1
|
Zhao Y, Zhao X, Xu X. Investigating the influence of myofibrillar protein and chitosan interfacial distribution on the macroscopic characteristics of emulsions. Food Chem 2025; 475:143349. [PMID: 39954641 DOI: 10.1016/j.foodchem.2025.143349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/06/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Myofibrillar protein (MP) and chitosan (CS) complexes, formed through electrostatic interactions, hold promise for creating novel emulsions. This study examines the emulsion system utilizing MP and CS as interfacial phases, exploring the distribution patterns of MP-CS (external MP), CS-MP (external CS), and pre-compounded MP/CS, along with varying MP-to-CS concentration ratios (5:1 to 1:5). MP/CS emulsions exhibited finer particle size and higher zeta potential compared to MP-CS and CS-MP bilayer emulsions, with the 1:1 ratio displaying optimal stability. Confocal laser scanning microscopy confirmed uniform dispersion at the 1:1 ratio, while other ratios showed increased flocculation. MP/CS emulsions demonstrated superior stability and less delamination than bilayer emulsions. Microrheological analysis revealed concentration-dependent elasticity and viscosity trends, with MP-CS emulsions being more elastic but less viscous than CS-MP emulsions. The viscoelastic properties of MP/CS emulsions were intermediate. These findings offer valuable insights into the design of interfaces for muscle protein and polysaccharide complex emulsions.
Collapse
Affiliation(s)
- Yuhui Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Synergetic Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Synergetic Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Synergetic Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Efficacy of Chitosan, Pectin and Xanthan as Cold Gelling Agents in Emulsion Gels Stabilized with Legume Proteins to Be Used as Pork Backfat Replacers in Beef Burgers. Gels 2023; 9:970. [PMID: 38131956 PMCID: PMC10742780 DOI: 10.3390/gels9120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to develop stable emulsion gels enriched in polyunsaturated fatty acids, formulated with a mixture of olive (75%) and linseed (25%) oils, by incorporating two different stabilizers-pea and soy protein isolates-and three different cold gelling agents-chitosan, pectin and xanthan-to be used as pork backfat replacers in beef burgers. The color, pH, stability and textural properties of the emulsion gels were analyzed as affected by cold storage (4 °C, 7 days). Proximate composition, fatty acid content, technological and sensory properties were determined after burger processing. Meanwhile, color, pH, textural parameters and lipid oxidation were monitored in burgers at 0, 5 and 10 days of storage at 4 °C. A reduction of the fat content between 21.49% and 39.26% was achieved in the reformulated burgers as compared with the control, while the n-6/n-3 polyunsaturated fatty acid ratio decreased from 5.11 to 0.62. The highest moisture and fat retention were found in reformulated burgers made with xanthan, both with pea and soy proteins; however, their textural properties were negatively affected. The reformulated burgers made with chitosan were rated highest for sensory attributes and overall acceptability, not significantly different from the controls.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
3
|
Kakkar S, Tandon R, Tandon N. The rising status of edible seeds in lifestyle related diseases: A review. Food Chem 2023; 402:134220. [DOI: 10.1016/j.foodchem.2022.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
|
4
|
Sangaré M, Bony J, Chèné C, Lonseny T, Karoui R. Use of mid-infrared spectroscopy for quality monitoring and the prediction of physicochemical parameters of dry fermented chicken sausages enriched with sesame flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6950-6960. [PMID: 35674420 DOI: 10.1002/jsfa.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of the supplementation of sesame flour in fermented chicken sausages ('S1' containing 800 g kg-1 chicken fillet, 180 g kg-1 veal fat and 20 g kg-1 sesame flour and 'S2' containing 800 g kg-1 chicken fillet, 160 g kg-1 veal fat and 40 g kg-1 sesame flour) compared with control sausages (containing 800 g kg-1 chicken fillet and 200 g kg-1 veal fat) on the physico-chemical characteristics, texture, and structure during the fermentation stage. RESULTS The physicochemical parameters of samples belonging to the control, S1, and S2 batches were significantly affected by the addition of sesame flour and the fermentation stage. For instance: (i) the lowest protein content was observed for control samples on day 1 (61.4 ± 6.52 g kg-1 ) whereas the highest level was noted for S2 samples on day 15 (327.5 ± 22.2 g kg-1 ), and (ii) an inverse trend was observed for the fat content because the lowest content was observed for samples in the S2 batch on day 1 (129.0 ± 5.30 g kg-1 ) whereas the highest fat content was noted for samples belonging to control batch on day 15 (332.0 ± 1.29 g kg-1 ). The application of statistical methods to mid-infrared spectroscopy allowed clear discrimination between control, S1, and S2 batches. The addition of sesame flour in the recipes induced some modification in the secondary structure because β-turn levels ranged from 39.30 to 34.50, 36.76 to 34.70, and 38.93 to 34.70 for control, S1, and S2 batches, respectively, throughout the fermentation stage. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a similar protein profile pattern in the three batches on days 1 and 5, but on day 10 control and S2 batches showed the most intense degradation of myofibrillar proteins. CONCLUSION The results demonstrated that mid-infrared spectroscopy coupled with chemometric tools could be used as a rapid screening tool to assess and monitor the quality of dry chicken sausages enriched with sesame flour throughout the fermentation stage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgr, Lens, France
- Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Guinée
| | - Jérôme Bony
- Adrianor, Rue Jacquart, Tilloy-lès-Mofflaines, France
| | | | | | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgr, Lens, France
| |
Collapse
|
5
|
Development of plant-based burgers using gelled emulsions as fat source and beetroot juice as colorant: Effects on chemical, physicochemical, appearance and sensory characteristics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Garcia E Silva LL, da Silva CAS, Santana RDC. Rheology of dispersions and emulsions composed of chia mucilage and the application of chia in food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5585-5592. [PMID: 35396743 DOI: 10.1002/jsfa.11921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Chia mucilage (CM) is an emerging resource in food applications. However, the mechanism of this biopolymer as a stabilizer/emulsifier ingredient has not yet been well defined. A non-uniform viscoelastic tridimensional network was observed on emulsions with CM, while the surface activity of the CM ingredient has been associated with its protein content. To understand its functionality in food, this review focused on discussing and summarizing the rheological properties of dispersions and emulsions composed of CM under different conditions, such as pH, temperature, salt content, and mucilage content. For example, emulsions and dispersions with CM showed pseudoplastic behavior. An increase in the CM concentration increased the viscosity and the consistency index and decreased the behavior index. The consistency index of dispersions with CM increased with pH. The future evaluation of emulsions and dispersions properties, such as viscoelastic properties and microstructure, is particularly important for the successful use of CM in the food industry. The principal studies have evaluated the use of CM in dairy and meat systems as an emulsifier, stabilizer, or lipid replacer. The nutritional quality of the products with CM was maintained or improved, but sometimes an undesirable darkening was observed. Future evaluation of the cold extraction method of CM might improve the color and overall sensory acceptability of food products with CM. Integrated chia seed processing, including mucilage, oil, and protein extraction could be carried out to make chia seed industrial processing viable. © 2022 Society of Chemical Industry.
Collapse
|
7
|
Yüncü Ö, Kavuşan HS, Serdaroğlu M. Chia ( Salvia hispanica L.) Mucilage as a Novel Fat Replacer in Beef Patties Cooked with Different Methods: Physico-Chemical, Technological, and Nutritional Perspectives. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Özlem Yüncü
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| |
Collapse
|
8
|
Ren Y, Huang L, Zhang Y, Li H, Zhao D, Cao J, Liu X. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022; 11:foods11131950. [PMID: 35804763 PMCID: PMC9265990 DOI: 10.3390/foods11131950] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Although traditional meat products are highly popular with consumers, the high levels of unsaturated fatty acids and cholesterol present significant health concerns. However, simply using plant oil rich in unsaturated fatty acids to replace animal fat in meat products causes a decline in product quality, such as lower levels of juiciness and hardness. Therefore, it is necessary to develop a fat substitute that can ensure the sensory quality of the product while reducing its fat content. Consequently, using emulsion gels to produce structured oils or introducing functional ingredients has attracted substantial attention for replacing the fat in meat products. This paper delineated emulsion gels into protein, polysaccharide, and protein–polysaccharide compound according to the matrix. The preparation methods and the application of the three emulsion gels as fat substitutes in meat products were reviewed. Since it displayed a unique separation structure, the double emulsion was highly suitable for encapsulating bioactive substances, such as functional oils, flavor components, and functional factors, while it also exhibited significant potential for developing low-fat or functional healthy meat products. This paper summarized the studies involving the utilization of double emulsion and gelled double emulsion as fat replacement agents to provide a theoretical basis for related research and new insight into the development of low-fat meat products.
Collapse
Affiliation(s)
- Yuqing Ren
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Correspondence: (H.L.); (X.L.)
| | - Di Zhao
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
- Correspondence: (H.L.); (X.L.)
| |
Collapse
|
9
|
Ortiz-Gómez V, Fernández-Quintero A, Roa-Acosta DF, Bravo-Gómez JE, Solanilla-Duque JF. Physicochemical Characterization of Quinoa (Chenopodium quinoa cv. Nariño) Co-products Obtained by Wet Milling. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.851433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, great interest has been shown in pseudocereals for their high nutritional value. Wet milling has been used to obtain macromolecules such as proteins and starches. However, the co-products obtained from this food industry have been studied little. A factorial design Box-benhken was used to study the effect of surfactant concentration (SDS), sodium hydroxide (NaOH) concentration and maceration temperature on structural and colorimetric properties. Structural properties were evaluated by infrared spectroscopy (FTIR-ATR) and color changes by the CIElab tristimulus method (L*, a*, b*). A decrease in temperature and NaOH causes a decrease in lightness (L*), resulting in lower starch content and higher protein content in the co-product. This behavior was correlated with the infrared spectroscopy (FTIR-ATR) spectra. The spectra show a possible structural change in the amylose/amylopectin ratio of the starch granule at 1,012 cm−1, 1,077 cm−1, and 1,150 cm−1 bands, which are associated with glycosidic bonds, these bonds were sensitive to NaOH concentration. While those bands assigned to Amide II (1,563 cm−1) and Amide I (1,633 cm−1), were sensitive to the effect of NaOH and maceration temperature, evidencing that protein content in the co-products is variable and depends significantly on the extraction conditions. The co-products obtained by wet milling could be used in the development of functional foods, such as bread, snacks, pasta and other products.
Collapse
|
10
|
Influence of konjac glucomannan on the emulsion-filled/non-filled chicken gel: Study on intermolecular forces, microstructure and gelling properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Badar IH, Liu H, Chen Q, Xia X, Kong B. Future trends of processed meat products concerning perceived healthiness: A review. Compr Rev Food Sci Food Saf 2021; 20:4739-4778. [PMID: 34378319 DOI: 10.1111/1541-4337.12813] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The 21st-century consumer is highly demanding when it comes to the health benefits of food and food products. In the pursuit of attracting these consumers and easing the rise in demand for high-quality meat products, the processed meat sector is intensely focused on developing reformulated, low-fat, healthy meat products. Meat and meat products are considered the primary sources of saturated fatty acids in the human diet. Therefore, these reformulation strategies aim to improve the fatty acid profile and reduce total fat and cholesterol, which can be achieved by replacing animal fat with plant-based oils; it could be performed as direct inclusion of these oils or pre-emulsified oils. However, emulsions offer a viable option for incorporating vegetable oils while avoiding the multiple issues of direct inclusion of these oils in meat products. Processed meat products are popular worldwide and showing a gradually increasing trend of consumption. Various types of plant-based oils have been studied as fat replacers in meat products. This review will focus on possible methods to reduce the saturated fatty acid content in meat products.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Fernández-López J, Viuda-Martos M, Pérez-Alvarez JA. Quinoa and chia products as ingredients for healthier processed meat products: technological strategies for their application and effects on the final product. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Effect of the Addition of Chia Seed Gel as Egg Replacer and Storage Time on the Quality of Pork Patties. Foods 2021; 10:foods10081744. [PMID: 34441522 PMCID: PMC8391748 DOI: 10.3390/foods10081744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Two types of patties were prepared: control and with chia seeds gel instead of beaten egg. The patties were cooked in the steam-convection oven, vacuum packed and stored at 4 °C. The pork patties with chia addition were characterized by similar water activity and pH values to the control samples. They showed lower values of the b* colour parameter as well as colour saturation (C*) and hue angle values (h°) on the cross-section and lower values of colour parameters L*, a* and b* and C* on the surface than the controls. The addition of chia seeds improved the texture parameters of the tested products. Pork patties with chia seeds were softer and showed better chewiness than the control samples. Chia slowed down oxidative changes in pork patties during storage. The use of 8.0% addition of chia seeds was only slightly noticeable in taste of the pork patties and these samples received similar overall quality scores as control samples.
Collapse
|
14
|
Xu L, Lv Y, Su Y, Chang C, Gu L, Yang Y, Li J. Enhancing gelling properties of high internal phase emulsion-filled chicken gels: Effect of droplet fractions and salts. Food Chem 2021; 367:130663. [PMID: 34343810 DOI: 10.1016/j.foodchem.2021.130663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Effects of high internal phase emulsion (HIPE) stabilized by egg yolk-modified starch complex on the gelling properties of chicken gels with or without sodium chloride (NaCl)/sodium tripolyphosphate (TP) were studied. The addition of 30 % HIPE increased the hardness from 376 g to 590 g. The NaCl addition further improved textural and viscoelastic properties compared with the gels without NaCl. 30 % HIPE-filled gels with salts (NaCl and TP) has the highest hardness (3562 g) and the lowest cooking loss (3.41 %). Fourier transform infrared spectra (FTIR) revealed that salts, especially TP, could promote the transition of α-helices to β-sheets structure. Moreover, the chicken gels with TP had higher acyl chain disorder. In summary, the co-addition of HIPE and salt (NaCl/TP) has a positive effect on the formation of chicken gel, thereby providing potential applications in comminuted meat products.
Collapse
Affiliation(s)
- Lilan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuanqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, PR China.
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
15
|
Total and Partial Fat Replacement by Gelled Emulsion (Hemp Oil and Buckwheat Flour) and Its Impact on the Chemical, Technological and Sensory Properties of Frankfurters. Foods 2021; 10:foods10081681. [PMID: 34441461 PMCID: PMC8392028 DOI: 10.3390/foods10081681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
A gelled emulsion (GE) prepared with hemp oil and buckwheat flour was used to replace pork back fat in frankfurters. Five different formulations were prepared: control (with 35% pork back fat—SC), and the following four to achieve 25%, 50%, 75%, and 100% pork back fat substitution by GE (S1, S2, S3, and S4, respectively). Nutritional, technological, and sensorial characteristics of frankfurters were evaluated. Sausages containing GE presented a lower total fat content with a higher amount of polyunsaturated fatty acids, increased omega 3 content, and reduced saturated fat by up to 55%. The incorporation of GE did not significantly modify technological properties such as emulsion stability or lipid oxidation in spite of using vegetable oils highly susceptible to oxidation. The reformulation of the frankfurters presented a greater effect on the texture and sensory properties when GE was used as total substitution for the pork back fat (S4). When GE was used only as partial substitution for the pork back fat, sausages similar to control frankfurter were obtained. So this study demonstrated that the use of GE could be a promising strategy in the reformulation of healthier meat products.
Collapse
|
16
|
Mburu M, Paquet-Durand O, Hitzmann B, Zettel V. Spectroscopic analysis of chia seeds. Sci Rep 2021; 11:9253. [PMID: 33927250 PMCID: PMC8085002 DOI: 10.1038/s41598-021-88545-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
Chia seeds are becoming more and more popular in modern diets. In this contribution NIR and 2D-fluorescence spectroscopy were used to determine their nutritional values, mainly fat and protein content. 25 samples of chia seeds were analysed, whereof 9 samples were obtained from different regions in Kenya, 16 samples were purchased in stores in Germany and originated mostly from South America. For the purchased samples the nutritional information of the package was taken in addition to the values obtained for fat and protein, which were determined at the Hohenheim Core Facility. For the first time the NIR and fluorescence spectroscopy were used for the analysis of chia. For the spectral evaluation two different pre-processing methods were tested. Baseline correction with subsequent mean-centring lead to the best results for NIR spectra whereas SNV (standard normal variate transformation) was sufficient for the evaluation of fluorescence spectra. When combining NIR and fluorescence spectra, the fluorescence spectra were also multiplied with a factor to adjust the intensity levels. The best prediction results for the evaluation of the combined spectra were obtained for Kenyan samples with prediction errors below 0.2 g/100 g. For all other samples the absolute prediction error was 0.51 g/100 g for fat and 0.62 g/100 g for protein. It is possible to determine the amount of protein and fat of chia seeds by fluorescence and NIR spectroscopy. The combination of both methods is beneficial for the predictions. Chia seeds from Kenya had similar protein and lipid contents as South American seeds.
Collapse
Affiliation(s)
- Monica Mburu
- Institute of Food Bioresources Technology, Dedan Kimathi University of Technology, Private Bag, Dedan Kimathi, Nyeri, Kenya
| | - Olivier Paquet-Durand
- Process Analytics and Cereal Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 23, 70599, Stuttgart, Germany
| | - Bernd Hitzmann
- Process Analytics and Cereal Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 23, 70599, Stuttgart, Germany
| | - Viktoria Zettel
- Process Analytics and Cereal Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 23, 70599, Stuttgart, Germany.
| |
Collapse
|
17
|
Ruiz-Capillas C, Herrero AM. Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods 2021; 10:foods10020341. [PMID: 33562823 PMCID: PMC7914705 DOI: 10.3390/foods10020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the importance of developing meat products with healthier lipid content and strategies such as the use of structured lipids to develop these enriched products. The review also conducts a critical analysis of the use of vibrational spectroscopy as a tool to further these developments. Meat and meat products are extensively recognized and consumed in the world. They are an important nutritional contribution in our diet. However, their consumption has also been associated with some negative consequences for health due to some of its components. There are new trends in the design of healthy meat products focusing mainly on improving their composition. From among the different strategies, improving lipid content is the one that has received the most attention. A novel development is the formation of lipid materials based on structured lipids such emulsion gels (EGs) or oil-bulking agents (OBAs) that offer attractive applications in the reformulation of health-enhanced meat products. A deeper interpretation is required of the complicated relationship between the structure of their components and their properties in order to obtain structured lipids and healthier meat products with improved lipid content and acceptable characteristics. To this end, vibrational spectroscopy techniques (Raman and infrared spectroscopy) have been demonstrated to be suitable in the elucidation of the structural characteristics of lipid materials based on structured lipids (EGs or OBAs) and the corresponding reformulated health-enhanced meat products into which these fat replacers have been incorporated. Future research on these structures and how they correlate to certain technological properties could help in selecting the best lipid material to achieve specific technological properties in healthier meat products with improved lipid content.
Collapse
|
18
|
Kawecki K, Rezler R, Baranowska HM, Stangierski J. Influence of fish oil and microencapsulated fish oil additives on water binding and the rheological properties of poultry sausage batters. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1127-1133. [PMID: 32785934 DOI: 10.1002/jsfa.10723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The composition of meat batters can be modified by the addition of fish oil or microencapsulation of oil. Such modifications affect the water binding and the rheological properties of the resulting systems. There is little information available on the behaviour of water molecules in model meat batter systems with microcapsules. The main goal of the study was to assess the degree of water binding by the meat batter system and to carry out a rheological analysis during heating and cooling. RESULTS The sample with the microcapsules was characterized by a slightly elevated level of total protein. The encapsulated oil additive reduced the pH and water activity value in the meat batter, compared with the control sample. There was one relaxation time T1 and two time components T2 in the control batter and the batter containing encapsulated oil. The sample with the oil additive was characterized by two components of relaxation time T1 and three components of relaxation time T2 . There was an inverse correlation between the dynamic viscosity of the batters and the spin-spin relaxation times T21 and T22 . The temperature courses of the modulus of elasticity in all the systems exhibited three areas of change (20-43 °C, 43-60 °C, and >60 °C). The highest dynamics of change in the modulus of elasticity was observed for the initial and final temperature range (60-85 °C). CONCLUSIONS The samples with the oil and microcapsule additives exhibited higher elastic energy accumulation capacity and dynamic viscosity than the control batter within the whole heating range. The fish oil microcapsules improved the mechanical properties of poultry sausage batters and their water-binding properties. This may increase the juiciness and microbiological stability of the finished products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Krzysztof Kawecki
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Ryszard Rezler
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Hanna M Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy Stangierski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
19
|
Fernández-López J, Viuda-Martos M, Sayas-Barberá ME, Navarro-Rodríguez de Vera C, Lucas-González R, Roldán-Verdú A, Botella-Martínez C, Pérez-Alvarez JA. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1359. [PMID: 33066505 PMCID: PMC7602150 DOI: 10.3390/plants9101359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Chia and quinoa have gained popularity among consumers worldwide due to the wide variety of nutrients but also to the bioactive compounds that they contain. Lately, their processing has generated different coproducts (non-commercial grains, flour, partially deoiled flour, rich-fiber fraction, and oil, among others), which could be reincorporated to the food chain with important technological properties, antioxidant activity included. Both sets of ingredients have been revealed a great technological potential for meat product development and innovation, taking into account that oxidation is one of the main reactions responsible for their deterioration and shelf life reduction. This review focuses on the antioxidant compounds of chia and quinoa coproducts and on the strategies used to add them to meat products highlighting their effect on the lipid oxidation control. Apart from the different ways in which quinoa and chia can be incorporated into meat products and their antioxidant properties, innovative approaches for increasing this antioxidant effect and counteracting any negative alterations they may cause will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312-Alicante, Spain; (J.F.-L.); (M.V.-M.); (M.E.S.-B.); (C.N.-R.d.V.); (R.L.-G.); (A.R.-V.); (C.B.-M.)
| |
Collapse
|
20
|
Paglarini CDS, Vidal VAS, Martini S, Cunha RL, Pollonio MAR. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit Rev Food Sci Nutr 2020; 62:640-655. [PMID: 33000627 DOI: 10.1080/10408398.2020.1825322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent consumers' concerns about diet and its health benefits has triggered a reduction in consumption of foods rich in sugar, fat, salt, and chemical additives. As a result, an expanded market for functional foods has arisen. In particular, high-fat foods normally composed by saturated fatty acids, cholesterol and trans-fatty acids have been reformulated to be healthier. The primary source of saturated fat ingested by humans includes meats and their by-products that have animal fat as lipid source. The reformulation of these products therefore represents an important strategy to make them healthier for human consumption. Substituting solid fat by unsaturated oils usually affects the texture of the products, and therefore, new structuring methods must be developed to provide vegetable oils a similar characteristic to solid fats and improve their functional and health-related properties. Among these structural models, gelled emulsions (GE) show great potential to be used as healthier lipid ingredients in low-calorie and reduced-fat products, including healthier meat products. This review addresses the GE properties to be used as structuring agent, their in vitro bioaccessibility in meat products and effect on technological, sensorial, microstructural and microbiological characteristics.
Collapse
Affiliation(s)
- Camila de Souza Paglarini
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vitor Andre Silva Vidal
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA
| | - Rosiane Lopes Cunha
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
21
|
Muñoz-González I, Ruiz-Capillas C, Salvador M, Herrero AM. Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chem 2020; 339:128049. [PMID: 33152862 DOI: 10.1016/j.foodchem.2020.128049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022]
Abstract
Polyphenols have interesting antioxidant properties and could help prevent certain diseases. Emulsion gels (EGs) have characteristics that make them a promising alternative system for supplying several bioactive compounds simultaneously, among them polyphenols. We produced four EGs containing olive oil, soy protein and a cold gelling agent based on alginate. One basic formulation (ES) contained only these ingredients and was used as a reference, while the other three also contained different solid polyphenol extracts from grape seed (G), grape seed and olive (O) or grape total (T), called ESG, ESO and EST, respectively. The corresponding EGs were prepared by mixing soy protein, alginate, water and one of these types of polyphenol extract (G, O or T), using a homogenizer. Then, the olive oil was gradually added to the mixture and finally, each mixture was placed in a metal container under pressure and chilled for 24 h until they formed an EG. The composition (including concentrations of phenolic metabolites), and technological and structural properties of these EGs were evaluated. Hydroxytyrosol was identified in all the EGs, but ESO showed the highest (P < 0.05) content. The EGs with added polyphenols showed contents of gallic acid, flavanol monomers and derivatives, with ESG showing the highest (P < 0.05) content. All the EGs showed optimal thermal stability, while colour and texture parameters were significantly influenced by the type of polyphenol extract added. No significant differences in the frequency or half-bandwidth of the 2923 and 2853 cm-1 infrared bands were observed.
Collapse
Affiliation(s)
- Irene Muñoz-González
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Claudia Ruiz-Capillas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Marina Salvador
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain
| | - Ana M Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/ José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|
22
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
23
|
Potential of a Sunflower Seed By-Product as Animal Fat Replacer in Healthier Frankfurters. Foods 2020; 9:foods9040445. [PMID: 32272565 PMCID: PMC7231011 DOI: 10.3390/foods9040445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/17/2022] Open
Abstract
Upcycled defatted sunflower seed flour (SUN), a by-product obtained from sunflower oil extraction, was used as an animal fat replacer to develop healthier frankfurters. For that end, animal fat was replaced (~50%) with water and 2% or 4% of SUN. Nutritional composition, technological, structural and sensorial properties were evaluated. SUN incorporation led to a significant increase in protein, minerals (magnesium, potassium, copper and manganese) and a decrease in fat content (~37% less than control with all animal fat). The incorporation of SUN in frankfurters promoted the presence of phenolic compounds. Increasing SUN addition lead to an increasingly (p < 0.05) darker frankfurter colour. Samples with SUN at 4% were firmer than the control according to TPA and sensory analysis results and showed the highest lipid disorder attributed to more lipid interactions in the meat matrix. SUN addition as an animal fat replacer in frankfurters is a feasible strategy to valorise sunflower oil by-products and obtain healthier frankfurters.
Collapse
|
24
|
Fernández-López J, Lucas-González R, Viuda-Martos M, Sayas-Barberá E, Navarro C, Haros CM, Pérez-Álvarez JA. Chia (Salvia hispanica L.) products as ingredients for reformulating frankfurters: Effects on quality properties and shelf-life. Meat Sci 2019; 156:139-145. [DOI: 10.1016/j.meatsci.2019.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
|
25
|
Abstract
Background:
Chia seed is not a new food for humanity. The seed has been used in many
different areas since the Aztecs, especially the food items. The chia seed is -becoming increasingly
important because of its nutritional and functional properties and it is described as “the seed of the
21st century” and “new gold and super nutrient”.
Background:
In this review, general characteristics, nutritional composition, fields of usage, effects on
health and importance in human nutrition of the chia seed have been evaluated.
Conclusion:
This seed is shown as an important source of dietary fiber (soluble and insoluble), omega-
3 fatty acids, proteins, bioactive and polyphenolic compounds. It also has many physicochemical
and functional properties that make it more suitable for the food industry. Chia seed is a good thickener,
gel forming and chelating agent, foam enhancer, emulsifier, suspending agent and rehydration factor.
Foods such as frozen products, bakery products, beverages, sweets, pasta, and sausages can be enriched
with seeds and chia oil can be used as fat replacer for these products. Some studies have shown
that consumption of the seed is beneficial for health problems such as dyslipidemia, inflammation,
cardiovascular diseases and insulin resistance. However, the results of studies demonstrating the effect
of the seeds on diseases have been controversial and many of the studies on this subject are animal
studies. There is a need for further studies to reveal the effects of chia seed on human health and its
importance in the food industry.
Collapse
Affiliation(s)
- Ahmet H. Dinçoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mehmet Akif Ersoy University, 15100, Burdur, Turkey
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mehmet Akif Ersoy University, 15100, Burdur, Turkey
| |
Collapse
|
26
|
Zając M, Guzik P, Kulawik P, Tkaczewska J, Florkiewicz A, Migdał W. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Muñoz-González I, Merino-Álvarez E, Salvador M, Pintado T, Ruiz-Capillas C, Jiménez-Colmenero F, Herrero AM. Chia ( Salvia hispanica L.) a Promising Alternative for Conventional and Gelled Emulsions: Technological and Lipid Structural Characteristics. Gels 2019; 5:gels5020019. [PMID: 30974809 PMCID: PMC6630939 DOI: 10.3390/gels5020019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is an oilseed plant which contains proteins of high biological value and other healthy components with interesting technological properties. For these reasons, chia could be a promising option for the formation and stabilization of oil-in-water emulsions. The aim of this study is to evaluate the potential of chia protein (from chia flour) in the formation of emulsions. To that end, composition and technological and structural properties determined by infrared spectroscopy were investigated in conventional (EC) and gelled (EGC) emulsions with chia and compared with their corresponding soy protein emulsions with the same protein content [conventional (ES) or gelled (EGS)] used as reference. All emulsions containing chia had better fat and water binding properties than those elaborated with soy protein isolate (SPI). The color of the emulsions varied significantly depending on whether the emulsions were made with chia or SPI. EGS and EGC exhibited the greatest (p < 0.05) penetration force values, being EGC the firmest (p < 0.05). Depending on the type of emulsion, Attenuated Total Reflectance (ATR)-FTIR Spectroscopy revealed differences in their lipid structure and interaction in terms of lipid acyl chain mobility (order/disorder) and emulsion droplet size. These structural characteristics could be related to the textural behavior of emulsions.
Collapse
Affiliation(s)
- Irene Muñoz-González
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Esther Merino-Álvarez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Marina Salvador
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Tatiana Pintado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Claudia Ruiz-Capillas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Francisco Jiménez-Colmenero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Ana M Herrero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Zettel V, Hitzmann B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Comaposada J, Marcos B, Bou R, Gou P. Influence of surfactants and proteins on the properties of wet edible calcium alginate meat coatings. Food Res Int 2018; 108:539-550. [PMID: 29735089 DOI: 10.1016/j.foodres.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
Abstract
Calcium alginate structures are of interest as replacers for natural casings due to their high availability, biodegradability and low price. The aim of this paper is to study the effect of oil, surfactants and proteins (pea and collagen) on the water transfer, mechanical and microstructural properties of the wet calcium alginate films. The addition of oil and surfactants tended to reduce the water permeance and the weight loss rate, reaching values between those shown by natural and collagen artificial casings. The addition of proteins did not improve the adherence of the films and it decreased the maximum force of the film at puncture test, which was even lower with the presence of the surfactant E475. The TEM micrographs showed that the differences in mechanical properties are mainly related to the differences in the compaction of the microstructure. Wet alginate films with E475 are envisaged as a substitute of natural and collagen artificial casings in the stuffed meat products industry.
Collapse
Affiliation(s)
- J Comaposada
- Food Technology, IRTA, Monells, Finca Camps i Armet s/n 17121, Spain.
| | - B Marcos
- Food Technology, IRTA, Monells, Finca Camps i Armet s/n 17121, Spain
| | - R Bou
- Food Technology, IRTA, Monells, Finca Camps i Armet s/n 17121, Spain
| | - P Gou
- Food Technology, IRTA, Monells, Finca Camps i Armet s/n 17121, Spain
| |
Collapse
|
30
|
Wang Y, Wang W, Jia H, Gao G, Wang X, Zhang X, Wang Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J Food Sci 2018; 83:1740-1747. [PMID: 29745986 DOI: 10.1111/1750-3841.14164] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Nano cellulose is attracting great interest in food and nutraceutical fields and also provides a potential additive to develop functional meat products such as low fat sausage. Here, we compared 1 wt% aqueous dispersion of cellulose nanofiber (CNF) and its palm oil Pickering emulsion (CPOE) at the ratio of 1:1 (water: oil, v:v) for being fat alternatives replacing 30% and 50% of the original fat of the emulsified sausage. Replacing fat by CPOE and CNF resulted in lower fat content, lower cooking loss and higher moisture content and higher lightness values (P ≤ 0.05) at both fat levels. Textural analysis indicated that the products formulated with CPOE showed higher hardness, springiness, chewiness and the texture was enhanced by the addition of CNF, especially when 30% fat was substituted. Compared with the full-fat control, the sausages formulated with CPOE became more elastic and compact, especially by the incorporation of CNF according to the rheology and scanning electron microscope results. The reformulated products with CPOE and CNF at the 30% level showed higher sensory scores (P ≤ 0.05) while at the 50% level produced comparable quality to the control, but no significant differences were found in the overall acceptability. In summary, CNF and its Pickering emulsion provide the potential as potential fat alternatives for developing low fat meat products. PRACTICAL APPLICATIONS Cellulose nanofibers present a variety of distinguishing properties, such as large surface area, great stability and high strength. The ability to stabilize emulsions and good biocompatibility enlarge its application in food. In this study, we attempted to use cellulose nanofibers and its palm oil Pickering emulsion as fat substitutes to partly replace the original fat of pork emulsified sausages, hoping to provide some basic information for using cellulose nanofibers and its Pickering emulsion as fat substitute to high fiber, low fat meat products.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Hongjiao Jia
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Guixian Gao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Xiao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Xiaowei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Yabin Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
31
|
Loudiyi M, Aït-Kaddour A. Delineation of salts, ripening and gentle heating effects on molecular structure of Cantal-type cheese by Mid-infrared spectroscopy. Food Res Int 2018; 105:221-232. [DOI: 10.1016/j.foodres.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
|
32
|
Boukid F, Folloni S, Sforza S, Vittadini E, Prandi B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Compr Rev Food Sci Food Saf 2017; 17:123-136. [PMID: 33350067 DOI: 10.1111/1541-4337.12315] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/18/2022]
Abstract
For centuries, ancient grains fed populations, but due to their low yield, they were abandoned and replaced by high-yielding species. However, currently, there is a renewed interest in ancient wheat and pseudocereal grains from consumers, farmers, and manufacturers. Ancient wheat such as einkorn, emmer, spelt, and Kamut®, are being reintegrated because of their low fertilizer input, high adaptability and important genetic diversity. New trends in pseudocereal products are also emerging, and they are mostly appreciated for their nutritional outcomes, particularly by the gluten-free market. Toward healthier lifestyle, ancient grains-based foodstuffs are a growing business and their industrialization is taking 2 pathways, either as a raw ingredient or a functional ingredient. This paper deals with these grain characteristics by focusing on the compositional profile and the technological potential.
Collapse
Affiliation(s)
- Fatma Boukid
- Food and Drug Dept., Univ. of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | - Stefano Sforza
- Food and Drug Dept., Univ. of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elena Vittadini
- Food and Drug Dept., Univ. of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Prandi
- Food and Drug Dept., Univ. of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
33
|
Gravelle AJ, Barbut S, Marangoni AG. Food-grade filler particles as an alternative method to modify the texture and stability of myofibrillar gels. Sci Rep 2017; 7:11544. [PMID: 28912434 PMCID: PMC5599672 DOI: 10.1038/s41598-017-11711-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
A series of food grade particles were characterized for their potential as fillers in myofibrillar gels. The fillers were separated into (i) hydrophilic, insoluble, crystalline particles and (ii) starch granules. The particles used were microcrystalline cellulose, oat fiber and walnut shell flour, as well as potato and tapioca starches. Crystalline particles increased hardness and decreased recovery properties. Although all of these fillers decreased the T2 relaxation time of water, this was dependent on particle type and size. An increase in gel strength was observed with increasing filler content, which was attributed to particle crowding. Native potato starch was the most efficient at increasing liquid retention, while native tapioca was the least effective. Gel strength increased significantly only for the native potato and modified tapioca starches, but no effect on recovery attributes were observed for any of the starch varieties. The potato starches became swollen and hydrated to a similar extent during the protein gelation process, while the native tapioca starch gelatinized at higher temperatures, and the modified tapioca showed little evidence of swelling. T2 relaxometry supported this finding, as the meat batters containing native potato starch displayed two water populations, while the remaining starches displayed only a single population.
Collapse
Affiliation(s)
- Andrew J Gravelle
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
34
|
Serdaroğlu M, Nacak B, Karabıyıkoğlu M. Effects of Beef Fat Replacement with Gelled Emulsion Prepared with Olive Oil on Quality Parameters of Chicken Patties. Korean J Food Sci Anim Resour 2017; 37:376-384. [PMID: 28747823 PMCID: PMC5516064 DOI: 10.5851/kosfa.2017.37.3.376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to investigate the effect of using gelled emulsion (olive oil 46%, inulin 9%, gelatin 3%) as fat replacer on some quality parameters of chicken patties. For this purpose GE, prepared with olive oil, gelatin and inulin was replaced with beef fat at a level of 0%, 25%, 50%, 100% (C, G25, G50, G100). In this study syneresis, thermal stability, centrifuge and creaming stability of gelled emulsion were analyzed. Chemical composition, technological paramerers (cooking yield, water holding capacity, diameter reduction, fat and moisture retention) and textural and sensory properites were evaluated in comparision to control patties. High thermal stability was recorded in GE (93%), also creaming stability results showed that GE protected its stability without any turbidity and separation of the layer. The complete replacement of beef fat with GE showed detrimental effect on all investigated cooking characteristics except fat retention. Replacement of beef fat with GE at a level of 50% resulted similar cooking characteristics with C samples. Color parameters of samples were affected by GE addition, higher CIE b* values observed with respect to GE concentration. The presence of GE significantly affected textural behaviors of samples (p<0.05). Our results showed that GE prepared with inulin and olive oil is a viable fat replacer for the manufacture of chicken patty.
Collapse
Affiliation(s)
- Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Berker Nacak
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, İzmir, Turkey
| | - Merve Karabıyıkoğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, İzmir, Turkey
| |
Collapse
|