1
|
Zhuang L, Luo Q, Zhang M, Wang X, He S, Zhang G, Zhu X. Analysis of odor compounds in Lee Kum Kee brand oyster sauce and oyster enzymatic hydrolysate: Comparison and relationship. Food Chem X 2024; 21:101154. [PMID: 38379798 PMCID: PMC10877158 DOI: 10.1016/j.fochx.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Oyster sauce (OS) is a highly processed oyster product. However, the significant price difference between OS and fresh oysters raises a question: Does authentic OS truly contain components from oysters or oyster enzymatic hydrolysates (OEH)? Therefore, the odor compounds of Lee Kum Kee oyster sauce (LKK), 4 OEHs, and 6 other seafood enzymatic hydrolysates (SEHs) were analyzed by using solid-phase microextraction and gas chromatography-olfactometry-mass spectrometry technology (SPME-GC-O-MS). The results of multivariate statistical analysis demonstrated the effective discrimination between LKK and OEHs from other SEHs. According to the VIP value and the differences in the composition of odor compounds among different samples, 15 essential odor compounds were screened out, which could distinguish whether the samples contained OEHs. Among them, acetic acid, 2-pentylfuran, 2-ethyl furan, 2-methylbutanal, and nonanal were only detected in LKK and OEHs, which further indicated the existence of OEH in LKK.
Collapse
Affiliation(s)
- Liang Zhuang
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Qian Luo
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, PR China
| | - Xuzeng Wang
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Shan He
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Guiju Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Xuchun Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, PR China
| |
Collapse
|
2
|
Okutsu K, Yamamoto Y, Matsuo F, Yoshizaki Y, Futagami T, Tamaki H, Maeda G, Tsuchida E, Takamine K. Characterization of aroma profiles of kokuto-shochu prepared from three different cultivars of sugarcane. J Biosci Bioeng 2023; 135:458-465. [PMID: 37076402 DOI: 10.1016/j.jbiosc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Kokuto-shochu is a traditional Japanese spirit prepared from kokuto, obtained by evaporating water from sugarcane (Saccharum officinarum L.) juice. To clarify the effects of sugarcane cultivars on the sensory quality of kokuto-shochu, we investigated the flavor characteristics and composition of volatiles in kokuto-shochu prepared from kokuto using three different sugarcane cultivars, NiF8, Ni15, and RK97-14. Furthermore, experiments were conducted by using the cultivars collected between 2018 and 2020 to observe annual variations in their properties. The amino acid content of the three kokuto varieties did not differ significantly, but the amino acid content of NiF8 was two to five times higher than that of RK97-14, which was the same for all samples collected in the selected years. The browning degrees of kokuto were also higher in NiF8, and they were positively correlated to the amino acid contents of kokuto. The kokuto-like aroma of shochu made from Ni15 was stronger than that of shochu made from RK97-14. The concentration of ethyl lactate in shochu made from Ni15 was higher, however, the concentration of guaiacol was the lowest in the three cultivars' products. Shochu made from NiF8 had the highest levels of Maillard reaction products (MRPs; pyrazines and furans), β-damascenone, and guaiacol amounts. In contrast, shochu made from RK97-14 tended to have a fruity flavor, and lower MRP levels than those made from NiF8. Thus, it was shown that sugarcane cultivars affect the sensory characteristics and volatiles in kokuto-shochu.
Collapse
Affiliation(s)
- Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yuka Yamamoto
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Fumiya Matsuo
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yumiko Yoshizaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Hisanori Tamaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Goki Maeda
- Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman-city, Okinawa 901-0336, Japan.
| | - Eito Tsuchida
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman-city, Okinawa 901-0336, Japan.
| | - Kazunori Takamine
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
3
|
Chen E, Zhao S, Song H, Zhang Y, Lu W. Analysis and Comparison of Aroma Compounds of Brown Sugar in Guangdong, Guangxi and Yunnan Using GC-O-MS. Molecules 2022; 27:molecules27185878. [PMID: 36144613 PMCID: PMC9505416 DOI: 10.3390/molecules27185878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Guangdong, Guangxi and Yunnan are the three provinces in China that yield the most brown sugar, a brown-red colored solid or powdered sugar product made from sugar cane. In the present study, the differences between odor compounds of brown sugar from Guangdong, Guangxi, and Yunnan provinces in China were compared and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS). A total of 80 odor compounds, including 5 alcohols, 9 aldehydes, 8 phenols, 21 acids, 14 ketones, 5 esters, 12 pyrazines, and 6 other compounds, were detected. The fingerprint analysis of the brown sugar odor compounds showed 90% similarity, indicating a close relationship among the odor properties of brown sugar in each province. Moreover, the orthogonal partial least squares discriminant analysis (OPLS-DA) was performed to identify the compounds contributing to the volatile classification of the brown sugar from three provinces, which confirmed that OPLS-DA could be a potential tool to distinguish the brown sugar of three origins.
Collapse
Affiliation(s)
- Erbao Chen
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuna Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Correspondence: (S.Z.); (H.S.)
| | - Huanlu Song
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (S.Z.); (H.S.)
| | - Yu Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyao Lu
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- COFCO Sugar Co., Ltd., Key Laboratory of Quality & Safety Control for Sugar Crops and Tomato, Ministry of Agriculture of the PRC, Changji 831100, China
| |
Collapse
|
4
|
Flórez-Martínez DH, Contreras-Pedraza CA, Escobar-Parra S, Rodríguez-Cortina J. Key Drivers for Non-Centrifugal Sugar Cane Research, Technological Development, and Market Linkage: A Technological Roadmap Approach for Colombia. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2022; 25:373-385. [PMID: 36065321 PMCID: PMC9434537 DOI: 10.1007/s12355-022-01200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Food science innovation depends on consumers' needs and is currently seeking functional food with health effects. Non-centrifugal cane sugar (NCS) is known for its potential health effects, but there is a lack of holistic analysis on technological advancement and socio-economic and market trends for decision-making in the development of the technology. The aim of this article was to analyse the research trends, recent patents, and market trends and niches for NCS to structure an NCS technological roadmap. Scientometric, bibliometric methods, and global and local market information on NCS were used. Comprehensive analysis of the worldwide research trends and patents on NCS processing and of the growth of the main niche markets for Colombian NCS exports in the last five years was conducted. Finally, with the information obtained, an NCS technological roadmap was structured, which can be used as a tool for planning innovation processes and supporting the development of new research using market information and new norms forged by the COVID-19 pandemic for Colombian case. Furthermore, the methodological design could be used for other NCS producer countries. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12355-022-01200-9.
Collapse
Affiliation(s)
- Diego Hernando Flórez-Martínez
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Km 14 Vía Mosquera–Bogotá, Mosquera, 250047 Cundinamarca Colombia
| | - Carlos Alberto Contreras-Pedraza
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Km 14 Vía Mosquera–Bogotá, Mosquera, 250047 Cundinamarca Colombia
| | - Sebastian Escobar-Parra
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Km 14 Vía Mosquera–Bogotá, Mosquera, 250047 Cundinamarca Colombia
| | - Jader Rodríguez-Cortina
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Km 14 Vía Mosquera–Bogotá, Mosquera, 250047 Cundinamarca Colombia
| |
Collapse
|
5
|
Heuristic-based computer-aided design of ice creams and validation by using jaggery as refined sugar substitute. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Suárez SE, Sun H, Mu T, Añón MC. Bacterial characterization of fermented sweet potato leaves by high‐throughput sequencing and their impact on the nutritional and bioactive composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santiago Emmanuel Suárez
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| |
Collapse
|
7
|
Automatic Control System for Cane Honey Factories in Developing Country Conditions. Processes (Basel) 2022. [DOI: 10.3390/pr10050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A proposal for the automatic control of sugar cane honey factories based on simulation with real data is presented. (2) Methods: The P&ID diagram of the artisanal process is designed, as well as the measurement and control systems of the different process variables. A data acquisition and monitoring system is proposed with all the required equipment. Using GNU Octave software, the process was simulated, where the transfer functions and parameters of the different stages were determined. The transient responses of these systems are determined before step-jump type disturbances, as well as that of the controllers. (3) Results: A correct adjustment of the controllers is obtained, indicating those that work in a stable way before disturbance variations in the real ranges of plant work. (4) Conclusions: Simulation of controllers before different forcing functions in the ranges of the operating parameters allowed for establishing dynamic responses of each one, demonstrating that they are capable of adjusting the value of the variable of interest or the control, and determining control of the main operating variables.
Collapse
|
8
|
Characterization of key aroma-active compounds in four commercial oyster sauce by SGC/GC × GC–O–MS, AEDA, and OAV. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
CHEN P, CHENG F, WEI L, WANG S, ZHANG Z, HANG F, LI K, XIE C. Effect of Maillard reaction browning factors on color of membrane clarification non-centrifugal cane sugar during storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Fangxue HANG
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| | - Kai LI
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| | - Caifeng XIE
- Guangxi University, China; Guangxi University, China; Ministry of Education, China
| |
Collapse
|
10
|
Velásquez F, Espitia J, Hernandez H, Mendieta O, Escobar S, Rodríguez J. Improving the thermal, productive, and environmental performance of a non-centrifugal cane sugar production module using a heat recovery system. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Mucilage and cellulosic derivatives as clarifiers for the improvement of the non-centrifugal sugar production process. Food Chem 2021; 367:130657. [PMID: 34388631 DOI: 10.1016/j.foodchem.2021.130657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
Non-centrifugal cane sugar (NCS) is the second most important Colombian agribusiness in social importance. However, the sugar cane industry is facing some challenges caused by the controversial nutritional and safety attributes of NCS. Some Colombian NCS producers employ natural mucilages as clarifiers; but the uncontrolled application of these components has caused a risk of extinction in the mucilage source plants. Other producers employ acrylamide as a clarifier. Health consequences have generated concerns from the consumers and demanded control from the food authorities. Efforts are being made to develop a standard manufacturing methodology to increase NCS productivity and improve its quality, hygiene, and storability. The application of better clarifiers, which provide the best clarifying activity and minimize the toxicity while conserving NCS's natural attributes, is one of the outstanding challenges as well. This study is a proposal which looks for sustainable, natural, nontoxic, and economical clarifiers for the Colombian NCS producers.
Collapse
|
12
|
Formation of Volatile and Aroma Compounds during the Dehydration of Membrane-Clarified Sugarcane Juice to Non-Centrifugal Sugar. Foods 2021; 10:foods10071561. [PMID: 34359431 PMCID: PMC8303542 DOI: 10.3390/foods10071561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022] Open
Abstract
The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) coupled with chemometrics was employed to assess the differences at the various stages of the dehydration process. A total of 111 volatile compounds were identified, among which 57 were endogenous compounds from sugarcane juice and displayed an attenuated abundance in the first 30 min. Typical oxygen and nitrogen heterocyclic compounds, including furans and pyrazines, and aldehydes derived were found to be the main volatiles contributing to the formation of NCS characteristic aroma, with phenols, alcohols, esters, acids, and sulfur compounds as supplementary odor. Free amino acids and reducing sugars were identified as important precursors for the aroma development process. The low temperature (90–108 °C) and micro vacuum condition (−0.03 MPa) approach used in this study could be an alternative option for the manufacture of NCS.
Collapse
|
13
|
Chen E, Song H, Zhao S, Liu C, Tang L, Zhang Y. Comparison of odor compounds of brown sugar, muscovado sugar, and brown granulated sugar using GC-O-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Liu J, Wan P, Xie C, Chen DW. Key aroma-active compounds in brown sugar and their influence on sweetness. Food Chem 2020; 345:128826. [PMID: 33601657 DOI: 10.1016/j.foodchem.2020.128826] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Brown sugar (non-centrifugal cane sugar) is popular for its pleasant caramel-like aroma and sweetness. Vacuum simultaneous steam distillation and extraction (V-SDE) and gas chromatography-mass spectrometry (GC-MS) was used to study the volatile fraction of brown sugar. To further determine the aroma-active compounds in brown sugar, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) were used in conjunction with aroma extraction dilution analysis (AEDA), odor activity values (OAVs), and sensory evaluation to analyze the effects of the key aroma-active compounds on sweetness. A total of 37 aroma-active compounds were obtained, mainly including ketones, pyrazines, alkanes, phenols and alcohols, which contributed caramel, sweet and fruity notes to brown sugar. Among them, furfural, benzeneacetaldehyde, 2,3-butanedione, β-damascenone, 2-methoxyphenol, dihydro-2-methyl-3(2H)-furanone, 2-furanmethanol and butyrolactone could significantly enhance the sweetness of sugar solution because of the congruency of the aroma attributes and sweetness.
Collapse
Affiliation(s)
- Jie Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China; Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China; Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Caifeng Xie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
15
|
Alarcón AL, Palacios LM, Osorio C, César Narváez P, Heredia FJ, Orjuela A, Hernanz D. Chemical characteristics and colorimetric properties of non-centrifugal cane sugar ("panela") obtained via different processing technologies. Food Chem 2020; 340:128183. [PMID: 33032151 DOI: 10.1016/j.foodchem.2020.128183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Non-centrifugal cane sugar (NCS) samples obtained by traditional moulding and granulation, and also via a novel spray-drying powdering process without additives, were assessed to characterise their sugar and phenolic profiles, flavonoid content, as well as colour parameters. As expected, sucrose was the predominant sugar (91.9-95.5%), followed by glucose (2.9-4.6%), and fructose (1.6-3.7%). Total phenolic content was between 0.4 and 0.6% and total flavonoid content into the range of 0.2-0.4%. Six phenolic acids were found in all NCS samples: protocatechuic acid (0.36-0.94 µg/100 g), vanillic acid (0.70-1.45 µg/100 g), chlorogenic acid (2.08-3.82 µg/100 g), syringic acid (1.08-2.80 µg/100 g), p-coumaric acid (0.69-1.35 µg/100 g), and ferulic acid (0.50-0.95 µg/100 g). The thermal treatment under high temperatures required in the production of granulated products was related with darker colours and changes in phenol and flavonoid contents. In contrast, spray drying generates clearer products, but with slightly less phenol and flavonoid contents.
Collapse
Affiliation(s)
- Angela L Alarcón
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Laura M Palacios
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Coralia Osorio
- Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá, Colombia
| | - Paulo César Narváez
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia
| | - Francisco J Heredia
- Food Colour & Quality Lab., Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Alvaro Orjuela
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, 111321 Bogotá D.C., Colombia.
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
16
|
Sung WC, Chi MH, Chiou TY, Lin SH, Lee WJ. Influence of caramel and molasses addition on acrylamide and 5-hydroxylmethylfurfural formation and sensory characteristics of non-centrifugal cane sugar during manufacturing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4512-4520. [PMID: 32406103 DOI: 10.1002/jsfa.10492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The aims of this study are to (i) evaluate the effects of color enhancers, caramel (C) and molasses (M), on acrylamide and 5-hydroxylmethylfurfural (HMF) formation in non-centrifugal cane sugar (NCS) and to (ii) perform nine-point hedonic scale and evaluation of sensory attributes, encompassing the appearance, flavor, texture and aftertaste, by 71 consumers on NCS, NCS_C, and NCS products made with a blend of molasses and sugar (NCS_MS) and steam processing (NCS_S). RESULTS With the addition of molasses and caramel at the maximum allowable level of 5 g kg-1 in sugarcane juice, significantly greater acrylamide or HMF did not accumulate in NCS_C and NCS_M during the thermal manufacturing process, while color values of NCS_C significantly changed (P < 0.05). The increases in acrylamide and HMF contents were influenced by pH because they were produced by the Maillard reaction. Hedonic responses showed that NCS_MS was rated with the highest score for overall acceptance, whereas NCS_S, with the lowest content of acrylamide, exhibited the lowest score for every attribute. In addition, the appearance acceptance score of NCS_C was significantly higher than that of NCS (P < 0.05). Significant differences were also found between NCS and NCS_C in the frequency of 9 of 16 items with which consumers selected to characterize the appearance in a check-all-that-apply questionnaire (P < 0.05). CONCLUSIONS The association between hedonic evaluations and sensory profiles in visual attributes of NCS_C indicated that caramel could be a promising addition in Maillard reaction-mitigated NCS products to improve consumer preferences through color strengthening without safety concerns. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Hsuan Chi
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Tai-Ying Chiou
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Shyh-Hsiang Lin
- Master Program in Food Safety, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ju Lee
- Master Program in Food Safety, Taipei Medical University, Taipei, Taiwan
- School of Food Safety, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Luo D, Mu T, Sun H, Chen J. Optimization of the formula and processing of a sweet potato leaf powder-based beverage. Food Sci Nutr 2020; 8:2680-2691. [PMID: 32566185 PMCID: PMC7300073 DOI: 10.1002/fsn3.1555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/05/2023] Open
Abstract
For the development of a sweet potato leaf powder (SPLP)-based beverage, we investigated the effects of blanching methods on SPLP quality (including color, nutritional and functional compositions and antioxidant activity), and the effects of particle size and stabilizers on suspension stability of final product. The total polyphenol and antioxidant activity of SPLP of uncut group were 1.69 and 1.91 times those of cut group, respectively, and the indices of nutritional quality of copper, manganese and vitamin E of uncut group were significantly greater than cut group. The ultrafine SPLP-produced lowest gravitational sedimentation ratio (49%), indicating it had greatest suspension stability. The optimized formula of SPLP-based beverage was as follows: ultrafine SPLP of uncut group was mixed with 2.5% (w/w, powder basis) xanthan gum, 1% calcium lactate, 2% ascorbic acid, 12% maltodextrin, 20% xylitol, and 0.9% apple essence. The final product had high nutritional value along with consumer-acceptable flavor and texture.
Collapse
Affiliation(s)
- Dan Luo
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jingwang Chen
- Laboratory of Food Chemistry and Nutrition ScienceInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
18
|
Thermal and Rheological Properties of Juices and Syrups during Non-centrifugal Sugar Cane (Jaggery) Production. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chen E, Song H, Li Y, Chen H, Wang B, Che X, Zhang Y, Zhao S. Analysis of aroma components from sugarcane to non-centrifugal cane sugar using GC-O-MS. RSC Adv 2020; 10:32276-32289. [PMID: 35516501 PMCID: PMC9056611 DOI: 10.1039/d0ra05963c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
A total of 84 volatile aroma components were determined in the 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds. Of these compounds, 10 were with high flavor dilution (FD) factors based on the aroma extract dilution analysis (AEDA). 4-Hydroxy-2,5-dimethyl-3(2H)furanone exhibited the highest FD factor of 2187, followed by (E)-2-nonenal, 2-hydroxy-3-methyl-2-cyclopentene-1-one, and 4-allyl-2,6-dimethoxyphenol with a FD factor of 729. The odor compounds showed no significant change and were similar to that of sugarcane during the first four steps in the production of non-centrifugal cane sugar. In the middle three stages, the heating slightly affected the aroma composition. Additionally, a prolonged period of high-temperature heating, lead to the production of the Maillard reaction products, such as pyrazines, pyrroles, and furans, differentiating the step to be unique from the previous seven stages. However, the content of the NCS odorants was significantly reduced due to the loss of odor compounds during the drying process. 84 volatile aroma components were determined in 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds.![]()
Collapse
Affiliation(s)
- Erbao Chen
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Huanlu Song
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Yi Li
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Haijun Chen
- COFCO Tunhe Chongzuo Sugar Co., Ltd
- Chongzuo
- China
| | - Bao Wang
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Xianing Che
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| | - Yu Zhang
- College of Food and Health
- Beijing Technology and Business University (BTBU)
- Beijing
- China
| | - Shuna Zhao
- COFCO Nutrition and Health Research Institute Co. Ltd
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods
- Beijing Key Laboratory of Nutrition &Health and Food Safety
- Nutrition & Health Branch of China Knowledge Center for Engineering Science and Technology
- Beijing
| |
Collapse
|
20
|
Vera-Gutiérrez T, García-Muñoz MC, Otálvaro-Alvarez AM, Mendieta-Menjura O. Effect of processing technology and sugarcane varieties on the quality properties of unrefined non-centrifugal sugar. Heliyon 2019; 5:e02667. [PMID: 31692676 PMCID: PMC6806412 DOI: 10.1016/j.heliyon.2019.e02667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
In this research, the unrefined non-centrifugal sugar (UNCS) quality obtained from two sugarcane varieties (RD 7511 and CC 8475) and using two types of technologies (traditional and Ward-Cimpa production facilities) were evaluated. The parameters monitored through the process were impurities, total soluble solids, acidity, pH, and temperature profile. Microbiological analyses were carried out on beating, molding, packing, and storage operations; and finally, an organoleptic analysis was carried out on the final UNCS product. Results showed that the UNCS obtained from variety CC 8475 had higher consumer acceptance; meanwhile, the technologies assessed did not show significant differences in final product quality. However, these technologies showed significant differences in the highest temperature, syrup, and juice properties. Microbiological analyses highlighted beating and molding as the critical points in UNCS production safety. Finally, it was evident that the implementation of new technologies or the improvement of the furnace, as in the Ward-Cimpa production facility, is not enough to achieve food safety requirements, as many other conditions affect the microbiological quality of the product. Although the temperatures reached on the Ward-Cimpa furnace are higher than those reached with the traditional furnace and thus, enough to kill all the harmful microorganisms, contamination in downstream operations still occurs.
Collapse
Affiliation(s)
| | - María Cristina García-Muñoz
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá [Research Center Tibaitatá], Km 14, Vía Mosquera - Bogotá, Cundinamarca, Colombia
| | | | - Oscar Mendieta-Menjura
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá [Research Center Tibaitatá], Km 14, Vía Mosquera - Bogotá, Cundinamarca, Colombia
| |
Collapse
|
21
|
Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Silva P, Silva CL, Perestrelo R, Nunes FM, Câmara JS. Fingerprint targeted compounds in authenticity of sugarcane honey - An approach based on chromatographic and statistical data. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Lata K, Sharma M, Patel SN, Sangwan RS, Singh SP. An integrated bio-process for production of functional biomolecules utilizing raw and by-products from dairy and sugarcane industries. Bioprocess Biosyst Eng 2018; 41:1121-1131. [PMID: 29680868 DOI: 10.1007/s00449-018-1941-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/16/2018] [Indexed: 01/23/2023]
Abstract
The study investigated an integrated bioprocessing of raw and by-products from sugarcane and dairy industries for production of non-digestible prebiotic and functional ingredients. The low-priced feedstock, whey, molasses, table sugar, jaggery, etc., were subjected to transglucosylation reactions catalyzed by dextransucrase from Leuconostoc mesenteroides MTCC 10508. HPLC analysis approximated production of about 11-14 g L-1 trisaccharide i.e. 2-α-D-glucopyranosyl-lactose (4-galactosyl-kojibiose) from the feedstock prepared from table sugar, jaggery, cane molasses and liquid whey, containing about 30 g L-1 sucrose and lactose each. The trisaccharide was hydrolysed into the prebiotic disaccharide, kojibiose, by employing recombinant β-galactosidase from Escherichia coli. The enzyme β-galactosidase achieved about 90% conversion of 2-α-D-glucopyranosyl-lactose into kojibiose. The D-fructose generated by catalytic reactions of dextransucrase was targeted for catalytic transformation into rare sugar, D-allulose (or D-psicose), by treating the samples with Smt3-D-psicose 3-epimerase. The catalytic reactions resulted in the conversion of ~ 25% D-fructose to D-allulose. These bioactive compounds are known to exert a plethora of benefits to human health, and therefore, are preferred ingredients for making functional foods.
Collapse
Affiliation(s)
- Kusum Lata
- Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140 306, India
| | - Manisha Sharma
- Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140 306, India
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140 306, India
| | - Rajender S Sangwan
- Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140 306, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140 306, India.
| |
Collapse
|