1
|
Guo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, Xia N, Xiao C, Rayan AM, Ghamry M. Mechanistic applications of low-temperature plasma in starch-based biopolymer film: A review. Food Chem 2025; 479:143739. [PMID: 40073561 DOI: 10.1016/j.foodchem.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films. Low-temperature plasma stands out as an emerging multi-functional non-thermal green molecular surface modification technology that has been particularly effective in enhancing starch biopolymer films. Furthermore, owing to its non-thermal characteristics, low-temperature plasma is particularly suitable for heat-sensitive materials. Consequently, this study aims to investigate the impact of low-temperature plasma technology on enhancing the properties of biopolymer film substrates, elucidate its mechanisms of action on starch films and starch composite films, refine methods for modifying biopolymer films, and conduct a rational analysis of any contradictions.
Collapse
Affiliation(s)
- Yanli Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Devi N, Shayoraj, Geeta, Shivani, Ahuja S, Dubey SK, Sharma S, Kumar S. Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste. Carbohydr Res 2025; 550:109404. [PMID: 39879945 DOI: 10.1016/j.carres.2025.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA). The thermal stability of PS increased to 292 °C due to the formation of starch phosphate ester in comparison to pure starch (281 °C). Moreover, using glycerol as a plasticizer, the solvent casting method was employed to synthesize the PS/PVA biofilms. The synthesized biofilms (PPS) were further characterized using FT-IR, TGA, Mechanical testing, and Scanning electron microscopy (SEM). The result indicated that blend films have higher tensile strength (41.61 MPa) and elongation at break (240 %) than pure PVA film (29.84 MPa, 102 %). The soil burial study showed that the biodegradation of PPS blend films increased to 63.79 %. Nevertheless, the blend film showed decreased solubility, water absorption, water vapor transmission rate, and moisture content with PS, while its surface hydrophobicity increased from 61.2° to 95.6°. PPS blends have stronger antibacterial activity against S. aureus than E. coli. Accordingly, the prepared PPS III biofilm was further used for brown bread packaging. Compared to LDPE packaging, the bread wrapped in PPS III blend film exhibited enhanced visual appearance and extended shelf-life. The novelty of our work lies in the modification of starch using CPPC, which was further used to fabricate biodegradable films. Therefore, the developed biofilm may be a reference for additional research and can potentially replace synthetic, non-degradable polymer-based films in the packaging industry.
Collapse
Affiliation(s)
- Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Simran Ahuja
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
3
|
Haziman ML, Ishaq MI, Qonit MAH, Lestari EG, Susilawati PN, Widarsih W, Syukur C, Herawati H, Arief R, Santosa B, Purba R, Andoyo R, Yursak Z, Tan SS, Musfal M, Mubarok S. Sorghum starch review: Structural properties, interactions with proteins and polyphenols, and modification of physicochemical properties. Food Chem 2025; 463:139810. [PMID: 39293183 DOI: 10.1016/j.foodchem.2024.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 09/20/2024]
Abstract
Sorghum, a gluten-free carbohydrate source with high antioxidants and resistant starch, contains anti-nutrients like phytic acid, tannin, and kafirin. Interactions with starch and proteins result in polyphenol-starch, starch-kafirin, and tannin-protein complexes. These interactions yield responses such as V-type amylose inclusion complexes, increased hydrophobic residues, and enzyme resistance, reducing nutrient availability and elevating resistant starch levels. Factors influencing these interactions include starch composition, structure, and Chain Length Distribution (CLD). Starch structure is impacted by enzymes like ADP-glucose pyrophosphorylase, starch synthases, and debranching enzymes, leading to varied chain lengths and distributions. CLD differences significantly affect crystallinity and physicochemical properties of sorghum starch. Despite its potential, the minimal utilization of sorghum starch in food is attributed to anti-nutrient interactions. Various modification approaches, either direct or indirect, offer diverse physicochemical changes with distinct advantages and disadvantages, presenting opportunities to enhance sorghum starch applications in the food industry.
Collapse
Affiliation(s)
- Muhammad Luthfan Haziman
- Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia.
| | - Muhammad Iskandar Ishaq
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Muhammad Abdillah Hasan Qonit
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Endang Gati Lestari
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Pepi Nur Susilawati
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Wiwi Widarsih
- Department of Analytical Chemistry, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia
| | - Cheppy Syukur
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Heny Herawati
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Ramlah Arief
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Budi Santosa
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Resmayeti Purba
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Zuraida Yursak
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Siti Sehat Tan
- Research Center for Social Welfare, Villages and Connectivity, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Musfal Musfal
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
4
|
Zahid MK, Ahmad D, Amin R, Bao J. Sorghum starch: Composition, structure, functionality, and strategies for its improvement. Compr Rev Food Sci Food Saf 2025; 24:e70101. [PMID: 39746861 DOI: 10.1111/1541-4337.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Sorghum (Sorghum bicolor L. Moench) is increasingly recognized as a resilient and climate-adaptable crop that holds significant potential to enhance global food security sustainably. Compared to other common cereal grains, sorghum boasts a more diverse nutritional profile. The starch component accounts for more than 80% of total sorghum grain weight. Sorghum starch functionality and diverse industrial applications are determined by its physiochemical properties, including pasting, gelatinization, retrogradation, texture, and digestion kinetics. This review provides a comprehensive evaluation of the morphology, minor composition, crystalline structure, fine molecular structure, and structure-function relationships of sorghum starch. It further explores how these properties can be optimized through chemical, physical and enzymatic modifications to extend the applications of sorghum starch. Additionally, the review highlights the role of key enzymes in the biosynthesis of sorghum starch and discusses how biological modifications, enabled by advanced genetic and molecular breeding strategies, can modify starch quality. This review also provides a foundation for developing tailored sorghum varieties with enhanced starch properties that can expand applications of sorghum both in food and non-food industries, potentially contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Khubaib Zahid
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Raheela Amin
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Yazhou Bay Science and Technology City, Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
5
|
Siddique N, Din MI, Hussain Z, Khalid R, Alsafari IA. Syzgium cumini seed/poly vinyl alcohol based water resistant biodegradable nano-cellulose composite reinforced with zinc oxide and silver oxide nanoparticles for improved mechanical properties. Int J Biol Macromol 2024; 277:134218. [PMID: 39069065 DOI: 10.1016/j.ijbiomac.2024.134218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The current work explored a comparative study of biodegradable jamun seed/polyvinyl alcohol (JS) nanocomposites reinforced with varying concentrations of ZnO and Ag2O nano-fillers. The effect of spherical shaped ZnO and Ag2O nanoparticles (NPs) on the on structure, morphology, swelling and solubility, crystallinity and mechanical properties together with biodegradation performance of the composite films was fully studied. SEM results showed uniform distribution of ZnO and Ag2O nanofillers into the JS matrix and dense or compact nanocomposite films were formed. JS-ZnO and JS-Ag2O nanocomposites with 0.5 wt% ZnO and Ag2O content showed maximum crystallinity i.e. 11.3 and 9.58 %, respectively, as determined by XRD. When compared to the virgin JS film (8.41 MPa), the resultant JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites showed significantly enhanced tensile strength (35.7 MPa, 29.2 MPa), elongation at break (15.42 %, 14.62 %) and Young's modulus (141 MPa, 126 MPa), respectively. Also, reduced swelling (120.4 % and 116.1 %) and solubility ratio (17.45 % and 18.42 %) was observed for JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites, respectively. Biodegradation results showed that maximum degradation (88 %) was achieved for the JS film within 180 days of soil burial whereas JS-ZnO-0.1 and JS-Ag2O-0.1 nanocomposites showed 78 % and 72 % degradation within 180 days, respectively.
Collapse
Affiliation(s)
- Nida Siddique
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Muhammad Imran Din
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zaib Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Rida Khalid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ibrahim A Alsafari
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia
| |
Collapse
|
6
|
Santhosh R, Sarkar P. Fabrication of jamun seed starch/tamarind kernel xyloglucan bio-nanocomposite films incorporated with chitosan nanoparticles and their application on sapota (Manilkara zapota) fruits. Int J Biol Macromol 2024; 260:129625. [PMID: 38266863 DOI: 10.1016/j.ijbiomac.2024.129625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The present work develops bio-nanocomposite packaging films by valorizing agricultural byproducts jamun seed starch (JaSS) and tamarind kernel xyloglucan (XG), and adding varying concentrations of chitosan nanoparticles (ChNPs). The blending of JaSS and XG promotes a dense polymer network in the composite films with enhanced packaging attributes. However, ChNPs incorporation significantly reduced the viscosity and dynamic moduli of the JaSS/XG film-forming solutions. The FTIR and XRD results reveal improved intermolecular interactions and crystallinity. The DSC and TGA thermograms showed improved thermal stability in the ChNP-loaded JaSS/XG films. The addition of 3 % w/w ChNPs significantly enhanced the tensile strength (20.42 MPa), elastic modulus (0.8 GPa), and contact angle (89°), along with reduced water vapor transmission rate (13.26 g/h.m2) of the JaSS/XG films. The films exhibited strong antimicrobial activity against Bacillus cereus and Escherichia coli. More interestingly, the JaSS/XG/ChNPs coating on the sapota fruits retarded the weight loss and color change up to 12 days of storage. Overall, the JaSS/XG/ChNP bio-nanocomposites are promising packaging materials.
Collapse
Affiliation(s)
- R Santhosh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
7
|
Heena, Kumar N, Singh R, Upadhyay A, Giri BS. Application and functional properties of millet starch: Wet milling extraction process and different modification approaches. Heliyon 2024; 10:e25330. [PMID: 38333841 PMCID: PMC10850599 DOI: 10.1016/j.heliyon.2024.e25330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
In the past decade, the demand and interest of consumers have expanded for using plant-based novel starch sources in different food and non-food processing. Therefore, millet-based value-added functional foods are acquired spare attention due to their excellent nutritional, medicinal, and therapeutic properties. Millet is mainly composed of starch (amylose and amylopectin), which is primary component of the millet grain and defines the quality of millet-based food products. Millet contains approximately 70 % starch of the total grain, which can be used as a, ingredient, thickening agent, binding agent, and stabilizer commercially due to its functional attributes. The physical, chemical, and enzymatic methods are used to extract starch from millet and other cereals. Numerous ways, such as non-thermal physical processes, including ultrasonication, HPP (High pressure processing) high-pressure, PEF (Pulsed electric field), and irradiation are used for modification of millet starch and improve functional properties compared to native starch. In the present review, different databases such as Scopus, Google Scholar, Research Gate, Science Direct, Web of Science, and PubMed were used to collect research articles, review articles, book chapters, reports, etc., for detailed study about millet starch, their extraction (wet milling process) and modification methods such as physical, chemical, biological. The impact of different modification approaches on the techno-functional properties of millet starch and their applications in different sectors have also been reviewed. The data and information created and aggregated in this study will give users the necessary knowledge to further utilize millet starch for value addition and new product development.
Collapse
Affiliation(s)
- Heena
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Balendu Shekher Giri
- Sustainability Cluster, Department of Civil Engineering, School of Engineering, University of Petroleum and Energy (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
8
|
Chen L, Tan H, Feng R, Ma L, Zhang Y, Yi H, Yin L, Liu W, Hu L, Zhu W. Effect of modified starches on the quality of skins of glutinous rice dumplings. Int J Biol Macromol 2023; 253:127139. [PMID: 37793518 DOI: 10.1016/j.ijbiomac.2023.127139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to investigate the influence of modified starches on the quality of skins of glutinous rice dumplings (SGRDs), including changes in textural properties, pasting parameters, microstructure, color, transparency, and sensory quality. The results showed that the addition of a single acetylated-modified cassava or potato starch or composite modified cassava and potato starch in a ratio of 2:1 can improve the quality of SGRDs. The springiness and lightness of SGRDs increased, and the transparency increased from 3.22 % to 6.18 %. The cooked samples had delicate mouth-feel, uniform color and luster, good transparency, no depression, and low weight loss and did not stick to the teeth. Moreover, the total consumer acceptability score increased from 60.67 to 89.33, indicating that these products were widely accepted by consumers. However, the addition of hydroxypropyl-modified cassava starch or its composite with other two modified starches had no apparent effect on the quality of SGRDs. In conclusion, the quality of SGRDs were significantly improved by the addition of single or composite acetylated-modified starches. This study provides a theoretical basis for improving the quality of SGRDs.
Collapse
Affiliation(s)
- Lu Chen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haitao Yi
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China
| | - Liguo Yin
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China
| | - Wenwen Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Lianqing Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Wenyou Zhu
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China.
| |
Collapse
|
9
|
Dos Santos JS, Biduski B, Colussi R, Pinto VZ, Dos Santos LR. Hydrogel properties of non-conventional starches from guabiju, pinhão, and uvaia seeds. Food Res Int 2023; 173:113243. [PMID: 37803556 DOI: 10.1016/j.foodres.2023.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
The physicochemical properties of starch vary depending on the botanical sources, thereby influencing the gelatinisation/retrogradation properties and subsequently affecting the hydrogels characteristics. This study aimed to assess the influence of botanical sources influence on starch and hydrogel properties using non-conventional starch derived from guabiju, pinhão, and uvaia seeds. Hydrogels were prepared by starch gelatinisation followed by 6 h ageing period at room temperature (20 ± 2 °C) and subjected to five freeze-thaw cycles. Pinhão starch exhibited a higher viscosity peak and breakdown, along with a lower final viscosity and setback, compared to guabiju and uvaia starches. The significantly different pasting properties influenced the porous microstructure, water absorption (p-value: 0.01), and resistance of the hydrogels (p-value: 0.01). The guabiju starch hydrogels showed a uniform pore structure without cavities, whereas pinhão and uvaia starch hydrogels exhibited agglomerated and spongy pore structures. Furthermore, the guabiju starch hydrogel demonstrated the lowest water absorption (4.56 g/g) and the highest compression resistance (1448.50 g) among all the studied starch hydrogels. In contrast, the pinhão starch hydrogel showed the highest water absorption (7.43 g/; p-value: 0.01) among all studied starch hydrogels. The hardness of uvaia starch hydrogel did not differ significantly from the guabiju and pinhão starch hydrogel. The different non-conventional starches reveal important variations in the hydrogels characteristics. This provides insights into how amylose and amylopectin interact and present alternatives for using these unique starch-based hydrogels in diverse applications.
Collapse
Affiliation(s)
- Jucilene Sena Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Bárbara Biduski
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil; Food Quality and Sensory Science Department, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Vania Zanella Pinto
- Graduate Program in Food Science and Technology, Universidade Federal da Fronteira Sul, Laranjeiras do Sul, PR 85301-970B, Brazil.
| | - Luciana Ruschel Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil; Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
10
|
Magallanes-Cruz PA, Duque-Buitrago LF, Del Rocío Martínez-Ruiz N. Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Res Int 2023; 169:112875. [PMID: 37254325 DOI: 10.1016/j.foodres.2023.112875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Seeds represent a potential source of starch, containing at least 60-70% of total starch, however many of them are treated as waste and are usually discarded. The review aim was to analyze the characteristics, functional properties, and potential applications of native and modified starches from underutilized seeds such as Sorghum bicolor L. Moench (WSS), Chenopodium quinoa, Wild. (QSS), Mangifera indica L. (MSS), Persea americana Mill. (ASS), Pouteria campechiana (Kunth) Baehni (PCSS), and Brosimum alicastrum Sw. (RSS). A systematic review of scientific literature was carried out from 2014 to date. Starch from seeds had yields above 30%. ASS had the higher amylose content and ASS and RSS showed the highest values in water absorption capacity and swelling power, contrary to MSS and PCSS while higher thermal resistance, paste stability, and a lower tendency to retrograde were observed in MSS and RSS. Functional properties such as water solubility, swelling power, thermal stability, low retrogradation tendency, and emulsion stability were increased in RSS, WSS, QSS, and MSS with chemical modifications (Oxidation, Oxidation-Crosslinking, OSA, DDSA, and NSA) and physical methods (HMT and dry-heat). Digestibility in vitro showed that WSS and QSS presented high SDS fraction, while ASS, MSS, PCSS, and HMT-QSS presented the highest RS content. Native or modified underutilized seed starches represent an alternative and sustainable source of non-conventional starch with potential applications in the food industry and for the development of healthy foods or for special nutritional requirements.
Collapse
Affiliation(s)
- Perla A Magallanes-Cruz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| | - Luisa F Duque-Buitrago
- Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, C. P. 07738 Ciudad de México, Mexico.
| | - Nina Del Rocío Martínez-Ruiz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
11
|
Han X, Ma P, Shen M, Wen H, Xie J. Modified porous starches loading curcumin and improving the free radical scavenging ability and release properties of curcumin. Food Res Int 2023; 168:112770. [PMID: 37120221 DOI: 10.1016/j.foodres.2023.112770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Maize porous starch-curcumin microspheres were prepared by encapsulating curcumin into cross-linked porous starch and oxidized porous starch to investigate the effect of modified porous starch in embedding and protecting curcumin. The morphology and physicochemical properties of microspheres were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Zeta/DLS, Thermal stability, and antioxidant activity; the release of curcumin was evaluated with a simulated gastric-intestine model. The FT-IR results revealed that curcumin was amorphously encapsulated in the composite and hydrogen bond formation between starch and curcumin was one of the major driving forces for encapsulation. Microspheres increased the initial decomposition temperature of curcumin, which has a protective effect on curcumin. Modification improved the encapsulation efficiency and the scavenging free radical ability of porous starch. The release mechanism of curcumin from microspheres fits first-order and Higuchi models well in gastric and intestinal models, respectively, indicating that encapsulation of curcumin within different porous starches microspheres enables controlled release of curcumin. To recapitulate, two different modified porous starch microspheres improved the drug loading, slow release and free radical scavenging effects of curcumin. Among them, the cross-linked porous starch microspheres had higher encapsulation and slow release ability for curcumin than the oxidized porous starch microspheres. It provides theoretical significance and data basis for the encapsulation of active substances by modified porous starch.
Collapse
Affiliation(s)
- Xiuying Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Cahyana Y, Verrell C, Kriswanda D, Aulia GA, Yusra NA, Marta H, Sukri N, Esirgapovich SJ, Abduvakhitovna SS. Properties Comparison of Oxidized and Heat Moisture Treated (HMT) Starch-Based Biodegradable Films. Polymers (Basel) 2023; 15:polym15092046. [PMID: 37177193 PMCID: PMC10180903 DOI: 10.3390/polym15092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Starch-based biodegradable films have been studied for a long time. To improve starch properties and to increase film characteristics, starch is commonly modified. Amongst different types of starch modifications, oxidation and heat moisture treatment are interesting to explore. Unfortunately, review on these modifications for film application is rarely found, although these starch modifications provide interesting results regarding the starch and film properties. This paper aims to discuss the progress of research on oxidized and heat moisture-treated-starch for edible film application. In general, both HMT and oxidation modification on starch lead to an increase in film's tensile strength and Young's modulus, suggesting an improvement in film mechanical properties. The elongation, however, tends to decrease in oxidized starch-based film, hence more brittle film. Meanwhile, HMT tends to result in a more ductile film. The drawback of HMT film is its lower transparency, while the opposite is observed in oxidized films. The observation on WVP (water vapor permeability) of HMT starch-based film shows that the trend of WVP is not consistent. Similarly, an inconsistent trend of WVP is also found in oxidized starch films. This suggests that the WVP parameter is very sensitive to intrinsic and extrinsic factors. Starch source and its concentration in film, film thickness, RH (relative humidity) of film storage, oxidation method and its severity, plasticizer type and its concentration in film, and crystallinity value may partly play roles in determining film properties.
Collapse
Affiliation(s)
- Yana Cahyana
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Christoper Verrell
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dodo Kriswanda
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Ghina Almira Aulia
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Namira Azkia Yusra
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Herlina Marta
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Nandi Sukri
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | | | | |
Collapse
|
13
|
Guarás MP, Menossi M, Nicolini AT, Alvarez VA, Ludueña LN. Bio-nanocomposites films based on unmodified and modified thermoplastic starch reinforced with chemically modified nanoclays. JOURNAL OF MATERIALS SCIENCE 2023; 58:5456-5476. [PMID: 36969327 PMCID: PMC10010222 DOI: 10.1007/s10853-023-08354-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED The use of polymers capable of being degraded by the action of microorganisms and/or enzymes without causing harmful effects is a strategy in waste management and environmental care. In this work, bio-nanocomposites based on thermoplastic starch (TPS) were synthesized by reactive extrusion using a twin-screw extruder. Two strategies were evaluated to reduce the disadvantages of TPS for packaging applications. First, starch was chemically modified producing the reaction of native starch with chemical reagents that introduce new functional groups to reduce the water adsorption. And two, nano-fillers were incorporated into TPS in order to enhance the mechanical and barrier properties, driving to materials with improved performance/cost ratio. The synergistic strategies of chemical modification and incorporation of modified nanoclays were also effective to reduce the dependence of properties of TPS with the environment humidity and the evolution thereof over time, which influences the performance during the service life of the product. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-023-08354-1.
Collapse
Affiliation(s)
- M. P. Guarás
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Avenida Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina
| | - M. Menossi
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Avenida Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina
| | - A. Torres Nicolini
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Avenida Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina
| | - V. A. Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Avenida Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina
| | - L. N. Ludueña
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Avenida Colón 10850, 7600 Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
Lim XX, Zulkurnain M, Yussof NS, Utra U. Effects of dry heating, acetylation, and acid pre-treatments on modification of potato starch with octenyl succinic anhydride (OSA). E-POLYMERS 2023. [DOI: 10.1515/epoly-2022-8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
Octenyl succinic anhydride (OSA) starch is widely used to stabilize emulsions. Nevertheless, the poor compatibility of starch with hydrophobic groups has restricted the performance of OSA modification. In this work, potato starch was pre-treated once or twice (dry heating, acetylation, and acid modification) prior to OSA modification. Pre-treatments increased the degree of substitution (DS), hydrophobicity, hydrophilicity, and decreased amylose content of OSA starches, with dual pre-treatments having greater effects. Among all pre-treatments, acid modification followed by dry heating resulted in the greatest OSA modification (DS: 0.015) and water-binding capacity (155%). Meanwhile, acid modification followed by acetylation produced OSA starch with the highest oil-binding capacity (290%). Scanning electron microscopy revealed that the granular deformation of dual pre-treated OSA starches was greater compared to single pre-treated and non-pre-treated OSA starches (O). Dual pre-treated OSA starches (ADO, 7%; ACO, 8%) had lower amylose contents than those of single pre-treated (AO: 12%, CO: 17%, DO: 21%) and O (36%). All the pre-treatments reduced the setback viscosity of OSA starch to a lower range (70–394 cP), simultaneously decreasing their retrograde tendency. This study suggested that dual pre-treatments could improve the efficiency of OSA modification and produce OSA starch with greater emulsifying potential.
Collapse
Affiliation(s)
- Xiao Xian Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia
| | - Musfirah Zulkurnain
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia
| | - Nor Shariffa Yussof
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia
| | - Uthumporn Utra
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
15
|
Güllich LMD, Rosseto M, Rigueto CVT, Biduski B, Gutkoski LC, Dettmer A. Film properties of wheat starch modified by annealing and oxidation. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
A Prospective Review on the Research Progress of Citric Acid Modified Starch. Foods 2023; 12:foods12030458. [PMID: 36765987 PMCID: PMC9914069 DOI: 10.3390/foods12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Citric acid (CA) treatment is a convenient, mild and environmentally friendly strategy to modify the composition, structure and function of starch through hydrolysis and esterification, which expands the application of starch in industry. In this paper, the effects of CA modification on amylose content, amylopectin chain length distribution, microscopic morphology, solubility and swelling ability, thermodynamic properties, gelatinization properties, digestibility properties, texture properties and the film-forming properties of starch were summarized. The application status and development trend of CA modified starch were reviewed, which has important implications for the targeted utilization of CA modified starch in the future.
Collapse
|
17
|
Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films. Food Chem 2023; 398:133881. [DOI: 10.1016/j.foodchem.2022.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
|
18
|
Liu R, Zhang R, Zhai X, Li C, Hou H, Wang W. Effects of beeswax emulsified by octenyl succinate starch on the structure and physicochemical properties of acid-modified starchfilms. Int J Biol Macromol 2022; 219:262-272. [PMID: 35931295 DOI: 10.1016/j.ijbiomac.2022.07.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
This work aimed to develop a novel strategy to modulate the distribution of beeswax in acid-modified starch films via tuning octenyl succinate starch (OSS) ratios and to elucidate their structure-property relationships. The apparent viscosity and storage modulus of the film-forming solution decreased with the increase of OSS ratio. Attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy revealed that the hydrogen bond in the film-forming network was cleaved with the presence of OSS. Scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD) demonstrated that OSS ratio had an obvious effect on the formation and distribution of beeswax crystal particles. Uniform distribution of beeswax effectively enhanced the hydrophobicity and water barrier properties of films and performed preferable elongation at break but at the expense of tensile strength and optical properties. The films with higher OSS ratio (>12 %) presented higher thermal stability. This study provides new information on the rational design of emulsified films to obtain desirable physicochemical properties by tuning the distribution of beeswax.
Collapse
Affiliation(s)
- Ruiping Liu
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Rui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China.
| |
Collapse
|
19
|
Ghalambor P, Asadi G, Mohammadi Nafchi A, Seyedin Ardebili SM. Investigation of dual modification on physicochemical, morphological, thermal, pasting, and retrogradation characteristics of sago starch. Food Sci Nutr 2022; 10:2285-2299. [PMID: 35844929 PMCID: PMC9281924 DOI: 10.1002/fsn3.2837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to evaluate the characteristics of dually modified sago starch by acid hydrolysis (AH)-hydroxypropylation (HP). For this purpose, sago starch was modified with the combination by AH (5-20 h hydrolysis times) followed by HP (5%-25% ratio of propylene oxide) processes. The results showed that the dual modification of the sago starch structure didn't have a significant effect on the size of starch granules, and the granule size was in the range of 0.005-0.151 µm; however, the pasting properties and the glass transition temperature decreased significantly (p < .05). Increasing the level of propylene oxide from 5% to 25% caused a significant increase in the substitution degree (DS) and swelling ability of starches and reduced the syneresis, while with increasing acid hydrolysis time from 5 h to 20 h, starch swelling decreased and syneresis increased (p < .05). AH process at high hydrolysis times (20 h) increased the gelatinization temperatures and decreased retrogradation temperatures. Increasing the level of propylene oxide in both single and dual modification reduced the temperatures and enthalpy of gelatinization and retrogradation of sago starch. In summary, dually modified sago starch has a great potential to use in specific food products such as frozen dough or frozen bakery products.
Collapse
Affiliation(s)
- Pantea Ghalambor
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | | |
Collapse
|
20
|
Nakkala K, Godiyal S, Ettaboina SK, Laddha K. Chemical modifications of turmeric starch by Oxidation, Phosphorylation, and Succinylation. STARCH-STARKE 2022. [DOI: 10.1002/star.202200053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Komalatha Nakkala
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| | - Shilpa Godiyal
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| | | | - K.S Laddha
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| |
Collapse
|
21
|
Cheng M, Yan X, Cui Y, Han M, Wang X, Wang J, Zhang R. An eco-friendly film of pH-responsive indicators for smart packaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
23
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
24
|
Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Pereira DG, Del Pino Beleia A. Characterization of acid-thinned cassava starch and its technological properties in sugar solution. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Javadian N, Mohammadi Nafchi A, Bolandi M. The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Sci Nutr 2021; 9:5467-5476. [PMID: 34646517 PMCID: PMC8498069 DOI: 10.1002/fsn3.2506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effects of dual modification on the functional, microstructural, and thermal properties of tapioca starch. Tapioca starch was first hydrolyzed by 0.14 M HCl for 0, 6, 12, 18, and 24 hr and then hydroxypropylated by adding 0%, 10%, 20%, and 30% (v/w) propylene oxide. The degree of hydroxypropylation, solubility, water absorption, rheological, thermal, and microstructure characterization of dually modified tapioca starch was determined. Hydroxypropylation did not cause any considerable changes in the starch granular size and shape of tapioca starch. Acid hydrolysis disrupts the starch granules, and the starches with smaller sizes were produced. The degree of molar substitution (DS) of dual modified starches ranged from 0.118 to 0.270. The dual modified starches significantly had higher solubility than native starch (p < .05). Hydrolysis of starches with acid decreases swelling power while hydroxypropylation increases the swelling power. The results also showed lower gelatinization (To, Tp, Tc, and ΔH) and pasting parameters (the peak and final viscosity, peak time, and pasting temperature) for the dual modified starches than other treatments. In summary, this study showed that dually modified tapioca starch has potential application in dip molding and coating.
Collapse
Affiliation(s)
- Neda Javadian
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Marzieh Bolandi
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
| |
Collapse
|
27
|
Wang F, Qiu L, Tian Y. Super Anti-Wetting Colorimetric Starch-Based Film Modified with Poly(dimethylsiloxane) and Micro-/Nano-Starch for Aquatic-Product Freshness Monitoring. Biomacromolecules 2021; 22:3769-3779. [PMID: 34432419 DOI: 10.1021/acs.biomac.1c00588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colorimetric starch film containing anthocyanins is extensively used in eco-friendly intelligent food packaging, but its high water wettability limits its practical application in the food industry. Herein, a super anti-wetting colorimetric starch film was prepared by surface modification with a nano-starch/poly(dimethylsiloxane) (PDMS) composite coating. The water sensitivity, optical properties, mechanical properties, surface morphology, and surface chemical composition of this film were systemically investigated by multiple methods. The obtained film exhibited an extremely high water contact angle (152.46°) and low sliding angle (8.15°) owing to the hierarchical micro-/nanostructure formed by nano-starch aggregates combined with the low-surface-energy PDMS covering. The anti-wettability, optical barrier, and mechanical properties of this film were also significantly improved. The self-cleaning and liquid-food-repelling abilities of this film were comprehensively confirmed. Moreover, this super anti-wetting colorimetric starch film can be applied to monitor the freshness of aquatic products without being disabled by water.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Lizhong Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd., Weifang 262200, P. R. China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,Zhucheng Xingmao Corn Developing Co., Ltd., Weifang 262200, P. R. China
| |
Collapse
|
28
|
Martins PC, Martins VG. Effect of Rice Starch Hydrolysis and Esterification Processes on the Physicochemical Properties of Biodegradable Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paola Chaves Martins
- Laboratory of Food Technology School of Chemistry and Food Engineering Federal University of Rio Grande (FURG) Avenida Itália km 8, Carreiros Rio Grande RS 96203900 Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology School of Chemistry and Food Engineering Federal University of Rio Grande (FURG) Avenida Itália km 8, Carreiros Rio Grande RS 96203900 Brazil
| |
Collapse
|
29
|
Sudheesh C, Sunooj KV, Jamsheer V, Sabu S, Sasidharan A, Aaliya B, Navaf M, Akhila PP, George J. Development of Bioplastic Films from γ − Irradiated Kithul (
Caryota uren
s) Starch; Morphological, Crystalline, Barrier, and Mechanical Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Vattaparambil Jamsheer
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Sarasan Sabu
- School of Industrial Fisheries Cochin University of Science and Technology Kochi Kerala 682016 India
| | - Abhilash Sasidharan
- Department of Fish Process and Technology Kerala University of Fisheries and Ocean Studies Kochi Kerala 682506 India
| | - Basheer Aaliya
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Muhammed Navaf
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Johnsy George
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore Karnataka 570011 India
| |
Collapse
|
30
|
Sami R, Soltane S, Helal M. Microscopic Image Segmentation and Morphological Characterization of Novel Chitosan/Silica Nanoparticle/Nisin Films Using Antimicrobial Technique for Blueberry Preservation. MEMBRANES 2021; 11:303. [PMID: 33919215 PMCID: PMC8143177 DOI: 10.3390/membranes11050303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
In the current work, the characterization of novel chitosan/silica nanoparticle/nisin films with the addition of nisin as an antimicrobial technique for blueberry preservation during storage is investigated. Chitosan/Silica Nanoparticle/N (CH-SN-N) films presented a stable suspension as the surface loads (45.9 mV) and the distribution was considered broad (0.62). The result shows that the pH value was increased gradually with the addition of nisin to 4.12, while the turbidity was the highest at 0.39. The content of the insoluble matter and contact angle were the highest for the Chitosan/Silica Nanoparticle (CH-SN) film at 5.68%. The use of nano-materials in chitosan films decreased the material ductility, reduced the tensile strength and elongation-at-break of the membrane. The coated blueberries with Chitosan/Silica Nanoparticle/N films reported the lowest microbial contamination counts at 2.82 log CFU/g followed by Chitosan/Silica Nanoparticle at 3.73 and 3.58 log CFU/g for the aerobic bacteria, molds, and yeasts population, respectively. It was observed that (CH) film extracted 94 regions with an average size of 449.10, at the same time (CH-SN) film extracted 169 regions with an average size of 130.53. The (CH-SN-N) film presented the best result at 5.19%. It could be observed that the size of the total region of the fruit for the (CH) case was the smallest (1663 pixels), which implied that the fruit lost moisture content. As a conclusion, (CH-SN-N) film is recommended for blueberry preservation to prolong the shelf-life during storage.
Collapse
Affiliation(s)
- Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Schahrazad Soltane
- Department of Computer Engineering, Faculty of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
31
|
Development and characterization of dual-modified yam ( Dioscorea rotundata) starch-based films. Heliyon 2021; 7:e06644. [PMID: 33889774 PMCID: PMC8050360 DOI: 10.1016/j.heliyon.2021.e06644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
The current consumer demand for fresh food and the interest in caring for the environment have driven the development of biodegradable film packaging to replace synthetic films to preserve the integrity of food. The objective of this work was to evaluate the effects of starch modifications (oxidized, cross-linked, and dual: oxidized/cross-linked), starch concentration (1 and 2%), and glycerol concentration (5 and 15%) on water vapor permeability (WVP), mechanical properties (tensile strength and elongation), optical, and structural properties of films based on “hawthorn” yam starch. The WVP of the films was 4.4 × 10−10 to 1.5 × 10−9 g/m∗s∗Pa, where the films with oxidized yam starch showed a 58.04% reduction concerning the native starch. The tensile strength of oxidized yam starch films showed a decrease of 17.51% with an increase in glycerol concentration. For the 1% starch concentration, elongation increased by 17.03% when the glycerol concentration was increased from 5 to 15%. Modification of starch, starch concentration, and glycerol have a significant effect on the barrier, mechanical, physical, and structural properties of films made with yam starch, where films made with oxidized yam starches at a concentration of 1% starch and 5% glycerol showed the best responses of the properties evaluated.
Collapse
|
32
|
Mahajan P, Bera MB, Panesar PS, Chauhan A. Millet starch: A review. Int J Biol Macromol 2021; 180:61-79. [PMID: 33727186 DOI: 10.1016/j.ijbiomac.2021.03.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023]
Abstract
The demand for millets and their products is becoming popular globally due to their various health-promoting properties. The major constituent of the millet is its starch which contributes about 70% of total millet grain and decides the quality of millet-based food products. The application of starch for various purposes is dependent upon its physicochemical, structural, and functional properties. A native starch does not possess all the required properties for a specific use. However, product-specific properties can be achieved by modifying the structure of starches. Information deficit on millet starch has undermined its potential use in new food product design. The objective of this review is to examine the chemical composition, characterization, structural chemistry, digestibility, hydrolysis, and modification techniques of the millet starches. The review paper also discusses the various applications of native and modified starches in the food industry.
Collapse
Affiliation(s)
- Palak Mahajan
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Manab B Bera
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India.
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Anil Chauhan
- Department of Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| |
Collapse
|
33
|
Cabrera-Canales ZE, Velazquez G, Rodríguez-Marín ML, Méndez-Montealvo G, Hernández-Ávila J, Morales-Sánchez E, Gómez-Aldapa CA. Dual modification of achira ( Canna indica L) starch and the effect on its physicochemical properties for possible food applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:952-961. [PMID: 33678878 PMCID: PMC7884568 DOI: 10.1007/s13197-020-04609-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the effect of acid hydrolysis and succination upon single and a combination of both of them as a dual modification on the morphological, structural, thermal, and pasting profile of the achira starch in order to expand its potential food applications. The surface of achira starch granules was eroded with acid hydrolysis, while the succination resulted in the formation of pores or cavities, having a slight impact on the crystallinity and the gelatinization enthalpy. Succinated starch presented the lowest transition temperatures (To = 60.29 °C, Tp = 65.03 °C and Te = 69.86 °C) compared to other starches in this study. The succination increased the final viscosity (3808 cp) when compared with the native starch (3114 cp), while acid hydrolysis resulted in a decreased value (735 cp). These are desirable properties for its possible use as an additive in bakery industry processes.
Collapse
Affiliation(s)
- Zaira E. Cabrera-Canales
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, 76090 Querétaro, Qro Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, 76090 Querétaro, Qro Mexico
| | - María L. Rodríguez-Marín
- Área Académica de Química, ICBI, Cd. del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca - Tulancingo km 4.5, 42184 Mineral de la Reforma, Hgo Mexico
| | - Guadalupe Méndez-Montealvo
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, 76090 Querétaro, Qro Mexico
| | - Juan Hernández-Ávila
- Área Académica de Química, ICBI, Cd. del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca - Tulancingo km 4.5, 42184 Mineral de la Reforma, Hgo Mexico
| | - Eduardo Morales-Sánchez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, 76090 Querétaro, Qro Mexico
| | - Carlos A. Gómez-Aldapa
- Área Académica de Química, ICBI, Cd. del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca - Tulancingo km 4.5, 42184 Mineral de la Reforma, Hgo Mexico
| |
Collapse
|
34
|
Li X, Ren Z, Wang R, Liu L, Zhang J, Ma F, Khan MZH, Zhao D, Liu X. Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem 2021; 349:129208. [PMID: 33578247 DOI: 10.1016/j.foodchem.2021.129208] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/22/2023]
Abstract
The edible films composed ofcarboxymethyl cellulose (CMC), glycerol, mucilage from Chinese yam (DOM)and ZnO nanoparticles (ZnO-NPs), were prepared by a casting method. To evaluate the applicability for food packaging, prepared films were characterised morphological, physical, rheological, mechanical and barrier properties, performed FT-IR, thermal analysis, and finally investigated the antibacterial activity and acute oral toxicity of films. The surface of films presented irregular arrangement with nanoparticles combined in the networks, suggesting the best "CMC to DOM weight ratio" of approximately 1:1 could provide a smooth surface. The films with 2.0 g ZnO-NPs presented antibacterial effects against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. With the increase of DOM, the antibacterial rate dropped at 400 and 450 μL/mL. The film-forming solutions with higher ZnO-NPs content display shear-thinning properties and liquid-like behaviour. The edible films have a great potential to be used in application in food packaging.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zeyue Ren
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ruijiao Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Md Zaved Hossain Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dongbao Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
35
|
Effect of acetylated starch on the development of peanut skin-cassava starch foams. Int J Biol Macromol 2020; 165:1706-1716. [PMID: 33065158 DOI: 10.1016/j.ijbiomac.2020.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/11/2023]
Abstract
Cassava starch was modified by acetylation to obtain modified starches with a degree of substitution (DS) of 0.5 and 1.5. The acetylated cassava starches presented a reduction in temperature gelatinization and enthalpy, water solubility, and power swelling, in addition to a loss of crystallinity compared to native cassava starches. Acetylated cassava starch was used to the development of foams based on native cassava starch, 24% (w/w) of peanut skin, and 13% (w/w) of glycerol. It was used blends of native cassava starch and acetylated cassava starch with ratios of 100/0, 90/10, 80/20, 70/30, and 60/40. The foams containing acetylated cassava starch with DS = 0.5 exhibited a reduction in water absorption capacity (WAC) for water contact time of 30 min. Foams containing acetylated cassava starch with DS = 1.5 did not show a significant difference in WAC compared to foams made using only native cassava starch. The use of 30% (w/w) of acetylated cassava starch, independently of DS (0.5 or 1.5), resulted in faster degradation of foams than those without modified starches.
Collapse
|
36
|
Guz L, González‐Seligra P, Ochoa‐Yepes O, Estevez‐Areco S, Famá L, Goyanes S. Influence of Different Commercial Modified Cassava Starches on the Physicochemical Properties of Thermoplastic Edible Films Obtained by Flat‐Die Extrusion. STARCH-STARKE 2020. [DOI: 10.1002/star.202000167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Guz
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
- Instituto de Investigación e Ingeniería Ambiental (IIIA‐3ia), CONICET Universidad Nacional de San Martín 25 de Mayo y Francia San Martin Provincia de Buenos Aires 1650 Argentina
| | - Paula González‐Seligra
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Oswaldo Ochoa‐Yepes
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Santiago Estevez‐Areco
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Lucía Famá
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| | - Silvia Goyanes
- Departamento de Física, FCEyN Universidad de Buenos Aires e IFIBA‐CONICET Intendente Güiraldes 2160, Pabellon 1, Ciudad Universitaria Buenos Aires 1428 Argentina
| |
Collapse
|
37
|
Gómez‐Aldapa CA, Ghinis‐Rojas DM, Castro‐Rosas J, Velazquez G, Gutiérrez MC, González‐Salitre L, Basilio‐Cortes UA. Effect of mechanical homogenization on the physicochemical properties of films made from dual modified corn starch prepared by the casting solution method. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos A. Gómez‐Aldapa
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Dennise M. Ghinis‐Rojas
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Javier Castro‐Rosas
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico NacionalCICATA Unidad Querétaro Querétaro Mexico
| | | | - Lourdes González‐Salitre
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | | |
Collapse
|
38
|
Ashogbon AO. Dual modification of various starches: Synthesis, properties and applications. Food Chem 2020; 342:128325. [PMID: 33153808 DOI: 10.1016/j.foodchem.2020.128325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
The problems associated with native starches (NSs) and single modified starches were stated in order to justify dual modification of various starches. Broadly, there are two types of dual modification, i.e., homogeneous dual modification and heterogeneous dual modification. The combination of two physical modifications, e.g., (extrusion/annealing); two chemical modifications, e.g., (succinylation/cross-linking) and two enzymes modification (α-amylase/pullulanase) falls under the former classification and the latter classification is the combination of two of each of the differently stated modifications, e.g., acetylation/annealing, extrusion/succinylation, and microwave-assisted phosphorylation, etc. The classification, synthesis, properties and applications of dually modified starches were discussed. There is an attempt to elucidate the problems of each of the single modification in order to justify dual modifications. In dual modifications, the order of reactions, the reaction conditions, the medium of reaction, and the botanical sources of the various starches are very important parameters.
Collapse
|
39
|
Din MI, Sehar R, Hussain Z, Khalid R, Shah AT. Synthesis of biodegradable semolina starch plastic films reinforced with biogenically synthesized ZnO nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1813768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Rimsha Sehar
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
40
|
Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus). SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Mehboob S, Ali TM, Sheikh M, Hasnain A. Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int J Biol Macromol 2020; 155:786-794. [DOI: 10.1016/j.ijbiomac.2020.03.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/26/2022]
|
42
|
Sudheesh C, Sunooj KV, Sasidharan A, Sabu S, Basheer A, Navaf M, Raghavender C, Sinha SK, George J. Energetic neutral N2 atoms treatment on the kithul (Caryota urens) starch biodegradable film: Physico-chemical characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Films made from plasma-modified corn starch: Chemical, mechanical and barrier properties. Carbohydr Polym 2020; 237:116103. [DOI: 10.1016/j.carbpol.2020.116103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022]
|
44
|
Gómez‐Aldapa CA, Velazquez G, Gutierrez MC, Castro‐Rosas J, Jiménez‐Regalado EJ, Aguirre‐Loredo RY. Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. STARCH-STARKE 2020. [DOI: 10.1002/star.201900282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carlos Alberto Gómez‐Aldapa
- Área académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento Universidad Autónoma del Estado de Hidalgo Carretera Pachuca‐Tulancingo Km. 4.5, 42184 Mineral de la Reforma Hidalgo 42184 México
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional CICATA Unidad Querétaro Cerro Blanco 141, Colinas del Cimatario 76090 Querétaro Qro 76090 México
| | - Miguel C. Gutierrez
- CONACYT – Instituto Politécnico Nacional CIIDIR Unidad Oaxaca Hornos 1003 Santa Cruz Xoxocotlán Oaxaca 71230 México
| | - Javier Castro‐Rosas
- Área académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento Universidad Autónoma del Estado de Hidalgo Carretera Pachuca‐Tulancingo Km. 4.5, 42184 Mineral de la Reforma Hidalgo 42184 México
| | - Enrique Javier Jiménez‐Regalado
- Centro de Investigación en Química Aplicada (CIQA) Departamento de Procesos de Polimerización Blvd. Enrique Reyna Hermosillo 140 Saltillo Coahuila 25294 México
| | - Rocio Yaneli Aguirre‐Loredo
- Área académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento Universidad Autónoma del Estado de Hidalgo Carretera Pachuca‐Tulancingo Km. 4.5, 42184 Mineral de la Reforma Hidalgo 42184 México
- CONACYT – CIQA Departamento de Procesos de Polimerización Blvd. Enrique Reyna Hermosillo 140 Saltillo Coahuila 25294 México
| |
Collapse
|
45
|
Ulbrich M, Flöter E. Modification of Starches with Different Amylose/Amylopectin‐Ratios Using the Dual Approach with Hydroxypropylation and Subsequent Acid‐Thinning—Impacts on Morphological and Molecular Characteristics. STARCH-STARKE 2020. [DOI: 10.1002/star.202000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Ulbrich
- Technische Universität Berlin Department of Food Technology and Food Chemistry Chair of Food Process Engineering Office GG2, Seestraße 13 Berlin D‐13353 Germany
| | - Eckhard Flöter
- Technische Universität Berlin Department of Food Technology and Food Chemistry Chair of Food Process Engineering Office GG2, Seestraße 13 Berlin D‐13353 Germany
| |
Collapse
|
46
|
Xu Y, Chen X, Xu X, Wang B, Du X, Chen P. Investigation on morphological structure and crystal transition of maize starch gelatinized in pure glycerol. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
48
|
|
49
|
Adeniyi AG, Saliu OD, Ighalo JO, Olosho AI, Bankole DT, Amusat SO, Kelani EO. Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractRecent research has proven that starch offers a wide range of industrial, commercial, and utility applications if they are optimally processed and refined. In this study, the effect of hydrogen peroxide (HP), sodium persulfite, peracetic acid (PAA), and sodium perborate (SPB) bleaching agents on the physiochemical, surface, mechanical, and flow properties were investigated. The various bleached starch bioplastics were characterized using Fourier transform infrared, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. Hydroxyl and carbonyl (C=O) stretching were seen for HP- and PAA-bleached starch bioplastics at 3285 and 1736 and 3265 and 1698 cm−1, respectively. The C=O band was absent for SPB-treated starch, whereas the C=S band was seen on sodium hyposulfite (SHS)-treated starch. The morphologies of starch were retained with little agglomerations, except for HP-treated starch bioplastics with a morphology change. HP-treated starch had the highest percentage crystallinity (66%) and the highest thermal stability (74% weight loss), whereas PAA-treated starch had the lowest percentage crystallinity (34%) and the lowest thermal stability (88% weight loss). HP- and SHS-bleached starch bioplastics had the best surface, mechanical, and expansion properties.
Collapse
Affiliation(s)
- Adewale G. Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Oluwaseyi D. Saliu
- Department of Industrial Chemistry, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Joshua O. Ighalo
- Department of Chemical Engineering, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Adebayo I. Olosho
- Department of Industrial Chemistry, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Deborah T. Bankole
- Department of Physical Sciences (Industrial Chemistry), Landmark University, Omu Aran, Kwara State, PMB 1001, Nigeria
| | - Sefiu O. Amusat
- Department of Industrial Chemistry, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | | |
Collapse
|
50
|
Bruni GP, Oliveira JP, Fonseca LM, Silva FT, Dias ARG, da Rosa Zavareze E. Biocomposite Films Based on Phosphorylated Wheat Starch and Cellulose Nanocrystals from Rice, Oat, and Eucalyptus Husks. STARCH-STARKE 2020. [DOI: 10.1002/star.201900051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Graziella Pinheiro Bruni
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| | - Jean Paulo Oliveira
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| | - Laura Martins Fonseca
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| | - Francine Tavares Silva
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Post‐HarvestQuality and Industrialization of GrainsDepartment of Food Science and TechnologyFaculty of Agronomy “Eliseu Maciel”Federal University of Pelotas Eliseu Maciel Ave. Capão do Leão 96050‐500 Brazil
| |
Collapse
|