1
|
Yang X, Mao Y, Chen L, Guan X, Wang Z, Huang T. Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review. Carbohydr Polym 2025; 355:123363. [PMID: 40037736 DOI: 10.1016/j.carbpol.2025.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Exopolysaccharides (EPS) produced by Bacillus species display various biological activities and characteristics such as anti-oxidant, immunomodulatory, anti-bacterial, and bioadhesive effects. These attributes confer Bacillus species broad potential applications in diverse fields such as food, medicine, environment, and agriculture. Moreover, Bacillus-derived EPS are easier to produce and yield higher quantities than plant-derived polysaccharides. Despite these advantages, Bacillus-derived EPS still encounter numerous obstacles in industrial production and commercial applications, including elevated costs, the absence of mature fermentation tank production procedures, and the lack of systematic in vivo and in vitro activity and metabolic evaluation. Therefore, it is essential to gain insight into the current status of structure, production, and applications of Bacillus-derived EPS for facilitating their future broader application. This paper provides a comprehensive overview of the current research on the production, separation, characteristics and applications of these related biological products. Furthermore, this paper summarizes the current challenges impeding industrial production of Bacillus-derived EPS, along with potential solutions, and their prospective applications in enhancing the attributes of beneficial biofilms, laying a solid scientific foundation for the applications of Bacillus-derived EPS in industry and agriculture.
Collapse
Affiliation(s)
- Xiaolong Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yufei Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zixuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|
2
|
Zhang M, Liao J, Zhang Z, Shi H, Wu J, Huang W, Li C, Song L, Yu R, Zhu J. Structural characterization of two novel heteropolysaccharides from Catharanthus roseus and the evaluation of their immunological activities. Carbohydr Polym 2025; 348:122896. [PMID: 39567132 DOI: 10.1016/j.carbpol.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Catharanthus roseus, a plant with significant therapeutic value in Chinese folk medicine, contain numerous secondary metabolites. However, the primary metabolites, specifically polysaccharides which might play an important role in immunotherapy, have received limited attention. In the present study, two novel polysaccharides, designated as CRPS-1 and CRPS-2, were isolated from C. roseus. The structures of CRPS-1 and CRPS-2 were characterized using a combination of HPSEC, HPLC, IR, GC-MS, 1D NMR and 2D NMR. Both CRPS-1 and CRPS-2 were identified as homogeneous heteropolysaccharides. Additionally, the weight-average molecular weight of CRPS-2 was lower than that of CRPS-1. The backbone of CRPS-1 was composed of 1,3-α-L-Araf, 1,5-α-L-Araf, 1,3,5-α-L-Araf, 1,3,4-α-L-Rhap, 1,3-α-D-Galp, 1,3,4-α-D-Galp, 1,4-β-D-Manp, and side chains comprised of T-α-L-Araf, T-β-D-Manp, and β-D-Glcp-(1 → 3)-α-D-Galp-(1 → 3) -α-L-Rhap-(1→. CRPS-2 mainly consisted of 1,3-α-D-Galp, 1,3,4-α-D-Galp, 1,6-β-D-Manp, 1,5-α-L-Araf, 1,3,5-α-L-Araf, 1,3-α-L-Rhap and 1,3,4-α-L-Fucp with complex branching structures. Furthermore, CRPS-2 could significantly enhance proliferation and phagocytosis, as well as the secretion of cytokines in RAW264.7 cells. It demonstrated potent immunoregulatory activity by activating the MAPK/Akt/NF-κB signaling pathways. In summary, the utilization of galactose-enriched and low-molecular-weight polysaccharides exhibits great potential in the advancement of innovative functional foods that may provide health benefits.
Collapse
Affiliation(s)
- Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jiapei Liao
- Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jixu Wu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Shenzhen Center for Chromic Disease Control, 2021 Buxin Road, Shenzhen 518020, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
3
|
Si X, Li J, Zhao T, Cao W, Qiao C. Effective Decolorization of Poly-γ-Glutamic Acid Fermentation Broth by Integrated Activated Carbon Adsorption and Isoelectric Point Precipitation of Glutamic Acid. Molecules 2024; 29:5769. [PMID: 39683927 DOI: 10.3390/molecules29235769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is widely used in the field of biomedicine, food, agriculture, and ecological remediation. For the biosynthesis of γ-PGA, the pigments and remaining glutamate are two big problems that impede γ-PGA production by fermentation, and a trade-off between the decolorization rate and γ-PGA recovery rate during the purification process was found. The optimized static activated carbon adsorption conditions for treating the 2-times diluted cell-free supernatant (i.e., feed solution) was as follows: 0.51% 200-mesh, 1000 iodine value, coal-based activated carbon, pH 6.0, 140 min, and 40 °C. Under the optimized conditions, the decolorization rate reached 94.42%, and the recovery rate of γ-PGA was 94.22%. During the adsorption process, the pigments were adsorbed on the activated carbon surface in a monolayer, and the process was a spontaneous, heat-absorbing, and entropy-increasing process. Then, the decolorization flow rate optimized for the dynamic decolorization experiment was 1 BV/h. However, the remaining glutamate was still a problem after the activated carbon adsorption. After isoelectric point (IEP) precipitation of glutamic acid, the glutamic acid can be recovered, and the residual pigment can be further removed. Finally, an integrated decolorization process of activated carbon adsorption and IEP precipitation of glutamic acid was developed. After the integrated process, the decolorization and glutamic acid precipitation rates were 95.80% and 49.02%, respectively. The recovered glutamic acid can be reused in the next fermentation process.
Collapse
Affiliation(s)
- Xiusheng Si
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
| | - Jicheng Li
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
| | - Tingbin Zhao
- Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
| | - Weifeng Cao
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changsheng Qiao
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
| |
Collapse
|
4
|
Zhao Q, Wang F, Wang Y, Zhong X, Zhu S, Zhang X, Li S, Lei X, Zang Z, Tan G, Zhang J. Low-Temperature Regulates the Cell Structure and Chlorophyll in Addition to Cellulose Metabolism of Postharvest Red Toona sinensis Buds across Different Seasons. Int J Mol Sci 2024; 25:7719. [PMID: 39062962 PMCID: PMC11276666 DOI: 10.3390/ijms25147719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Postharvest fibrosis and greening of Toona sinensis buds significantly affect their quality during storage. This study aimed to clarify the effects of low-temperature storage on postharvest red TSB quality harvested in different seasons. Red TSB samples were collected from Guizhou province, China, 21 days after the beginning of spring (Lichun), summer (Lixia), and autumn (Liqiu), and stored at 4 °C in dark conditions. We compared and analyzed the appearance, microstructure, chlorophyll and cellulose content, and expression levels of related genes across different seasons. The results indicated that TSB harvested in spring had a bright, purple-red color, whereas those harvested in summer and autumn were green. All samples lost water and darkened after 1 day of storage. Severe greening occurred in spring-harvested TSB within 3 days, a phenomenon not observed in summer and autumn samples. Microstructural analysis revealed that the cells in the palisade and spongy tissues of spring and autumn TSB settled closely during storage, while summer TSB cells remained loosely aligned. Xylem cells were smallest in spring-harvested TSB and largest in autumn. Prolonged storage led to thickening of the secondary cell walls and pith cell autolysis in the petioles, enlarging the cavity area. Chlorophyll content was higher in leaves than in petioles, while cellulose content was lower in petioles across all seasons. Both chlorophyll and cellulose content increased with storage time. Gene expression analysis showed season-dependent variations and significant increases in the expression of over half of the chlorophyll-related and cellulose-related genes during refrigeration, correlating with the observed changes in chlorophyll and cellulose content. This research provides valuable insights for improving postharvest storage and freshness preservation strategies for red TSB across different seasons.
Collapse
Affiliation(s)
- Qian Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
| | - Yifei Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
| | - Xiulai Zhong
- Institute of Horticulture, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Shunhua Zhu
- Institute of Horticulture, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xinqi Zhang
- Institute of Horticulture, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Shuyao Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
| | - Guofei Tan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
- Institute of Horticulture, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Q.Z.); (F.W.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
5
|
Chen G, Sun M, Chen K, Wang L, Sun J. Ultrasonic-Assisted Decoloration of Polysaccharides from Seedless Chestnut Rose ( Rosa sterilis) Fruit: Insight into the Impact of Different Macroporous Resins on Its Structural Characterization and In Vitro Hypoglycemic Activity. Foods 2024; 13:1349. [PMID: 38731719 PMCID: PMC11083239 DOI: 10.3390/foods13091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Pigments within polysaccharides pose significant challenges when analyzing their structural characteristics and evaluating their biological activities, making decolorization a crucial step in purifying these biomolecules. In this research, a novel approach using ultrasound-assisted static adsorption with macroporous resins was employed to decolorize polysaccharides extracted from seedless chestnut rose (Rosa sterilis S. D. Shi) fruit (RSP). Among the fourteen tested resins, AB-8, D101, D4020, HPD100, and S8 were identified as the most effective, demonstrating superior decoloration efficiency and polysaccharide recovery. Further examinations of RSPs treated with these five resins revealed distinct effects on their uronic acid levels, monosaccharide makeup, molecular weight, surface structure, and hypoglycemic properties. The RSP treated with HPD100 resin stood out for having the highest uronic acid content, smallest particle size, and lowest molecular weight, leading to the most notable inhibition of α-glucosidase activity through a mixed inhibition model. The application of HPD100 resin in the decolorization process not only potentially preserved the macromolecular structure of RSP but also enhanced its hypoglycemic efficacy. These findings provide a solid theoretical basis for further exploring RSP as a component of functional foods, underscoring the effectiveness of the ultrasound-assisted resin adsorption method in polysaccharide purification.
Collapse
Affiliation(s)
- Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (M.S.); (K.C.); (J.S.)
| | - Meiwen Sun
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (M.S.); (K.C.); (J.S.)
| | - Kaiwen Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (M.S.); (K.C.); (J.S.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang 550005, China;
| | - Juyan Sun
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (M.S.); (K.C.); (J.S.)
| |
Collapse
|
6
|
Li D, Chen M, Meng X, Sun Y, Liu R, Sun T. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Avena sativa L.: A review. Int J Biol Macromol 2024; 265:130891. [PMID: 38493821 DOI: 10.1016/j.ijbiomac.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
7
|
Zhang J, Rui C, Jia C. An interpenetrating polymer networks based on polydivinylbenzene/aminated polyglycidyl methacrylate with better decolorization performance toward reducing sugar solution. Food Chem 2024; 434:137483. [PMID: 37722338 DOI: 10.1016/j.foodchem.2023.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The separation of valuable sugar components from a xylose mother liquor (XML) requires a pre-decolorization over a resin, however the market-available resins show a low performance. To overcome this drawback, an interpenetrating polymer network (IPN) resin was designed for efficiently removing the non-sugar impurities from an XML. The prepared IPN resin showed good decolorization performance for the XML, and the decolorization effect of the XML on the resin modified with a short-chain amination reagent was better. The adsorption capacity of the resin for phenols was significantly improved after an amination-modification, but that for furfural remained constant. The theoretical study confirmed that good decolorization effect of the XML on that resin was mainly ascribed to the synergistic action of adsorption forces, such as π-π stacking and hydrogen bonding.
Collapse
Affiliation(s)
- Junwei Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Changchun Rui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Caijing Jia
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Cao JJ, Lv QQ, Yan Z, Chen HQ. Physicochemical properties and solution conformation of polysaccharides from Toona sinensis (A. Juss) Roem leaves. Int J Biol Macromol 2024; 254:127849. [PMID: 37924899 DOI: 10.1016/j.ijbiomac.2023.127849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
In this study, two polysaccharide fractions (TSP-1 and TSP-2) were isolated from Toona sinensis leaves. The physicochemical properties and solution conformations of TSP-1 and TSP-2 were investigated. DSC and TG results showed that TSP-1 and TSP-2 had thermal stability. The intrinsic viscosities of TSP-1 and TSP-2 solutions were 11.42 and 6.13 mL/g, respectively. Rheological results showed that the viscosities of TSP-1 and TSP-2 solutions were affected by polysaccharide concentration, Ca2+ and extreme pH. Furthermore, TSP-1 exhibited a weak gel behavior at the concentrations of 0.5 %-2.0 %, while TSP-2 showed a weak gel behavior at the concentration of 2 %. HPSEC-MALLS analysis revealed that the Rg values of TSP-1 and TSP-2 were 96.8 nm and 56.2 nm, respectively. Conformation analysis indicated that TSP-1 behaved as a sphere, while TSP-2 behaved like a rigid rod. These results suggest that TSP-1 and TSP-2 can be used as additives in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Juan-Juan Cao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Qing-Qing Lv
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Zheng Yan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
9
|
Xue T, Ruan K, Tang Z, Duan J, Xu H. Isolation, structural properties, and bioactivities of polysaccharides from Althaea officinalis Linn.: A review. Int J Biol Macromol 2023:125098. [PMID: 37245776 DOI: 10.1016/j.ijbiomac.2023.125098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Althaea officinalis Linn. (AO) is a widely distributed herbaceous plant with a long history of medicinal and food functions in Europe and Western Asia. Althaea officinalis polysaccharide (AOP), as one of the main components and a crucial bioactive substance of AO, has a variety of pharmacological activities, including antitussive, antioxidant, antibacterial, anticancer, wound healing, immunomodulatory, and infertility therapy effects. Many polysaccharides have been successfully obtained in the last five decades from AO. However, there is currently no review available concerning AOP. Considering the importance of AOP for biological study and drug discovery, the present review aims to systematically summarize the recent major studies on extraction and purification methods of polysaccharides from different AO parts (seeds, roots, leaves and flowers), as well as the characterization of their chemical structure, biological activity, structure-activity relationship, and the application of AOP in different fields. Meanwhile, the shortcomings of AOP research are further discussed in detail, and new valuable insights for future AOP research as therapeutic agents and functional foods are proposed.
Collapse
Affiliation(s)
- Taotao Xue
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China.
| | - Kaihua Ruan
- The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine (Xi'an New Area Central Hospital), Xi'an 710075, PR China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hongbo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, 712083 Xianyang, PR China.
| |
Collapse
|
10
|
Wang C, Fu C, Li Y, Zhang Y, Zhang B, Zhang J. Integrated volatilomic profiles and chemometrics provide new insights into the spatial distribution and aroma differences of volatile compounds in seven Toona sinensis cultivars. Food Chem 2023; 407:135116. [PMID: 36493480 DOI: 10.1016/j.foodchem.2022.135116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
As a popular vegetable, the unique and pleasant aroma is the key quality characteristic of Toona sinensis. To explore the sources and differences of aroma, the volatilomic profiling in the leaves and shoots of seven T. sinensis cultivars were investigated by chemometric analysis. The results indicated that aroma differences of each cultivar can be distinguished by W5S, W1S, W1W and W2S sensors during E-nose analysis. More than two thirds of all volatile organic compounds (VOCs) were derived from the leaves of most cultivars, except for Ximu toon. Notably, 2-mercapto-3,4-dimethyl-2,3-dihydrothiophene, 3,4-dimethyl thiophene, methyl thiirane, isocaryophyllene and hexanal were the major VOCs in both the leaves and shoots of T. sinensis. By constructing a weighted correlation network model, 5 modules and 11 hub VOCs were identified in the leaf samples of all cultivars. The data indicate that differential intracellular metabolic responses are responsible for the aroma formation of seven T. sinensis cultivars.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chendan Fu
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfang Li
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yilan Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Beibei Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingfang Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Tao L, Wang J, Wei Y, Xiong B, Zhang J, Lan W, Yu L. Efficient decolorization of oligosaccharides in ginseng (Panax ginseng) residue using ultrasound-assisted macroporous resin. Food Chem 2023; 419:136098. [PMID: 37031538 DOI: 10.1016/j.foodchem.2023.136098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
An efficient decolorization method for ginseng residue oligosaccharides (GROs) using ultrasound-assisted D392 macroporous resin was developed. The decolorization effects and color differences of activated carbon adsorption, hydrogen peroxide oxidation, and resin adsorption were evaluated. The optimal conditions of the three decolorization methods for static, dynamic, ultrasound-assisted resin adsorption were compared. The results showed that ultrasound-assisted decolorization had the best decolorization effect of greatly decreasing the decolorization time to 80 min. Color difference analysis revealed the process of pigment removal during GRO decolorization. The UV-visible full-wavelength scan showed that most pigments were removed after decolorization. The characterizations by the Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the chemical structure and crystallinity of the GROs did not change upon decolorization. In addition, the molecular weight distribution did not change significantly. This research contributes to further exploration of the structures and functions of GROs.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingyi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yihua Wei
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
12
|
Yu X, Mu N, Liu X, Shang Y, Wang D, Li F. A green method for decolorization of polysaccharides from alfalfa by S-8 macroporous resin and their characterization and antioxidant activity. RSC Adv 2023; 13:9642-9653. [PMID: 36968038 PMCID: PMC10037299 DOI: 10.1039/d3ra00756a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
In this study, the decolorization conditions of polysaccharides extracted from alfalfa by S-8 macroporous adsorption resin were optimized through the response surface method, and the physicochemical properties and antioxidant activity of decolorized polysaccharides were investigated. The optimal decolorization conditions were determined to be as follows: the amount of S-8 macroporous adsorption resin was 1.4 g, the adsorption time was 2 h, and the adsorption temperature was 58 °C. Under these optimal conditions, a decolorization ratio of 71.43 ± 0.23% was achieved, which was consistent with the model hypothesis. The adsorption curve showed that S-8 macroporous adsorption resin adsorption of pigment molecules in alfalfa polysaccharides (APS) agreed with the Freundlich and pseudo-second-order equations, and the adsorption was a spontaneous endothermic process. High-performance liquid chromatography (HPLC) analysis of monosaccharide composition showed that APS was composed of mannose, glucose, galactose, arabinose and glucuronic acid in a molar ratio of 1.18 : 8.04 : 1.22 : 0.92 : 1. The results of antioxidant activity studies showed that APS had strong scavenging activity against ABTS, DPPH and hydroxyl radicals. This study will help to further understand the adsorption mechanism of macroporous resin on polysaccharide pigment molecules and lay a basis for evaluating their physiological activity.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Na Mu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Xiaochen Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
13
|
Jiang H, Liu Y, Wang C, Yu D, Zhou H, Xue X, Liang X. Decoloration and alkaloid enrichment of Dactylicapnos scandens extracts based on the use of strong anion-exchange resins in tandem with strong cation-exchange silica-based materials. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123637. [PMID: 36809736 DOI: 10.1016/j.jchromb.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Alkaloids are natural bioactive ingredients but are usually present in low amounts in plant extracts. In addition, the dark color of plant extracts increases the difficulty in separation and identification of alkaloids. Therefore, effective decoloration and alkaloid enrichment methods are necessary for purification and further pharmacological studies of alkaloids. In this study, a simple and efficient strategy is developed for the decoloration and alkaloid enrichment of Dactylicapnos scandens (D. scandens) extracts. In feasibility experiments, we evaluated two anion-exchange resins and two cation-exchange silica-based materials with different functional groups using a standard mixture composed of alkaloids and nonalkaloids. By virtue of its high adsorbability of nonalkaloids, the strong anion-exchange resin PA408 is considered a better choice for the removal of nonalkaloids, and the strong cation-exchange silica-based material HSCX was selected for its great adsorption capacity for alkaloids. Furthermore, the optimized elution system was applied for the decoloration and alkaloid enrichment of D. scandens extracts. Nonalkaloid impurities in the extracts were removed by the use of PA408 in tandem with HSCX treatment, and the total alkaloid recovery, decoloration and impurity removal ratios are determined to be 98.74%, 81.45% and 87.33%, respectively. This strategy can contribute to further alkaloid purification and pharmacological profiling of D. scandens extracts, as well as other plants with medicinal value.
Collapse
Affiliation(s)
- Hui Jiang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Chaoran Wang
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, PR China
| | - Dongping Yu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xingya Xue
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
14
|
Li H, Chen X, Tang Y, Yang Y, He F, Wang X, Li G, Chen K, Ouyang P, Yang Y. Separation, purification, and crystallization of 1,5-pentanediamine hydrochloride from fermentation broth by cation resin. Front Bioeng Biotechnol 2023; 10:1104041. [PMID: 36686243 PMCID: PMC9845778 DOI: 10.3389/fbioe.2022.1104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
1,5-Pentanediamine hydrochloride (PDAH) was an important raw material for the preparation of bio-based pentamethylene diisocyanate (PDI). PDI has shown excellent properties in the application of adhesives and thermosetting polyurethane. In this study, PDAH was recovered from 1,5-pentanediamine (PDA) fermentation broth using a cation exchange resin and purified by crystallization. D152 was selected as the most suitable resin for purifying PDAH. The effects of solution pH, initial temperature, concentration of PDA, and adsorption time were studied by the static adsorption method. The equilibrium adsorption data were well fitted to Langmiur, Freundlich, and Temkin-Pyzhev adsorption isotherms. The adsorption free energy, enthalpy, and entropy were calculated. The experimental data were well described by the pseudo first-order kinetics model. The dynamic experiment in the fixed bed column showed that under optimal conditions, the adsorption capacity reached 96.45 mg g-1, and the recovery proportion of the effective section reached 80.16%. In addition, the crystallization of the PDAH solution obtained by elution proved that the crystal product quality of resin eluting solution was highest. Thus, our research will contribute to the industrial scale-up of the separation of PDAH.
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yibo Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yue Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Feng He
- Jiangsu Institute of Industrial Biotechnology, JITRI Co., Ltd., Nanjing, China
| | - Xin Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yuning Yang
- Gansu Yinguang Juyin Chemical Co., Ltd., Baiyin, China
| |
Collapse
|
15
|
Preparation and Antioxidant Activity In Vitro of Fermented Tremella fuciformis Extracellular Polysaccharides. FERMENTATION 2022. [DOI: 10.3390/fermentation8110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was aimed at increasing the capacity of fermented Tremella fuciformis extracellular polysaccharides (TEPS) for possible functional food applications. Thus, strain varieties, fermentation parameters and purification conditions, and the in vitro antioxidant activities of purified EPS fractions were investigated. An EPS high-yield strain Tf526 was selected, and the effects of seven independent fermentation factors (time, temperature, initial pH, inoculum size, shaking speed, carbon, and nitrogen source) on the EPS yield were evaluated. By single factor optimization test, yeast extract and glucose were chosen as nitrogen sources and carbon sources, respectively, and with initial pH of 6.0, inoculum size of 8%, shaking speed of 150 rpm, and culture at 25 °C for 72 h, the optimal yield of TEPS reached 0.76 ± 0.03 mg/mL. Additionally, A-722MP resin showed the most efficient decoloration ratio compared to six other tested resins. Furthermore, optimal decoloration parameters of A-722MP resin were obtained as follows: decoloration time of 2 h, resins dosage of 2 g, and temperature of 30 °C. Decoloration ratio, deproteinization ratio, and polysaccharide retention ratio were 62.14 ± 2.3%, 81.21 ± 2.13%, and 73.42 ± 1.96%, respectively. Furthermore, the crude TEPS was extracted and four polysaccharide fractions were isolated and purified as Tf1-a, Tf1-b, Tf2, and Tf3 by the DEAE-Sepharose FF column and the Sephasryl S100 column. In general, the antioxidant activities of the Lf1-a and Lf1-b were lower compared with Vc at the concentration of 0.1 to 3 mg/mL, but the FRAP assay, DPPH scavenging activity, and hydroxyl radical scavenging activity analysis still revealed that Tf1-a and Tf1-b possess significant antioxidant activities in vitro. At the concentration of 3 mg/mL, the reducing power of Lf1-a and Lf1-b reached 0.86 and 0.70, the maximum DPPH radical were 54.23 ± 1.68% and 61.62 ± 2.73%, and the maximum hydroxyl radicals scavenging rates were 58.76 ± 2.58% and 45.81 ± 1.79%, respectively. Moreover, there were significant correlations (r > 0.8) among the selected concentrations and antioxidant activities of TEPS major fractions Tf1-a and Tf1-b. Therefore, it is expected that Tf1-a and Tf1-b polysaccharide fractions from fermented TEPS may serve as active ingredients in functional foods.
Collapse
|
16
|
Zhu L, Yu T, Yang L, Liu T, Song Z, Liu S, Zhang D, Tang C. Polysaccharide from Cordyceps cicadae inhibit mitochondrial apoptosis to ameliorate drug-induced kidney injury via Bax/Bcl-2/Caspase-3 pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Wang L, Li Z, Liu Y. Ultrasonic‐assisted extraction and purification of xylo‐oligosaccharides from wheat bran. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lidong Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
- Department of National Coarse Cereals Engineering Research Center Heilongjiang Bayi Agricultural University Daqing China
| | - Zhenjiang Li
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
| | - Ying Liu
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
| |
Collapse
|
18
|
Zhang J, Jia C, Yuan M. Decolorization of xylose mother liquor with polydivinylbenzene/aminated polyglycidyl methacrylate interpenetrating polymer networks. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Junwei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangnan, China
| | - Caijing Jia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangnan, China
| | - Miaoxin Yuan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangnan, China
| |
Collapse
|
19
|
Hu Z, Yu R, Sun J, Duan Y, Zhou H, Zhou W, Li G. Static decolorization of polysaccharides from the leaves of Rhododendron dauricum: Process optimization, characterization and antioxidant activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Zhang X, Zhu X, Shi X, Hou Y, Yi Y. Extraction and Purification of Inulin from Jerusalem Artichoke with Response Surface Method and Ion Exchange Resins. ACS OMEGA 2022; 7:12048-12055. [PMID: 35449954 PMCID: PMC9016842 DOI: 10.1021/acsomega.2c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Inulin is used as an important food ingredient, widely used for its fiber content. In this study the operational extraction variables to obtain higher yields of inulin from Jerusalem artichoke tubers, as well as the optimal conditions, were studied. Response surface methodology and Box-Behnken design were used for optimization of extraction steps. The optimal extraction conditions were as follows: extraction temperature 74 °C, extraction time 65 min, and ratio of liquid to solid 4 mL/g. Furthermore, series connection of ion-exchange resins were used to purify the extraction solution where the optimal resin combinations were D202 strongly alkaline anion resin, HD-8 strongly acidic cation resin, and D315 weakly alkaline resin while the decolorization rate and decreased salinity reached 99.76 and 93.68, respectively. Under these conditions, the yield of inulin was 85.4 ± 0.5%.
Collapse
Affiliation(s)
- Xia Zhang
- Yantai
Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhen Zhu
- Yantai
Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xuejie Shi
- Shandong
Key Lab of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yang Hou
- Beijing
Dongcheng District Food and Drug Safety Monitoring Center, Beijing 100050, China
| | - Yuetao Yi
- Yantai
Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
21
|
Albuquerque PBS, de Oliveira WF, Dos Santos Silva PM, Dos Santos Correia MT, Kennedy JF, Coelho LCBB. Skincare application of medicinal plant polysaccharides - A review. Carbohydr Polym 2022; 277:118824. [PMID: 34893241 DOI: 10.1016/j.carbpol.2021.118824] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are macromolecules with important inherent properties and potential biotechnological applications. These complex carbohydrates exist throughout nature, especially in plants, from which they can be obtained with high yields. Different extraction and purification methods may affect the structure of polysaccharides and, due to the close relationship between structure and function, modify their biological activities. One of the possible applications of these polysaccharides is acting on the skin, which is the largest organ in the human body and can be aged by intrinsic and extrinsic processes. Skincare has been gaining worldwide attention not only to prevent diseases but also to promote rejuvenation in aesthetic treatments. In this review, we discussed the polysaccharides obtained from plants and their innovative potential for skin applications, for example as wound-healing, antimicrobial, antioxidant and anti-inflammatory, antitumoral, and anti-aging compounds.
Collapse
Affiliation(s)
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Priscila Marcelino Dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - John F Kennedy
- Chembiotech Research, Tenbury Wells WR15 8FF, Worcestershire, United Kingdom
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
22
|
Yu B, Chen Y, Zhu L, Ban M, Yang L, Zeng Y, Li S, Tang C, Zhang D, Chen X. An effective and recyclable decolorization method for polysaccharides from Isaria cicadae Miquel by magnetic chitosan microspheres. RSC Adv 2022; 12:3147-3156. [PMID: 35425314 PMCID: PMC8979246 DOI: 10.1039/d1ra07758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
The purpose of this research was to develop an efficient and non-destructive method for decolorizing of polysaccharides extracted from Isaria cicadae Miquel by magnetic chitosan microspheres (MCM). The optimum decolorization parameters were achieved by response surface methodology as follows: the MCM amount was 8.0%, the adsorption temperature was 48 °C, the adsorption time was 82 min and the pH was 7. Under these optimal conditions, the D r%, R r%, and K c were 90.31 ± 0.12%, 95.40 ± 0.11% and 19.66 ± 0.49, respectively. MCM adsorption of pigment molecules was a spontaneous and endothermic process that could be fitted with the pseudo-second-order equation and the Freundlich equation. Besides, the adsorption mechanism could be controlled by multiple-diffusion steps, including film diffusion and intra-particle diffusion. Furthermore, MCM is a recyclable material. Adsorption with MCM is a promising method to remove pigment molecules of polysaccharide, it may replace the traditional decolorization method.
Collapse
Affiliation(s)
- Bingbing Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Yao Chen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Lijun Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Mengmeng Ban
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Li Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Yeda Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Shijie Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Danyan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 Guangdong PR China
| | - Xiaoqing Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510405 Guangdong China
| |
Collapse
|
23
|
PAN F, LI S, ZHU X, YANG J, WEN J, SONG C, LUO X, RUAN G, LIU Y. Purification and the effects on structure and bioactivity for polysaccharide from Actinidia valvata Dunn. using macroporous adsorption resin. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.99721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Feng PAN
- Zunyi Medical University, China; Zunyi Medical University, China
| | | | | | | | | | | | - Xirong LUO
- Zunyi Vocational and Technical College, China
| | | | - Yun LIU
- Zunyi Medical University, China; Zunyi Medical University, China
| |
Collapse
|
24
|
Gentiana straminea Maxim. polysaccharide decolored via high-throughput graphene-based column and its anti-inflammatory activity. Int J Biol Macromol 2021; 193:1727-1733. [PMID: 34774595 DOI: 10.1016/j.ijbiomac.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Gentiana straminea Maxim. exhibits various biological activities. However, the purification and functions of polysaccharides in Gentiana straminea Maxim. have never been reported. Herein, by proposing a flexible 3D graphene-based decoloration column (3DD column), Gentiana straminea Maxim. polysaccharide (GMP) was high-throughput obtained and its anti-inflammatory activity was investigated. Benefiting from the large macroporous network of 3D NH2-graphene oxide hydrogel with selective adsorption towards pigments, the 3DD column exhibits high decoloration ratio (96.41%). In addition, the 3DD column provides superior practical functionality as compared to the traditional approaches, which are time-consuming and need toxic solvents, and exhibiting widespread-application for the purification of polysaccharide from other common plant species. More importantly, the decolored GMP as a natural product has promising anti-inflammatory activity on RAW264.7 cells without negative impact on cell viability. Overall, this work reveals a new functional polysaccharides and provides a flexible approach for polysaccharide decoloration, exhibiting a promising prospect for natural polysaccharides in practical application of pharmaceutical.
Collapse
|
25
|
Chang SL, Li H, Liu JN, Zhao MX, Tan MH, Xu PW, Wang XD, Wang LW, Yuan XF, Zhao QS, Zhao B. Effect of hydrogen peroxide treatment on the quality of epsilon-poly-L-lysine products. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Lu F, Zhai R, Ruan S, Yang X, Alenyorege EA, Wang Y, Ding Y, Ma H. Enhancement of ultrasound on the dynamic decolorization of wolfberry (Lycium barbarum) polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Huang R, Zhang Q, Yao H, Lu X, Zhou Q, Yan D. Ion-Exchange Resins for Efficient Removal of Colorants in Bis(hydroxyethyl) Terephthalate. ACS OMEGA 2021; 6:12351-12360. [PMID: 34056387 PMCID: PMC8154176 DOI: 10.1021/acsomega.1c01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 05/05/2023]
Abstract
Bis(hydroxyethyl) terephthalate (BHET) obtained from waste poly(ethylene terephthalate) (PET) glycolysis often have undesirable colors, leading to an increased cost in the decoloration of the product and limiting the industrialization of chemical recycling. In this work, eight types of ion-exchange resins were used for BHET decoloration, and resin D201 showed an outstanding performance not only in the decoloration efficiency but also in the retention rate of the product. Under the optimal conditions, the removal rate of the colorant and the retention efficiency of BHET were over 99% and 95%, respectively. D201 showed outstanding reusability with five successive cycles, and the decolored BHET and its r-PET showed good chromaticity. Furthermore, the investigations of adsorption isotherms, kinetics, and thermodynamics have been conducted, which indicated that the decoloration process was a natural endothermic reaction. Adsorption interactions between the colorant and resin were extensively examined by various characterizations, revealing that electrostatic force, π-π interactions, and hydrogen bonding were the dominant adsorption mechanisms.
Collapse
Affiliation(s)
- Rong Huang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Qi Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Haoyu Yao
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Xingmei Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Sino
Danish College, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
- Innovation
Academy for Green Manufacture, Chinese Academy
of Sciences, Beijing 100190, P. R. China
- E-mail: . Phone/Fax: +86-010-82544800
| | - Qing Zhou
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Innovation
Academy for Green Manufacture, Chinese Academy
of Sciences, Beijing 100190, P. R. China
- E-mail: . Phone/Fax: +86-010-82544800
| | - Dongxia Yan
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
28
|
Guo N, Zou YP, Li HK, Kou P, Liu ZM, Fu YJ. Effective extraction and recovery of linarin from Chrysanthemum indicum L. flower using deep eutectic solvents. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
A sustainable and nondestructive method to high-throughput decolor Lycium barbarum L. polysaccharides by graphene-based nano-decoloration. Food Chem 2020; 338:127749. [PMID: 32805690 DOI: 10.1016/j.foodchem.2020.127749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023]
Abstract
Lycium barbarum L. polysaccharides (LBPs) with outstanding biological activities are of increasing interest. Traditional purification approaches are time-consuming and often involve toxic solvents that destroy the functionality and structure of polysaccharides. Herein, we report a sustainable and nondestructive strategy for purifying LBPs using graphene-based nano-decoloration. The amination of graphene oxide (GO) enables the resulted aminated reduced GO (NH2-rGO) with abundant sp2-hybridized carbon domains, displaying high adsorption capacity toward pigments in crude polysaccharides. As such, within 5 min, NH2-rGO can highly effectively and fast to decolor LBPs, with a high decoloration ratio of 98.72% and a high polysaccharides retention ratio of 95.62%. Importantly, compared with traditional decoloration methods, NH2-rGO is nondestructive toward LBPs and has good reusability. Moreover, it exhibited widespread-use decoloration performance to decolor several common plant species. Overall, our proposed nano-decoloration approach is a general-purpose, sustainable, and nondestructive method to purify LBPs.
Collapse
|
30
|
Wang R, Zuo M, Ding S, Liu B, Meng C, Song B, Li W. Recovery of immune activity by administration of polysaccharides of Toona sinensis and its characterization of major component. Nat Prod Res 2020; 35:5513-5517. [DOI: 10.1080/14786419.2020.1788558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rongshen Wang
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Min Zuo
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Shihong Ding
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Bing Liu
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Chao Meng
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Bo Song
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Wanzhong Li
- School of Pharmacy, Weifang Medical University, Weifang, P.R. China
| |
Collapse
|
31
|
Yang Z, Li H, Duan D, Yao X, Chen J, Ji H. Preparation of high purity squalene from soybean oil deodorizer distillate with the combination of macroporous resin and thin-film evaporation coupling distillation. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1606017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
- Huizhou Research Institute of Sun Yat-sen University, Huizhou, China
| | - Haibo Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Di Duan
- Fine Chemical Industry Research Institute, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Xingdong Yao
- Guangxi Key Laboratory of Forest Chemistry & Engineering, Guangxi university for Nationalities, Nanning, China
| | - Jiewei Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Hongbing Ji
- Huizhou Research Institute of Sun Yat-sen University, Huizhou, China
- Fine Chemical Industry Research Institute, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maomin, China
| |
Collapse
|
32
|
|
33
|
Tang W, Liu D, Yin JY, Nie SP. Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
35
|
Wang F, Dong Y, Cheng X, Xie H, Song A, Zhang Z. Effect of detoxification methods on ABE production from corn stover hydrolysate by Clostridium acetobutylicum CICC 8016. Biotechnol Appl Biochem 2020; 67:790-798. [PMID: 31903642 DOI: 10.1002/bab.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, effects of different single biomass derived inhibitors on acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum CICC 8016 were first investigated. The results showed that formic acid, coumaric acid, and furfural at 0.5 g/L (sodium formate equivalent) inhibited ABE production. Furthermore, corn stover hydrolysate media were prepared following dilute acid pretreatment, enzymatic hydrolysis, and detoxification with different methods. Among overliming, steam stripping, acetone-ethyl ether extraction, and ion exchange with five anion resins, adsorption with resin D301 showed the highest efficiency for inhibitor removal (99-100% of phenolics and 87-99% of sugar degradation products). Without detoxification, ABE production was lower than 1.0 g/L from 28.1 g/L sugars whereas ABE production with medium detoxified by D301 resin achieved higher ABE concentrations and yields than control with synthetic medium. Correlation analysis further revealed that formic acid, coumaric acid, and total phenolics were the major compounds inhibiting ABE production. The results also showed that the single detoxification method was sufficient to detoxify the hydrolysate for ABE production at the pretreatment conditions used in this study.
Collapse
Affiliation(s)
- Fengqin Wang
- College of Life Science, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People's Republic of China
| | - Yuheng Dong
- College of Life Science, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People's Republic of China
| | - Xiang Cheng
- College of Life Science, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People's Republic of China
| | - Hui Xie
- College of Life Science, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People's Republic of China
| | - Andong Song
- College of Life Science, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People's Republic of China
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
36
|
Duan S, Huang Q, Shen X, Hu J, Yi X, Li Z, Ding B. Deproteinization of four macroporous resins for rapeseed meal polysaccharides. Food Sci Nutr 2020; 8:322-331. [PMID: 31993158 PMCID: PMC6977430 DOI: 10.1002/fsn3.1309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/04/2023] Open
Abstract
In this study, the adsorption/desorption characteristics of rapeseed meal polysaccharides extract on four resins (HP-20, D3520, XAD-16, and AB-8) were evaluated. The results indicated that HP-20 resin had the best purification effect. Based on static adsorption test, the kinetics and isotherms of the four resins for protein and polysaccharide were investigated. The adsorption test showed that the pseudo-second-order kinetics model and the Freundlich isotherm model were more suitable for explanation of the adsorption process for protein and polysaccharide. Static desorption test showed that the highest protein desorption ratios of HP-20, D3520, and AB-8 resins could be obtained with 60% ethanol solution as eluate, and the highest protein desorption ratios of XAD-16 resin could be obtained with 40% ethanol solution as eluate. Dynamic adsorption/desorption tests of HP-20 resin showed that the deproteinization ratio was 91% and the polysaccharide recovery ratio was 62% when the treatment amount was 1.5 BV. Compared with three traditional methods, HP-20 resin adsorption method that the deproteinization ratio was 82% was more potent than the three traditional methods for purifying polysaccharides from rapeseed meal. In addition, UV/vis spectroscopy showed that most of the protein was absorbed by resins, and FT-IR spectroscopy indicated that the purity of the polysaccharide after purification was improved. Rapeseed meal polysaccharides could be effectively deproteinized using HP-20 resin, and it was suitable for purifying polysaccharides from rapeseed meal.
Collapse
Affiliation(s)
| | - Qian Huang
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Xiaoqian Shen
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Jie Hu
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Xiangzhou Yi
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Zhenshun Li
- College of Life ScienceYangtze UniversityJingzhouChina
- Jingchu Food Research & Development CentreYangtze UniversityJingzhouChina
| | - Baomiao Ding
- College of Life ScienceYangtze UniversityJingzhouChina
- Jingchu Food Research & Development CentreYangtze UniversityJingzhouChina
| |
Collapse
|
37
|
An advanced and universal method to high-efficiently deproteinize plant polysaccharides by dual-functional tannic acid-feIII complex. Carbohydr Polym 2019; 226:115283. [DOI: 10.1016/j.carbpol.2019.115283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 01/18/2023]
|
38
|
Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019; 24:molecules24173122. [PMID: 31466265 PMCID: PMC6749352 DOI: 10.3390/molecules24173122] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Polysaccharides are ubiquitous biomolecules found in nature that contain various biological and pharmacological activities that are employed in functional foods and therapeutic agents. Natural polysaccharides are obtained mainly by extraction and purification, which may serve as reliable procedures to enhance the quality and the yield of polysaccharide products. Moreover, structural analysis of polysaccharides proves to be promising and crucial for elucidating structure–activity relationships. Therefore, this report summarizes the recent developments and applications in extraction, separation, purification, and structural analysis of polysaccharides of plants and fungi.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| | - Yueping Bai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Hu Z, Zhou H, Li Y, Wu M, Yu M, Sun X. Optimized purification process of polysaccharides from Carex meyeriana Kunth by macroporous resin, its characterization and immunomodulatory activity. Int J Biol Macromol 2019; 132:76-86. [DOI: 10.1016/j.ijbiomac.2019.03.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
|
40
|
Cao JJ, Lv QQ, Zhang B, Chen HQ. Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem. Carbohydr Polym 2019; 212:89-101. [DOI: 10.1016/j.carbpol.2019.02.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/03/2023]
|
41
|
Xiong N, Yu R, Chen T, Xue YP, Liu ZQ, Zheng YG. Separation and purification of l-methionine from E. coli fermentation broth by macroporous resin chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:108-115. [DOI: 10.1016/j.jchromb.2019.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/02/2023]
|
42
|
Zhou YF, Wang LL, Chen LC, Liu TB, Sha RY, Mao JW. Enrichment and separation of steroidal saponins from the fibrous roots of Ophiopogon japonicus using macroporous adsorption resins. RSC Adv 2019; 9:6689-6698. [PMID: 35518499 PMCID: PMC9061077 DOI: 10.1039/c8ra09319a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, a simple and effective strategy for the enrichment of total steroidal saponins (TSS) from the fibrous roots of Ophiopogon japonicus (L. f.) Ker-Gawl. (FROJ) using macroporous adsorption resin was systematically developed. XAD-7HP resin was selected from six macroporous resins for further study because of the highest static adsorption and desorption capacities. The static adsorption of TSS on XAD-7HP resin fitted well to the Langmuir isotherm model and pseudo second-order kinetic model; the thermodynamics test showed that the adsorption process was spontaneous and exothermic. The dynamic tests on XAD-7HP resin columns demonstrated that the breakthrough volume was 16 bed volume (BV), and 6 BV of 80% ethanol was suitable for dynamic desorption. In a lab scale-up separation under optimal dynamic conditions, the content of TSS in the resin-enrichment fraction increased from 1.83% in the crude extracts to 13.86% by 7.59-fold with a recovery yield of 82.68%. Three steroidal saponins were obtained from the resin-enrichment fraction, and showed protective effects against oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cell (HUVEC) injury. Overall, these results suggested that XAD-7HP resin chromatography was an effective strategy for the large scale enrichment of TSS from FROJ, which showed the potential for functional food and pharmaceutical application. In this study, a simple and effective strategy for the enrichment of total steroidal saponins (TSS) from the fibrous roots of Ophiopogon japonicus (L. f.) Ker-Gawl. (FROJ) using macroporous adsorption resin was systematically developed.![]()
Collapse
Affiliation(s)
- Yi-Feng Zhou
- School of Biological and Chemical Engineering
- Zhejiang University of Science and Technology
- Hangzhou
- China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces
| | | | - Li-Chun Chen
- School of Biological and Chemical Engineering
- Zhejiang University of Science and Technology
- Hangzhou
- China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces
| | - Tie-bing Liu
- School of Biological and Chemical Engineering
- Zhejiang University of Science and Technology
- Hangzhou
- China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces
| | - Ru-Yi Sha
- School of Biological and Chemical Engineering
- Zhejiang University of Science and Technology
- Hangzhou
- China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces
| | - Jian-Wei Mao
- School of Biological and Chemical Engineering
- Zhejiang University of Science and Technology
- Hangzhou
- China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces
| |
Collapse
|
43
|
He B, Guo L, Zheng Q, Lin S, Lin J, Wei T, Ye Z. A simple and effective method using macroporous resins for the simultaneous decoloration and deproteinisation of
Cordyceps militaris
polysaccharides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao‐Lin He
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Li‐Qiong Guo
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Qian‐Wang Zheng
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Shuo‐Xin Lin
- James Clark School of Engineering University of Maryland College Park MD 20742 USA
| | - Jun‐Fang Lin
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Zhi‐Wei Ye
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| |
Collapse
|
44
|
Liang L, Liu G, Yu G, Song Y, Li Q. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin. Food Chem 2018; 277:744-752. [PMID: 30502211 DOI: 10.1016/j.foodchem.2018.10.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/20/2023]
Abstract
This study investigated an efficient and recyclable approach for purification of crude pumpkin oligosaccharide (POS) by macroporous resins. Five resins with different physical and chemical properties were tested for decoloration of POS. In virtue of its higher decoloration ratio (92.6%) and POS recovery ratio (81.3%), the macroporous resin DM28 was considered to a better selection. Depending on the changes of molecular weight, part of the monosaccharides in crude POS were removed simultaneously after decoloration by DM28. Operating conditions were also determined by the dynamic breakthrough and desorption curves. Moreover, UV/vis spectroscopy and Fourier transform infrared results revealed that most of the colored impurities and proteins can be removed, but the characteristic groups of the POS exhibited no significant difference. Compared with traditional methods, DM28 resin is superior in decoloration efficiency, pigment recovery and oligosaccharide recovery. This research contributes to further exploration on the structure and function of POS.
Collapse
Affiliation(s)
- Li Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Guimei Liu
- School of Food Sciences and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Guoyong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Yi Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Quanhong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
45
|
Tang L, Wei X, An F, Lu Y. Preparative separation of TL1-1 from Daldinia eschscholzii extract by macroporous resin and evaluation of its antimicrobial activities. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:22-29. [PMID: 28582661 DOI: 10.1016/j.jchromb.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 05/06/2017] [Indexed: 12/11/2022]
Abstract
2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) has already been reported to exhibit significant activities such as cytotoxicity, antifungal activity and growth inhibitory activity. In order to simply and efficiently separate TL1-1 from crude extracts of Daldinia eschscholzii on a large-preparative scale, XAD-16 resin was selected from ten types of resin based on its superior adsorption and desorption performance. Adsorption equilibrium data for this resin fitted well with pseudo-first order kinetics and the Freundlich model, which were elucidated from kinetic experiments and adsorption isotherms. Under optimized conditions, the purity of TL1-1 increased from 19.21% (w/w) in the crude extract, to 84.64% (w/w) in the final product, with a recovery yield of 75.06% (w/w) by a one-step treatment. Moreover, in a large-scale separation, the purity and recovery of TL1-1 was 80.33% and 72.02% (w/w), respectively. These results demonstrated that a simple adsorption-desorption strategy, using XAD-16 resin, was efficient, which also highlighted its potential for the future large-scale purification and preparation of TL1-1. In addition, studies showed that the purified TL1-1 exhibited moderate antibacterial activity against Ralstonia solanacearum.
Collapse
Affiliation(s)
- Liu Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xingchen Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|