterification degree and less side chain compared that in the solely thermal treatment group. The nanostructures showed that acetic acid treatment maintained longer chain and destroy helical structure of CSF backbone. This work helps us to demonstrate the relationship between polysaccharides structure and cooked texture, and further control the plant-based vegetables processing texture in food industry.
Collapse
Affiliation(s)
- Gongji Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Jie Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| |
Collapse
|
14
|
Benchamas G, Huang S, Huang G. The influence of traditional and new processing technologies on the structure and function of food polysaccharide. Food Funct 2020; 11:5718-5725. [PMID: 32579647 DOI: 10.1039/d0fo00854k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing is the method of transforming raw materials into food or food into other forms through physical or chemical technology and is an important means to extend the shelf life of food. The influence of processing technology on the structure and functional characteristics of polysaccharide was analyzed for the three aspects of dehydration processing technology, hot processing technology and new processing technology to provide reference for prolonging the shelf life of food and protecting its nutritional value.
Collapse
Affiliation(s)
- Gunsriwiang Benchamas
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | | | | |
Collapse
|
15
|
Liu G, Li X, Yan S, Li J. The ratio of chelate-soluble fraction to alcohol insoluble residue is a major influencing factor on the texture of lotus rhizomes after cooking. Food Chem 2019; 279:373-378. [DOI: 10.1016/j.foodchem.2018.11.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
|
16
|
Li X, Liu G, Tu Y, Li J, Yan S. Ferulic acid pretreatment alleviates the decrease in hardness of cooked Chinese radish (Raphanus sativus L. var. longipinnatus Bailey). Food Chem 2019; 278:502-508. [DOI: 10.1016/j.foodchem.2018.10.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
|
17
|
High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chem 2018; 261:292-300. [DOI: 10.1016/j.foodchem.2018.04.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
|
18
|
Acetic acid pretreatment improves the hardness of cooked potato slices. Food Chem 2017; 228:204-210. [DOI: 10.1016/j.foodchem.2017.01.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/15/2022]
|
19
|
Wang Y, Chen X, Zhao C, Miao J, Mao X, Li X, Gao W. Effects of temperature during processing with wine on chemical composition, antioxidant capacity and enzyme inhibition activities of Angelica Sinensis Radix. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xuetao Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Jing Miao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xinhui Mao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
20
|
Bao R, Fan A, Hu X, Liao X, Chen F. Effects of high pressure processing on the quality of pickled radish during refrigerated storage. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|