1
|
Sarraf M, Naji-Tabasi S, Beig-Babaei A, Moros JE, Carrillo MCS, Tenorio-Alfonso A. Developing edible oleogels structure prepared with emulsion-template approach based on soluble biopolymer complex. Food Chem X 2024; 24:101917. [PMID: 39525056 PMCID: PMC11550034 DOI: 10.1016/j.fochx.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The utilization of edible oleogels as oil structures has been proven to comprise a suitable alternative to fat. In this research, whey protein concentrate (WPC) oleogel structure was designed and improved by the creation of a soluble complex of WPC-basil seed gum (BSG) and WPC-xanthan gum (XG) at different concentrations (0.2, 0.4, and 0.6 % w/w). The results showed increasing the hydrocolloids had positive effects on oleogel characteristics, which can preserve oil well in the microstructure network of oleogel. Additionally, the incorporation of hydrocolloids promoted stability of oleogels against stress and heat. Therefore, the centrifuge stability of WPC oleogel was 26 and increase to ∼98 and 100 % in 0.6XG:WPC and 0.6BSG:WPC oleogels, respectively. The evaluation of the rheological properties revealed the predominant elastic behavior of the oleogles. Overall, the addition of either XG or BSG into WPC-based oleogel improved its physicochemical and mechanical characteristics. Moreover, oleogels prepared using 0.6 % BSG-5 % WPC exhibited the best properties.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Adel Beig-Babaei
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - José Enrique Moros
- Pro2TecS – Chemical Process and Product Technology Research Center, Department of Chemical Engineering. ETSI, Universidad de Huelva. Campus de “El Carmen”, 21071 Huelva, Spain
| | - Maria Carmen Sánchez Carrillo
- Pro2TecS – Chemical Process and Product Technology Research Center, Department of Chemical Engineering. ETSI, Universidad de Huelva. Campus de “El Carmen”, 21071 Huelva, Spain
| | - Adrián Tenorio-Alfonso
- Pro2TecS – Chemical Process and Product Technology Research Center, Department of Chemical Engineering. ETSI, Universidad de Huelva. Campus de “El Carmen”, 21071 Huelva, Spain
| |
Collapse
|
2
|
Geng Y, Du X, Jia R, Zhu Y, Lu Y, Guan X, Hu Y, Zhu X, Zhang M. Research Progress on Tofu Coagulants and Their Coagulation Mechanisms. Foods 2024; 13:3475. [PMID: 39517259 PMCID: PMC11545762 DOI: 10.3390/foods13213475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Tofu has captivated researchers' attention due to its distinctive texture and enrichment in nutritional elements, predominantly soybean protein. Coagulants play a critical role in promoting coagulation during tofu production, directly influencing its texture, quality, and physicochemical characteristics. Currently, the impact of coagulant characteristics on coagulation, as well as the underlying mechanisms, remain unclear. This review provides a summary of research progress on salt coagulants, acid coagulants, enzyme coagulants, novel coagulants, polysaccharide additives, and various coagulant formulations. The coagulation mechanisms of various coagulants are also discussed. Accordingly, this paper seeks to offer reliable theoretical guidance for the development of novel coagulants and the realization of fully automated tofu production.
Collapse
Affiliation(s)
- Yuhan Geng
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Xin Du
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Rui Jia
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Yi Zhu
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
- School of Humanities and Social Sciences, School of Public Administration, Beihang University, Beijing 100083, China
| | - Yuhao Lu
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Xiangfei Guan
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Yuehan Hu
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Xinyu Zhu
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| | - Minlian Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084, China; (Y.G.); (X.D.); (R.J.); (Y.Z.); (Y.L.); (X.G.); (Y.H.); (X.Z.)
| |
Collapse
|
3
|
Wang Y, Liu X, Zhang Q. The Preparation of W/O/W High-Internal-Phase Emulsions as Coagulants for Tofu: The Effect of the Addition of Soy Protein Isolate in the Internal Water Phase. Foods 2024; 13:2748. [PMID: 39272513 PMCID: PMC11394951 DOI: 10.3390/foods13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Tofu quality is determined by a controlled coagulation process using a W/O/W emulsion coagulant. The impact of adding soy protein isolate (SPI) to the inner water phase on the stability of W/O/W high-internal-phase emulsions (HIPEs) and its application as a coagulant for tofu was assessed. No creaming occurred during 7-day storage with SPI concentrations up to 0.3%, while the emulsion droplets aggregated with 0.5% and 0.7% SPI. Emulsions containing 0.3% SPI maintained a constant mean droplet size after 21 days of storage and exhibited the lowest TURBISCAN stability index value. HIPE stability against freeze-thaw cycles improved after heating. HIPEs with SPI concentrations above 0.3% demonstrated an elastic gel-like behavior. The increased viscosity and aggregation of the protein around droplets indicated that the interaction among emulsion droplets could enhance stability. W/O/W HIPE coagulants significantly increased tofu yield, reduced hardness, and produced a more homogenous tofu gel compared to a MgCl2 solution. The HIPE with 0.3% SPI was found to be optimal for use as a coagulant for tofu.
Collapse
Affiliation(s)
- Yongquan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Yao X, Teng W, Wang J, Wang Y, Zhang Y, Cao J. Polyglycerol polyricinoleate and lecithin stabilized water in oil nanoemulsions for sugaring Beijing roast duck: Preparation, stability mechanisms and color improvement. Food Chem 2024; 447:138979. [PMID: 38518617 DOI: 10.1016/j.foodchem.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.
Collapse
Affiliation(s)
- Xinshuo Yao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
5
|
Qiu C, Liu Y, Chen C, Lee YY, Wang Y. Effect of Diacylglycerol Crystallization on W/O/W Emulsion Stability, Controlled Release Properties and In Vitro Digestibility. Foods 2023; 12:4431. [PMID: 38137235 PMCID: PMC10743223 DOI: 10.3390/foods12244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| | - Yingwei Liu
- Hunan Edible Fungi Institute, Changsha 410013, China;
| | - Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| |
Collapse
|
6
|
Modulation of soy protein isolate gel properties by a novel "two-step" gelation process: Effects of pre-aggregation with different divalent sulfates. Food Chem 2022; 394:133515. [PMID: 35749876 DOI: 10.1016/j.foodchem.2022.133515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
Abstract
A novel pre-aggregation process prior to gelation was applied to modulate the aggregation and gelation pathway of soy protein isolate (SPI). SPI dispersions were pre-aggregated with CaSO4, MgSO4 or ZnSO4 at 0-15 mM and then gelled by adding CaSO4 up to a final salt concentration of 35 mM. Compared with the sample without pre-aggregation, the storage modulus of SPI gels pre-aggregated with 10 mM CaSO4, 10 mM MgSO4, and 2.5 mM ZnSO4 were increased by 50.5%, 35.7%, and 63.6%, respectively. The fracture stress, texture profile analysis parameters, and water holding capacity were markedly improved by an appropriate level of pre-aggregation. To a certain extent, pre-aggregation could promote the formation of uniform structure with thicker strands, whereas over-aggregation resulted in a coarser network, which was correlated with the volume-mean diameter (D4,3) of pre-aggregated SPI particles. The results are of great value for further understanding of gelation mechanism of proteins.
Collapse
|
7
|
Katsouli M, Tzia C. O1/W/O2 nanoemulsions and emulsions based on extra virgin olive oil produced by ultrasound-assisted homogenization process: Characterization of structure, physical and encapsulation efficiency. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2035235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| |
Collapse
|
8
|
Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
|
10
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
11
|
Alassmy YA, Sebakhy KO, Picchioni F, Pescarmona PP. Novel non-ionic surfactants synthesised through the reaction of CO2 with long alkyl chain epoxides. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Wang H, Yan Y, Feng X, Wu Z, Guo Y, Li H, Zhu Q. Improved physicochemical stability of emulsions enriched in lutein by a combination of chlorogenic acid-whey protein isolate-dextran and vitamin E. J Food Sci 2020; 85:3323-3332. [PMID: 32895972 DOI: 10.1111/1750-3841.15417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
Lutein, as a bioactive substance, has the ability to decrease the risk of some chronic diseases, but the poor water solubility, chemical instability, and low bioaccessibility limit its wide application in foods. In this study, an emulsion-based delivery system stabilized by chlorogenic acid (CA)-whey protein isolate (WPI)-dextran (DEX) ternary conjugates was prepared and vitamin E (VE) was added to increase the chemical stability of lutein. Molecular weight and conformational information of ternary conjugates were obtained by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. o-Phthalaldehyde results suggested that the extent of glycation was 16.4% and 19.5% for (CA-WPI)-DEX and WPI-DEX conjugates, respectively. The physicochemical stability of lutein-enriched emulsions was evaluated under different environmental stresses and long-term storage. The obtained results showed that compared with emulsions stabilized by WPI alone or binary conjugates, ternary conjugates imparted emulsions high stability under different environmental stress conditions (ionic strength, freeze-thaw, and heat) and long-term storage (within 3 weeks). VE can effectively decrease the degradation rate of lutein without changing the physical stability of emulsions. Additionally, the lutein-enriched emulsions prepared by ternary conjugates and VE exhibited a relatively high bioaccessibility. PRACTICAL APPLICATION: The ternary conjugates constructed in this paper has excellent physicochemical characteristics to stabilize emulsion, and can increase the water solubility of functional factors and reduce their degradation rate. Additionally, this conjugate was prepared by food-grade materials. Therefore, it can be used as emulsion-based delivery systems in food industrials.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yong Yan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Xiangru Feng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300143, China
| | - Yatu Guo
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300384, China
| | - Heyu Li
- Tianjin ubasio Biotechnology Group Co., Ltd., Tianjin, 300457, China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| |
Collapse
|
13
|
Metilli L, Francis M, Povey M, Lazidis A, Marty-Terrade S, Ray J, Simone E. Latest advances in imaging techniques for characterizing soft, multiphasic food materials. Adv Colloid Interface Sci 2020; 279:102154. [PMID: 32330733 DOI: 10.1016/j.cis.2020.102154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Over the last two decades, the development and production of innovative, customer-tailored food products with enhanced health benefits have seen major advances. However, the manufacture of edible materials with tuned physical and organoleptic properties requires a good knowledge of food microstructure and its relationship to the macroscopic properties of the final food product. Food products are complex materials, often consisting of multiple phases. Furthermore, each phase usually contains a variety of biological macromolecules, such as carbohydrates, proteins and lipids, as well as water droplets and gas bubbles. Micronutrients, such as vitamins and minerals, might also play an important role in determining and engineering food microstructure. Considering this complexity, highly advanced physio-chemical techniques are required for characterizing the microstructure of food systems prior to, during and after processing. Fast, in situ techniques are also essential for industrial applications. Due to the wide variety of instruments and methods, the scope of this paper is focused only on the latest advances of selected food characterization techniques, with emphasis on soft, multi-phasic food materials.
Collapse
|
14
|
Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4010008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Double emulsions are very promising for various applications in pharmaceutics, cosmetics, and food. Despite lots of published research, only a few products have successfully been marketed due to immense stability problems. This review describes approaches on how to characterize the stability of double emulsions. The measurement methods are used to investigate the influence of the ingredients or the process on the stability, as well as of the environmental conditions during storage. The described techniques are applied either to double emulsions themselves or to model systems. The presented analysis methods are based on microscopy, rheology, light scattering, marker detection, and differential scanning calorimetry. Many methods for the characterization of double emulsions focus only on the release of the inner water phase or of a marker encapsulated therein. Analysis methods for a specific application rarely give information on the actual mechanism, leading to double emulsion breakage. In contrast, model systems such as simple emulsions, microfluidic emulsions, or single-drop experiments allow for a systematic investigation of diffusion and coalescence between the individual phases. They also give information on the order of magnitude in which they contribute to the failure of the overall system. This review gives an overview of various methods for the characterization of double emulsion stability, describing the underlying assumptions and the information gained. With this review, we intend to assist in the development of stable double emulsion-based products.
Collapse
|
15
|
Zhu Q, Pan Y, Jia X, Li J, Zhang M, Yin L. Review on the Stability Mechanism and Application of Water‐in‐Oil Emulsions Encapsulating Various Additives. Compr Rev Food Sci Food Saf 2019; 18:1660-1675. [DOI: 10.1111/1541-4337.12482] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/08/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Qiaomei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
- Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology)Ministry of Education Tianjin 300457 China
| | - Yijun Pan
- Dept. of Food Science, RutgersThe State Univ. of New Jersey 65 Dudley Rd. New Brunswick NJ08901 USA
| | - Xin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
| | - Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology)Ministry of Education Tianjin 300457 China
| | - Lijun Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
| |
Collapse
|
16
|
|
17
|
Dima C, Dima S. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability. J Microencapsul 2019; 35:584-599. [PMID: 30557070 DOI: 10.1080/02652048.2018.1559246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chlorogenic acid (CA) is a natural compound used as an antioxidant in the preparation of food, drugs, and cosmetics. Due to their low stability and bioavailability, many researchers have studied the encapsulation of CA in various delivery colloidal systems. The aim of this study was to evaluate the stability of water-in-oil-in-water (W/O/W) double emulsions loaded with CA and its antioxidant capacity. For this purpose, CA-W/O/W double emulsions were prepared using Span 80 and lecithin as lipophilic emulsifiers, and Tween 20 as a hydrophilic emulsifier. The influence of nature of lipophilic emulsifiers, the presence of chitosan (CH) in the internal and external aqueous phases, pH, temperature and the storage time of W/O/W double emulsions were also investigated. Depending on the preparation conditions, the W/O/W double emulsions showed the droplet size in the range 9.13 ± 0.55 μm-38.21 ± 1.87 μm, the creaming index 34%-78% and the efficiency encapsulation 79.45 ± 1.5%-88.13 ± 1.9%. Zeta potential values were negative for the W/O/W double emulsion without CH (-36.8 ± 2.02mV; -27.3 ± 1.75mV) and positive for the W/O/W double emulsions with CH in the external aqueous phase (+6.5 ± 0.42mV; 28.6 ± 0.92mV). The study of the release of CA from W/O/W double emulsions has highlighted two mechanisms: one based on the coalescence between the water inner droplets or between the oil globules as well as a diffusion releasing mechanism. The oxidative stability parameters of the W/O/W double emulsions, such as the peroxide value (POV) and the conjugated diene content (CD) were measured.
Collapse
Affiliation(s)
- Cristian Dima
- a Faculty of Food Science and Engineering , "Dunarea de Jos" University of Galati , Galati , Romania
| | - Stefan Dima
- b Faculty of Science and Environment , "Dunarea de Jos" University of Galati , Galati , Romania
| |
Collapse
|
18
|
Zhu Q, Lu H, Zhu J, Zhang M, Yin L. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Zubair M, Ullah A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2019; 60:406-434. [DOI: 10.1080/10408398.2018.1534800] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Li Q, Dang L, Li S, Liu X, Guo Y, Lu C, Kou X, Wang Z. Preparation of α-Linolenic-Acid-Loaded Water-in-Oil-in-Water Microemulsion and Its Potential as a Fluorescent Delivery Carrier with a Free Label. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13020-13030. [PMID: 30507107 DOI: 10.1021/acs.jafc.8b04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our previous work has demonstrated that α-linolenic acid (ALA)-loaded oil-in-water (O/W) microemulsion could enhance ALA antioxidant capacity. Meanwhile, we also observed that synthesized microemulsion itself had fluorescence. In this work, we have prepared a multiple water-in-oil-in-water (W/O/W) microemulsion to further enhance ALA antioxidant capacity and activate this delivery carrier application potential with a free label. The compositions of primary water-in-oil (W/O) microemulsion were obtained using pseudo-ternary phase diagrams, and then W/O/W microemulsion was prepared adopting the "two-step heterotherm method". The conductivity of W/O/W microemulsion was measured to lie between 250.0 and 350.0 μs/cm. The spherical droplets with a mean particle diameter of 10.0-20.0 nm were confirmed by transmission electron microscopy and dynamic light scattering. Nuclear magnetic resonance confirmed that ALA diffused to the multiple water-oily interface simultaneously. In addition, the in vitro release and antioxidant capacity measurements of ALA-loaded W/O/W microemulsion concluded the sustained-release effect and excellent antioxidant capacity. The fluorescent intensity of W/O/W microemulsion was markedly increased in comparison to O/W microemulsion. The synthesized microemulsion could lead to important applications and have advantages of a label-free fluorescent carrier for optical imaging purposes.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Leping Dang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Sen Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiaoxue Liu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yun Guo
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Chao Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
21
|
Fu W, Chen E, McClements DJ, Cao Y, Liu S, Li B, Li Y. Controllable Viscoelastic Properties of Whey Protein-Based Emulsion Gels by Combined Cross-Linking with Calcium Ions and Cinnamaldehyde. ACS APPLIED BIO MATERIALS 2018; 2:311-320. [DOI: 10.1021/acsabm.8b00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Weiting Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Enmin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100083, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100083, China
| |
Collapse
|
22
|
Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Food Chem 2018; 253:63-70. [DOI: 10.1016/j.foodchem.2018.01.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 11/21/2022]
|
23
|
Kang H, Wang Z, Zhao S, Wang Q, Zhang S. Reinforced soy protein isolate-based bionanocomposites with halloysite nanotubes via mussel-inspired dopamine and polylysine codeposition. J Appl Polym Sci 2018. [DOI: 10.1002/app.46197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haijiao Kang
- MOE Key Laboratory of Wooden Material Science and Application; Beijing Forestry University; Beijing 100083 China
| | - Zhong Wang
- MOE Key Laboratory of Wooden Material Science and Application; Beijing Forestry University; Beijing 100083 China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and Application; Beijing Forestry University; Beijing 100083 China
| | - Qingchun Wang
- School of Technology; Beijing Forestry University; Beijing 100083 China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application; Beijing Forestry University; Beijing 100083 China
| |
Collapse
|
24
|
Fu C, Ding C, Sun X, Fu A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 87:149-154. [PMID: 29549944 DOI: 10.1016/j.msec.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023]
Abstract
Nanotechnology plays an important role in the development of drug delivery, imaging, and diagnosis. In this study, nanocapsules containing protein-functionalized gold nanoclusters (AuNCs) as the shell and hydrophobic drug curcumin as the core were prepared as a tumor cell theranostic agent. After the nanocapsules were added into tumor cell media, they entered the cells with high efficiency and exhibited strong fluorescence within the cells. The results indicated that the nanocapsules were broken up in the cells and curcumin was released. Simultaneously, the nanocapsules exhibited significant inhibition effect against tumor cell proliferation in a concentration- and time-dependent manner, and the images of atomic force microscopy (AFM) showed that the cell morphology underwent obvious changes after the capsule treatment. Additionally, cell membrane appeared wrinkles after the cells treated with the nanocapsules, resulting in a rough cell surface, implying that the cytoskeleton would involve in the cell uptake of nanocapsules. Moreover, the AuNCs and curcumin in the system could exert synergistic effect on the inhibition of tumor cell growth and induction of cell apoptosis. The study highlights the potential of the system as a promising agent for drug delivery and tumor cell theranosis.
Collapse
Affiliation(s)
- Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Chizhu Ding
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Zhu Q, Wang C, Khalid N, Qiu S, Yin L. Effect of protein molecules and MgCl2 in the water phase on the dilational rheology of polyglycerol polyricinoleate molecules adsorbed at the soy oil-water interface. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Zhu Q, Feng L, Saito M, Yin L. Preparation and characterization of W/O/W double emulsions containing MgCl2. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1318076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiaomei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liping Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Masayoshi Saito
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Lijun Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Muschiolik G, Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr Rev Food Sci Food Saf 2017; 16:532-555. [DOI: 10.1111/1541-4337.12261] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Eric Dickinson
- School of Food Science and Nutrition; Univ. of Leeds; LS2 9JT Leeds United Kingdom
| |
Collapse
|