1
|
Batool Z, Ullah S, Khan A, Mali SN, Gurav SS, Jawarkar RD, Alshammari A, Albekairi NA, Al-Harrasi A, Shafiq Z. Design, synthesis, QSAR modelling and molecular dynamic simulations of N-tosyl-indole hybrid thiosemicarbazones as competitive tyrosinase inhibitors. Sci Rep 2024; 14:25754. [PMID: 39468115 PMCID: PMC11519592 DOI: 10.1038/s41598-024-75100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Tyrosinase is an enzyme crucial for the progression of melanogenesis. Immoderate production of melanin may be the cause of hyperpigmentation and darkening leading to skin diseases. Tyrosinase is the most researched target for suppressing melanogenesis since it catalyzes the rate-limiting stage of melanin production. Thiosemicarbazones have been reported to possess strong inhibition capability against tyrosinase. We have designed and synthesized eighteen N-tosyl substituted indole-based thiosemicarbazones as competitive tyrosinase inhibitors in the current work. All the compounds exhibited outstanding to good potency with half maximal inhibitory concentration in the range of 6.40 ± 0.21 µM to 61.84 ± 1.47 µM. The compound 5r displayed the top-tier inhibition amongst the entire series with IC50 = 6.40 ± 0.21 µM. Compounds, 5q and 5r exhibited competitive inhibitions in concentration dependent manner with Ki = 3.42 ± 0.03 and 10.25 ± 0.08 µM respectively. The binding mode of 5r was evaluated through in silico molecular dynamics simulations and molecular docking, while ADME assessment studies predicted the drug-like characteristics of the derivatives. The newly synthesized derivatives may serve as a structural guide for designing and developing novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India
| | - Shailesh S Gurav
- Department of Chemistry, VIVA College, Virar, Maharashtra, 401303, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
2
|
Jin Jung H, Jin Kim H, Soo Park H, Young Kim G, Jung Park Y, Lee J, Kyung Kang M, Yoon D, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Highly potent anti-melanogenic effect of 2-thiobenzothiazole derivatives through nanomolar tyrosinase activity inhibition. Bioorg Chem 2024; 150:107586. [PMID: 38955001 DOI: 10.1016/j.bioorg.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Compounds with sulfhydryl substituents and azole compounds exhibit potent anti-tyrosinase potency. 2-Thiobenzothiazole (2-TBT), a hybrid structure of sulfhydryl and azole, exists in two tautomeric forms, with the thione form being predominant according to several studies. 2-TBT derivatives were synthesized as potential tyrosinase inhibitors as the thione tautomeric form has the same N-CS moiety as phenylthiourea (PTU), which is suitable for chelation with the copper ions present in the tyrosinase active site. Eight of the ten 2-TBT derivatives inhibited the monophenolase and diphenolase activities of mushroom tyrosinase, with IC50 values of 0.02-0.83 μM. Kinetic studies and molecular dynamics simulations were performed to determine their mode of action and confirm that the 2-TBT derivatives bind to the tyrosinase active site with high stability. Derivatives 3, 4, 8, and 10 strongly inhibited melanogenesis in B16F10 cells in a pattern similar to the results of cellular tyrosinase inhibition, thereby suggesting that their ability to inhibit melanogenesis was due to their tyrosinase inhibitory activity. In a depigmentation experiment using zebrafish embryos, all 2-TBT derivatives showed better potency than kojic acid, even at 400 to 2000 times lower concentration, and 1 and 10 reduced zebrafish larva pigmentation more strongly than PTU even at 20 times lower concentration. Experiments investigating the changes in tyrosinase inhibitory activity of 2-TBT derivatives in the presence and absence of CuSO4 and their copper chelating ability supported that these derivatives exert their anti-melanogenic effect by chelating the copper ions of tyrosinase. These results suggest that 2-TBT derivatives are promising candidates for the treatment of hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
4
|
Peng Z, Wang G, Wang JJ, Zhao Y. Anti-browning and antibacterial dual functions of novel hydroxypyranone-thiosemicarbazone derivatives as shrimp preservative agents: Synthesis, bio-evaluation, mechanism, and application. Food Chem 2023; 419:136106. [PMID: 37030204 DOI: 10.1016/j.foodchem.2023.136106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
To develop new shrimp preservative agents with dual functions of anti-browning and antibacterial, thirteen hydroxypyranone-thiosemicarbazone derivatives were prepared according to molecular hybridization. Thereinto, compound 7j (IC50 = 1.99 ± 0.19 μM) shown the strongest anti-tyrosinase activity and was about twenty-three folds stronger than kojic acid (45.73 ± 4.03 μM). The anti-tyrosinase mechanism of 7j was illustrated through enzyme kinetic, copper ion chelating ability, fluorescence quenching, ultraviolet spectrum, AFM analysis, and molecular docking study. On the other hand, antibacterial assay and time-kill kinetics analysis confirmed that 7j also had good antibacterial activity against V. parahaemolyticus (MIC = 0.13 mM). PI uptake test, SDS-PAGE, and fluorescence spectrometry analysis proved that 7j can affect the bacterial cell membrane. Finally, the shrimp preservation and safety study indicated that 7j has dual effects of inhibiting bacterial growth and preventing enzyme browning, and can be applied to the preservation of fresh shrimp.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 55004, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Tyrosinase inhibitory effects of the peptides from fish scale with the metal copper ions chelating ability. Food Chem 2022; 390:133146. [PMID: 35551025 DOI: 10.1016/j.foodchem.2022.133146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
Abstract
Tyrosinase inhibitors have important applications in the cosmetics, medical and food industries due to they can effectively inhibit the synthesis of melanin. In this study, tilapia scale polypeptides were used as raw materials, and high-purity polypeptides with metal copper ions chelating ability were obtained by enzymatic hydrolysis, column chromatography, and EDTA elution. In vitro cell model analysis showed that the fish squamous peptides could strongly inhibit the activity of tyrosinase. When the sample concentration was 5 mg·mL-1, its inhibition rate of tyrosinase reached to 59.73%, which had a better inhibition of enzyme activity compared with the positive control of the same concentration. The comprehensive results showed that the fish scale polypeptide with metal copper ions chelating ability could be a strong tyrosinase inhibitor, and might be used to prevent food browning in food-related fields, and could also be used for skin whitening in the fields of medicine and cosmetics.
Collapse
|
6
|
Huang GL, Liu TT, Ma JJ, Sun LX, Sui SY, Quan XY, Wang YN. Anti-polyphenol oxidase mechanism of oligomeric procyanidins and its application on browning control of “Baiyu” loquat during storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
8
|
Martins RMG, Xavier-Júnior FH, Barros MR, Menezes TM, de Assis CRD, de Melo ACGR, Veras BO, Ferraz VP, Filho AAM, Yogui GT, Bezerra RS, Seabra GM, Neves JL, Tadei WP. Impact on cholinesterase-inhibition and in silico investigations of sesquiterpenoids from Amazonian Siparuna guianensis Aubl. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119511. [PMID: 33561686 DOI: 10.1016/j.saa.2021.119511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The plant popularly known as "negramina" (Siparuna guianensis Aubl.), member of the family Siparunaceae produces an essential oil that presents several biological activities reported in literature. Here, the essential oil was obtained by hydrodistillation from fresh leaves collected in the state of Roraima, far north of the Amazon. Chemical composition of the essential oil was characterized by gas chromatography coupled to mass spectrometry (GC-MS) and flame ionization detector (GC-FID). The sesquiterpenoid shyobunone and its derivatives were identified as major compounds in the oil (>40%). The effect of S. guianensis essential oil on the acetylcholinesterase (AChE) activity from Crassostrea rhizophorae, Litopenaeus vannamei and Electrophorus electricus was tested by spectrophotometric assays. The essential oil has been identified as an AChE inhibitor. The mechanism of inhibition was investigated as well as spectrofluorimetric interactions between the essential oil and the enzyme. 1H NMR titration and molecular docking were also investigated. The spectrophotometric results revealed that shyobunone and its derivatives strongly interact with AChE with a kind of non-competitive inhibition. Interaction studies support the results of enzyme inhibition. Molecular coupling predicted that iso-shyobunone is the strongest ligand, corroborated by fluorescence suppression and 1H NMR titration results. In conclusion, Siparuna guianensis essential oil can be a new source of shyobunone and derivatives capable to reversibly inhibit AChE showing potential neuroprotective properties to be applied in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Regildo M G Martins
- Post-Graduate in Biotechnology Multi-Institutional Program, PPGBIOTEC, Federal University of Amazonas, UFAM, Av. General Rodrigo Otávio, 3000, Coroado, Manaus, Amazonas, Brazil; Laboratory of Malária and Dengue, National Institute for Amazonian Research, Manaus, AM, Brazil
| | - Francisco H Xavier-Júnior
- Post-Graduate Program in Biotechnology, University Potiguar Laureate International Universities, Campus Salgado Filho, 59075-000 Natal, RN, Brazil
| | - Marcela R Barros
- Biological Chemistry Laboratory, Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Thaís M Menezes
- Biological Chemistry Laboratory, Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Caio R D de Assis
- Enzymology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil; Laboratory of Organic Compounds in Coastal and Marine Ecosystems - OrganoMAR, Oceanography Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ana Cristina G R de Melo
- Center for Research and Postgraduate in Science and Technology, Postgraduate Program in Biotechnology and Biodiversity of Amazon, Environmental Chemistry Laboratory, Federal University of Roraima - UFRR, Boa Vista, RR, Brazil
| | - Bruno O Veras
- Laboratory of Natural Products - LPN, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Vany P Ferraz
- Chromatography Laboratory, Department of Chemistry, Institute of Exact Sciences, UFMG, Belo Horizonte, MG, Brazil
| | - Antonio A M Filho
- Center for Research and Postgraduate in Science and Technology, Postgraduate Program in Biotechnology and Biodiversity of Amazon, Environmental Chemistry Laboratory, Federal University of Roraima - UFRR, Boa Vista, RR, Brazil
| | - Gilvan T Yogui
- Laboratory of Organic Compounds in Coastal and Marine Ecosystems - OrganoMAR, Oceanography Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ranilson S Bezerra
- Enzymology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Gustavo M Seabra
- Biological Chemistry Laboratory, Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil; Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), School of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jorge L Neves
- Biological Chemistry Laboratory, Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Wanderli P Tadei
- Laboratory of Malária and Dengue, National Institute for Amazonian Research, Manaus, AM, Brazil.
| |
Collapse
|
9
|
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:85-110. [PMID: 33517778 DOI: 10.1080/1062936x.2020.1862297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Tyrosinase is a key rate-limiting enzyme in the process of melanin synthesis, which is closely related to human pigmentation disorders. Tyrosinase inhibitors can down-regulate tyrosinase to effectively reduce melanin synthesis. In this work, we conducted structure-activity relationship (SAR) study on 1097 diverse mushroom tyrosinase inhibitors. We applied five kinds of machine learning methods to develop 15 classification models. Model 5B built by fully connected neural networks and ECFP4 fingerprints achieved the highest prediction accuracy of 91.36% and Matthews correlation coefficient (MCC) of 0.81 on the test set. The applicability domains (AD) of classification models were defined by d S T D - P R O method. Moreover, we clustered the 1097 inhibitors into eight subsets by K-Means to figure out inhibitors' structural features. In addition, 10 quantitative structure-activity relationship (QSAR) models were constructed by four machine learning methods based on 813 inhibitors. Model 6 J, the best QSAR model, was developed by fully connected neural networks with 50 RDKit descriptors. It resulted in a coefficient of determination (r 2) of 0.770 and a root mean squared error (RMSE) of 0.482 on the test set. The AD of Model 6 J was visualized by Williams plot. The models built in this study can be obtained from the authors.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - D Huo
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology , Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| |
Collapse
|
10
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
11
|
Al-Mutairi AA, Katari BKP, Narasimhan Y, Blacque O, Al-Wahaibi LH, Al-Alshaikh MA, El-Emam AA, Percino MJ, Thamotharan S. Interplay of weak intermolecular interactions in two Schiff's bases with organic fluorine derived from 5-nitrothiophene-2-carboxaldehyde: Crystal structures, DFT calculation and in vitro evaluation of bioactivities. J Mol Struct 2020; 1221:128883. [DOI: 10.1016/j.molstruc.2020.128883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Cabezudo I, Ayelen Ramallo I, Alonso VL, Furlan RLE. Effect directed synthesis of a new tyrosinase inhibitor with anti-browning activity. Food Chem 2020; 341:128232. [PMID: 33039744 DOI: 10.1016/j.foodchem.2020.128232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
The inhibition of enzymatic browning is an attractive target to elevate the quality of foods. The objective of this work is to describe a novel platform for the discovery of tyrosinase inhibitors, based on (a) one-pot preparation of a library of thiosemicarbazide compounds, (b) biological evaluation using tyrosinase TLC bioautography, (c) inhibitor identification via mass spectrometry coupled to bioautography. During these proof-of-concept experiments, the approach led to the straightforward identification of a new thiosemicarbazone with improved tyrosinase inhibition properties and fresh-cut apple slices antibrowning effect when compared to kojic acid. In conclusion, the platform represents an interesting strategy for the discovery of this type of inhibitors.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| | - Victoria L Alonso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
13
|
Simultaneous Determination of Six Isoflavones from Puerariae Lobatae Radix by CPE-HPLC and Effect of Puerarin on Tyrosinase Activity. Molecules 2020; 25:molecules25020344. [PMID: 31952126 PMCID: PMC7024166 DOI: 10.3390/molecules25020344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Tyrosinase inhibitors with excellent inhibitory activities and lower side effects have promising applications in the fields of medicine, agriculture, food sciences and cosmetics. In this study, a method for simultaneous separation and determination of six target compounds (puerarin, daidzin, genistein, daidzein, genistin, and formononetin) in Puerariae Lobatae Radix was established by cloud point extraction (CPE) and concentration combined with high performance liquid chromatography (HPLC). To achieve high extraction yields, an ultrasound-assisted extraction method was developed based on a salt-modified Triton X-100 system. The optimal extraction conditions are: surfactant Triton X-100 concentration 0.07 g/mL, liquid-solid ratio 80:1 (mL/g), NaCl addition amount 0.6 g, equilibrium time 40 min, equilibrium temperature 70 °C. Under the optimal conditions, the total maximum extraction yield of the six target isoflavones reached 8.92 mg/g. Using l-tyrosine and l-dopa as substrates, the effects of puerarin on the monophenolase and diphenolase activity of tyrosinase activity were investigated by the enzyme kinetics method. The results showed that puerarin inhibited monophenolase activity with an IC50 of 0.537 mg/mL and activated diphenolase activity. The inhibition type of puerarin on monophenolase and the activation type of puerarin on diphenolase were analyzed by Lineweaver-Burk plots which show that puerarin showed mixed inhibition on monophenolase and mixed activation on diphenolase. Therefore, puerarin can be used as both a tyrosinase inhibitor and a tyrosinase activator.
Collapse
|
14
|
Halogenated aromatic thiosemicarbazones as potent inhibitors of tyrosinase and melanogenesis. Bioorg Chem 2020; 94:103419. [DOI: 10.1016/j.bioorg.2019.103419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
|
15
|
Carcelli M, Rogolino D, Bartoli J, Pala N, Compari C, Ronda N, Bacciottini F, Incerti M, Fisicaro E. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chem 2020; 303:125310. [DOI: 10.1016/j.foodchem.2019.125310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
|
16
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 563] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Filimonov AS, Chepanova AA, Luzina OA, Zakharenko AL, Zakharova OD, Ilina ES, Dyrkheeva NS, Kuprushkin MS, Kolotaev AV, Khachatryan DS, Patel J, Leung IK, Chand R, Ayine-Tora DM, Reynisson J, Volcho KP, Salakhutdinov NF, Lavrik OI. New Hydrazinothiazole Derivatives of Usnic Acid as Potent Tdp1 Inhibitors. Molecules 2019; 24:molecules24203711. [PMID: 31619021 PMCID: PMC6832265 DOI: 10.3390/molecules24203711] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising therapeutic target in cancer therapy. Combination chemotherapy using Tdp1 inhibitors as a component can potentially improve therapeutic response to many chemotherapeutic regimes. A new set of usnic acid derivatives with hydrazonothiazole pharmacophore moieties were synthesized and evaluated as Tdp1 inhibitors. Most of these compounds were found to be potent inhibitors with IC50 values in the low nanomolar range. The activity of the compounds was verified by binding experiments and supported by molecular modeling. The ability of the most effective inhibitors, used at non-toxic concentrations, to sensitize tumors to the anticancer drug topotecan was also demonstrated. The order of administration of the inhibitor and topotecan on their synergistic effect was studied, suggesting that prior or simultaneous introduction of the inhibitor with topotecan is the most effective.
Collapse
Affiliation(s)
- Aleksander S. Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Olga D. Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Maxim S. Kuprushkin
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (A.L.Z.); (O.D.Z.); (E.S.I.); (N.S.D.); (M.S.K.)
| | - Anton V. Kolotaev
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre, Kurchatov Institute, 107076 Moscow, Russia; (A.V.K.); (D.S.K.)
| | - Derenik S. Khachatryan
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre, Kurchatov Institute, 107076 Moscow, Russia; (A.V.K.); (D.S.K.)
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.P.); (R.C.); (D.M.A.-T.)
| | - Ivanhoe K.H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.P.); (R.C.); (D.M.A.-T.)
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.P.); (R.C.); (D.M.A.-T.)
| | - Daniel M. Ayine-Tora
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.P.); (R.C.); (D.M.A.-T.)
| | - Johannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Konstantin P. Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
- Correspondence: (K.P.V.); (O.I.L.); Tel.: +7-383-3308870 (K.P.V.); + 7-383-3635195 (O.I.L.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
- Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
- Correspondence: (K.P.V.); (O.I.L.); Tel.: +7-383-3308870 (K.P.V.); + 7-383-3635195 (O.I.L.)
| |
Collapse
|
18
|
Solís CM, Salazar MO, Ramallo IA, García P, Furlan RLE. A Tyrosinase Inhibitor from a Nitrogen-Enriched Chemically Engineered Extract. ACS COMBINATORIAL SCIENCE 2019; 21:622-627. [PMID: 31361945 DOI: 10.1021/acscombsci.9b00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme tyrosinase is involved in the biosynthesis of melanin and the enzymatic browning of fruits and vegetables, and therefore, its inhibitors have potential to treat hyperpigmentary disorders or to function as food antibrowning agents. The use of hydrazine monohydrate as a reagent to prepare chemically engineered extracts can lead to semisynthetic compounds that contain the portion N-N, a fragment rarely found in natural products and present in some tyrosinase inhibitors. Here, we report the tyrosinase inhibition screening of a series of chemically engineered extracts that are diversified by reaction with hydrazine. LC-MS was used to evaluate the change in composition produced by the reaction. Bioguided fractionation of the most active chemically engineered extract, prepared from Matricaria recutita L., led to the discovery of a pyrazole that inhibits tyrosinase with an IC50 value of 28.20 ± 1.13 μM. This compound was produced by a one-pot double chemical transformation of its natural precursor, which includes an unexpected selective removal of one -OH group.
Collapse
Affiliation(s)
- Carlos M. Solís
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Mario O. Salazar
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - I. Ayelen Ramallo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Paula García
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
19
|
Hałdys K, Latajka R. Thiosemicarbazones with tyrosinase inhibitory activity. MEDCHEMCOMM 2019; 10:378-389. [PMID: 31015905 DOI: 10.1039/c9md00005d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023]
Abstract
Tyrosinase plays an essential role in melanogenesis. Excess production of melanin can be a reason for hyperpigmentation skin disorders in mammals and enzymatic browning in plant-derived foods. Catalyzing the rate-limiting step of melanin synthesis, tyrosinase has become the most studied target for melanogenesis inhibition. Over the past ten years, a number of synthetic thiosemicarbazone derivatives have been reported to possess strong tyrosinase inhibitory properties with IC50 values below 1 μM, placing them among the most potent tyrosinase inhibitors. This review gives an overview of tyrosinase activity and describes tyrosinase-inhibiting thiosemicarbazones in terms of their structure-activity relationships, kinetics of enzyme inhibition and mechanism of action. Results of the studies of thiosemicarbazones as tyrosinase inhibitors from over 20 research articles have been analyzed, compared and summarized in the present paper. Using thiosemicarbazones as tyrosinase inhibitors is a promising approach in developing anti-melanogenetic agents for skin-whitening cosmetics and anti-browning agents for food.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| | - Rafał Latajka
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| |
Collapse
|
20
|
Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: Synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg Chem 2018; 81:577-586. [DOI: 10.1016/j.bioorg.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
21
|
Chen CY, Lu YH, Lin JT, Hu CC, Fuh CB, Tsai H. Quick screening of true tyrosinase inhibitors from natural products using tyrosinase-immobilized magnetic nanoparticles and a magnetic microplate. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chia-Yi Chen
- Department of Medical Applied Chemistry; Chung Shan Medical University; Taichung Taiwan
| | - Yi-Hsuan Lu
- Department of Applied Chemistry; National Chi Nan University; Natu Taiwan
| | - Jau-Tien Lin
- Department of Medical Applied Chemistry; Chung Shan Medical University; Taichung Taiwan
| | - Chao-Chin Hu
- Department of Medical Applied Chemistry; Chung Shan Medical University; Taichung Taiwan
| | - Chwan-Bor Fuh
- Department of Applied Chemistry; National Chi Nan University; Natu Taiwan
| | - Hweiyan Tsai
- Department of Medical Applied Chemistry; Chung Shan Medical University; Taichung Taiwan
- Department of Medical Education; Chung Shan Medical University Hospital; Taichung Taiwan
| |
Collapse
|
22
|
Li M, Yu Y, Liu J, Chen Z, Cao S. Investigation of the interaction between benzaldehyde thiosemicarbazone compounds and xanthine oxidase. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Design and synthesis of novel bis-hydroxychalcones with consideration of their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Dong H, Liu J, Liu X, Yu Y, Cao S. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Dong H, Liu J, Liu X, Yu Y, Cao S. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg Chem 2017; 75:106-117. [DOI: 10.1016/j.bioorg.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
|
26
|
Effects of polar substituents on the biological activity of thiosemicarbazone metal complexes. J Inorg Biochem 2017; 179:60-70. [PMID: 29175629 DOI: 10.1016/j.jinorgbio.2017.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 11/23/2022]
Abstract
In this paper, citronellal, vanillin and pyridoxal thiosemicarbazones were modified with polar substituents, namely ethylmorpholine and glucose, to increase their polarity and compare the effects of these moieties on their biological activity. Altogether, nine ligands were synthesized and for each of them also their copper(II) and nickel(II) complexes were prepared and used for the biological tests. Eventually, assays on proliferation inhibition were conducted using leukemic cell line U937, already used as a model for previous citronellal thiosemicarbazone tests. Biological tests were also performed on solid tumor cell line HT29. From the first screenings, two of the metal complexes showed remarkable interesting properties, and, therefore, were also tested for histosensitivity.
Collapse
|
27
|
Novel inhibitors of tyrosinase produced by the 4-substitution of TCT (П). Int J Biol Macromol 2017; 103:1096-1106. [DOI: 10.1016/j.ijbiomac.2017.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022]
|