1
|
Yu J, Fu Y, Tang X, Bao W, Li Z, Wang X, Wang X. Enrichment of EPA and DHA in glycerides by selective enzymatic ethanolysis. Food Chem 2025; 463:141226. [PMID: 39270490 DOI: 10.1016/j.foodchem.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
It has been reported that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides have various biological functions. This study presents an effective method for enriching glycerides rich in EPA and DHA through lipase-catalyzed alcoholysis. The results showed that Eversa® Transform 2.0 had the strongest discrimination against DHA and EPA in alcoholysis, which was verified by molecular docking. Additionally, selectivity of the lipase and ratio of DHA and EPA in glyceride products were significantly affected by alcohol type. Under the optimal conditions, the contents of EPA and DHA in glycerides after ethanolysis reached 12.91 % and 55.40 %, respectively, with a DHA yield of 79.22 %. In this study, an interesting finding was that Eversa® Transform 2.0 could effectively differentiate EPA and DHA during alcoholysis to allow us to prepare DHA-enriched glycerides and EPA-enriched ethyl esters after removing saturated and monounsaturated ethyl esters.
Collapse
Affiliation(s)
- Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Weijia Bao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Zongrun Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaowen Wang
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China.
| |
Collapse
|
2
|
Miotti RH, do Amaral SR, Freitas AN, Bento HBS, de Carvalho AKF, Primo FL, de Paula AV. Enzymatic production process of capric acid-rich structured lipids: Development of formulation as a new therapeutic approach. Int J Biol Macromol 2024; 257:128641. [PMID: 38061520 DOI: 10.1016/j.ijbiomac.2023.128641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.
Collapse
Affiliation(s)
- Rodney H Miotti
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Stephanie R do Amaral
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Amanda Noli Freitas
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Heitor B S Bento
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Ana Karine F de Carvalho
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Fernando L Primo
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Ariela V de Paula
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
3
|
Remonatto D, Santaella N, Lerin LA, Bassan JC, Cerri MO, de Paula AV. Solvent-Free Enzymatic Synthesis of Dietary Triacylglycerols from Cottonseed Oil in a Fluidized Bed Reactor. Molecules 2023; 28:5384. [PMID: 37513254 PMCID: PMC10384263 DOI: 10.3390/molecules28145384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of structured lipids with nutraceutical applications, such as medium-long-medium (MLM) triacylglycerols, via modification of oils and fats represents a challenge for the food industry. This study aimed to synthesize MLM-type dietary triacylglycerols by enzymatic acidolysis of cottonseed oil and capric acid (C10) catalyzed by Lipozyme RM IM (lipase from Rhizomucor miehei) in a fluidized bed reactor (FBR). After chemical characterization of the feedstock and hydrodynamic characterization of the reactor, a 22 central composite rotatable design was used to optimize capric acid incorporation. The independent variables were cycle number (20-70) and cottonseed oil/capric acid molar ratio (1:2-1:4). The temperature was set at 45 °C. The best conditions, namely a 1:4 oil/acid molar ratio and 80 cycles (17.34 h), provided a degree of incorporation of about 40 mol%, as shown by compositional analysis of the modified oil. Lipozyme RM IM showed good operational stability (kd = 2.72 × 10-4 h-1, t1/2 = 2545.78 h), confirming the good reuse capacity of the enzyme in the acidolysis of cottonseed oil with capric acid. It is concluded that an FBR configuration is a promising alternative for the enzymatic synthesis of MLM triacylglycerols.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Núbia Santaella
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Lindomar Alberto Lerin
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara (UNIFE), Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Juliana Cristina Bassan
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
- State Center for Technological Education Paula Souza, Faculty of Technology of Barretos (FATEC), Barretos 14780-060, SP, Brazil
| | - Marcel Otávio Cerri
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
4
|
Huang C, Lin Z, Zhang Y, Liu Z, Tang X, Li C, Lin L, Huang W, Ye Y. Structure-guided preparation of fuctional oil rich in 1,3-diacylglycerols and linoleic acid from Camellia oil by combi-lipase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:108-117. [PMID: 35810339 DOI: 10.1002/jsfa.12117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diacylglycerol (DAG)-enriched oil has been attracting attention because of its nutritional benefits and biological functions, although the composition of its various free fatty acids (FFAs) and an unclear relationship between substrate and yield make it difficult to be identified and qualified with respect to its production. In the present study, linoleic acid-enriched diacylglycerol (LA-DAG) was synthesized and enriched from Camellia oil by the esterification process using the combi-lipase Lipozyme TL IM/RM IM system. RESULTS The relationship between FFA composition and DAG species productivity was revealed. The results showed that heterogeneous FFA with a major constituent (more than 50%) exhibited higher DAG productivity and inhibited triacylglycerol productivity compared to homogeneous constituents. Joint characterization by high-performance liquid chromatography-evaporative light scattering detection, gas chromatography-mass spectrometry and ultra-performance liquid chromatography-heated electrospray ionization-tandem mass spectrometry identified that DAG components contained dilinoleic acid acyl glyceride, linoleyl-oleyl glyceride and dioleic acid acyl glyceride in esterification products. Under the optimum conditions, 60.4% 1,3-DAG and 61.3% LA-DAG in the crude product at 1 h reaction were obtained, and further purified to 81.7% LA-DAG and 94.7% DAG via silica column chromatography. CONCLUSION The present study provides a guideline for the identification of DAG species, as well as a structure-guided preparation method of DAG-enriched oils via the cost-effective combi-lipase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanqing Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zepeng Lin
- Guangdong Kangxin Detection Technology Co., Ltd., Guangzhou, China
| | - Yunlong Zhang
- Guangdong Kangxin Detection Technology Co., Ltd., Guangzhou, China
| | - Zeyu Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoyue Tang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Lin Lin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wenqian Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
5
|
Huang C, Liu Z, Huang W, Li L, Ye Y. Fabrication, characterization, and purification of nutraceutical diacylglycerol components from Camellia oil. J Food Sci 2022; 87:3856-3871. [PMID: 35904270 DOI: 10.1111/1750-3841.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Converting triacylgycerols (TAGs) from edible oils and fats into structured diacylglycerols (DAGs) is meaningful for reducing obesity. Camellia oil, rich in linoleic acid, has the potential to form structured linoleic acid-1,3-diacylglycerol (LA-1,3-DAG) nutrients in the industry. In this research, the physicochemical properties of modified Camellia oil (MCO) by enzymatic esterification were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), Differential Scanning Calorimetry (DSC), High Performance Liquid Chromatography-Evaporative Light Scattering Detection (HPLC-ELSD), and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). The relationship between reaction conditions and the DAG compositions is disclosed using multiple factors. It is found that high constituents of DAG increase the melting and crystallization temperature of MCO, lipase Novozym 435 gives the best yield of targeted nutrients (DAG, 1,3-DAG, LA-DAG), and the mixture of lipases, Lipozyme TL IM and Lipozyme RM IM, shows a synergistic effect in the synthetic process of DAG. Subsequently, MCO containing 65.4% DAG, 54.7% LA-DAG, and 47.6% 1,3-DAG content at optimal conditions (2% enzyme dosage, 4 h reaction time, 2.4:1 substrate molar ratio, 25.8% t-butanol as solvent, 60°C temperature) has been obtained and purified using silica column to obtain the final DAG oil containing 96.1% DAG, 64.7% 1,3-DAG, and 78.4% LA-DAG. High constituents of structured DAG oil rich in LA-1,3-DAG can be obtained by enzymatic esterification for industrial production.
Collapse
Affiliation(s)
- Chuanqing Huang
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zeyu Liu
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Wenqian Huang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lu Li
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yong Ye
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.,Forestry Department, Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
6
|
Chen M, Yang C, Deng L, Wang F, Liu J. Production of 1, 3- medium chain-2-long chain (MLM) triacylglycerols by metabolically engineered Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Preparation of Human Milk Fat Substitutes: A Review. Life (Basel) 2022; 12:life12020187. [PMID: 35207476 PMCID: PMC8874823 DOI: 10.3390/life12020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.
Collapse
|
8
|
|
9
|
Martínez-Galán JP, Ontibón-Echeverri CM, Campos Costa M, Batista-Duharte A, Guerso Batista V, Mesa V, Monti R, Veloso de Paula A, Martins Baviera A. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res Int 2021; 148:110602. [PMID: 34507747 DOI: 10.1016/j.foodres.2021.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The objective of this study was to produce structured lipids (SLs) by enzymatic acidolysis using Rhizopus oryzae lipase covalently immobilized in a low-cost material. Grape seed oil was used to synthesize SLs containing the medium-chain fatty acid (C10:0) capric acid. SL synthesis led to 38.8% medium-chain fatty acid incorporation with 5 reuses of the enzymatic derivative. The reaction conditions for the synthesis of MLM-TAGs (triacylglycerols with one long- and two medium-chain acyl residues) were at a molar ratio of fatty acid:oil of 3:1, performed at 40 °C and lipase immobilized load of 5% (w/w). The in vivo effects of SLs were studied in Swiss mice fed premade diets: control (C) diet, high-fat diet (HFD) with 100% lipid content as lard, HFD with 50% lipid content as grape seed oil (HG) or HFD with 50% lipid content as capric acid-containing SLs produced from grape seed oil (HG-MCT). Mice from HG and HG-MCT groups had decreases in body weight gain and reductions in the weights of white adipose tissues. In addition, HG and HG-MCT mice had low plasma levels of glucose and total cholesterol, and improvements in the glucose tolerance. HG and HG-MCT diets have remarkable antioxidant properties, since low plasma levels of TBARS (thiobarbituric acid reactive substances, biomarkers of lipid peroxidation) were found in mice fed these diets. Interestingly, TBARS levels in HG-MCT mice were further decreased than values of HG mice. Mice fed HG and HG-MCT diets also showed preservation in the activity of the antioxidant enzyme paraoxonase 1. Both HG and HG-MCT diets promoted reduction of IL-6 and IL-10 production by splenocytes. The capric acid-containing SLs produced from grape seed oil emerges as a functional oil capable to mitigate obesity complications resulting from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Julián Paul Martínez-Galán
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | | | - Mariana Campos Costa
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Alexander Batista-Duharte
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinicius Guerso Batista
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Victoria Mesa
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Rubens Monti
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | - Amanda Martins Baviera
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
10
|
Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/3688124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of reaction conditions on the spectrophotometric and fluorometric assays using alternative substrates (p-nitrophenyl palmitate and 4-methylumbelliferyl oleate) were investigated to optimize them for the high-throughput screening of lipase activity from agricultural products. Four model lipases from Chromobacterium viscosum, Pseudomonas fluorescens, Sus scrofa pancreas, and wheat germ (Triticum aestivum) were allowed to hydrolyze the alternative substrates at different substrate concentrations (1–5 mM), operating pH (5.0–8.0), and operating temperatures (25–55°C). The results show that both the spectrophotometric and fluorometric assays worked well at the standard reaction conditions (pH 7.0 and 30°C) for finding a typical lipase, although pH conditions should be considered to detect the catalytic activity of lipases, which are applicable to more acidic or alkaline pH circumstances. To validate the optimized conditions, the high-throughput screening of lipase activity was conducted using 17 domestic agricultural products. A pileus of Pleurotus eryngii showed the highest activity in both the spectrophotometric (633.42 μU/mg) and fluorometric (101.77 μU/mg) assays. The results of this research provide practical information for the high-throughput screening of lipases using alternative substrates on microplates.
Collapse
|
11
|
Engelmann JI, Peres PP, Igansi AV, Monte ML, Pohndorf RS, Cadaval TRS, Crexi VT, Pinto LAA. Structured lipids of swine lard and oils from byproducts of skipjack tuna and of common carp. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jênifer I. Engelmann
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Patrick P. Peres
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Andrei V. Igansi
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Micheli L. Monte
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Ricardo S. Pohndorf
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Tito R. S. Cadaval
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Valéria T. Crexi
- Laboratory of Food Engineering Federal University of Pampa– UNIPAMPA Bage Brazil
| | - Luiz A. A. Pinto
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| |
Collapse
|
12
|
Agapay RC, Ju Y, Tran‐Nguyen PL, Ismadji S, Angkawijaya AE, Go AW. Process evaluation of solvent‐free lipase‐catalyzed esterification schemes in the synthesis of structured triglycerides from oleic and palmitic acids. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramelito Casado Agapay
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Yi‐Hsu Ju
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Taiwan Building Technology Center National Taiwan University of Science and Technology Taipei Taiwan
| | | | - Suryadi Ismadji
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Alchris Woo Go
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
13
|
Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rivero‐Pino F, Padial‐Dominguez M, Guadix EM, Morales‐Medina R. Novozyme 435 and Lipozyme RM IM Preferably Esterify Polyunsaturated Fatty Acids at the sn‐2 Position. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Emilia M. Guadix
- Department of Chemical Engineering University of Granada Granada 18071 Spain
| | | |
Collapse
|
15
|
Lima RT, Alves AM, de Paula AV, de Castro HF, Andrade GS. Mycelium-bound lipase from Penicillium citrinum as biocatalyst for the hydrolysis of vegetable oils. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Utama QD, Sitanggang AB, Adawiyah DR, Hariyadi P. Lipase-Catalyzed Interesterification for the Synthesis of Medium-Long-Medium (MLM) Structured Lipids - A Review. Food Technol Biotechnol 2019; 57:305-318. [PMID: 31866744 PMCID: PMC6902296 DOI: 10.17113/ftb.57.03.19.6025] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Medium-long-medium (MLM) structured lipids typically contain medium-chain fatty acids (C6-C12) at sn-1,3 and long-chain fatty acids (C14-C24) at sn-2 positions. They have reduced calories and are suitable for the control of obesity, lipid malabsorption and other metabolic disorders. This review focuses on the synthesis of MLM lipids by the enzymatic interesterification. It gives detailed description of biocatalysts, substrates, reactors and synthesis methods, and discusses the use of MLM lipids in food products. The information provided in this review can be considered as the current state-of-the art for developing a future strategy for the synthesis of MLM structured lipids.
Collapse
Affiliation(s)
- Qabul Dinanta Utama
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Purwiyatno Hariyadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| |
Collapse
|
17
|
Wang Q, Xie Y, Johnson DR, Li Y, He Z, Li H. Ultrasonic-pretreated lipase-catalyzed synthesis of medium-long-medium lipids using different fatty acids as sn-2 acyl-site donors. Food Sci Nutr 2019; 7:2361-2373. [PMID: 31367365 PMCID: PMC6657711 DOI: 10.1002/fsn3.1083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
The current work aimed to evaluate the effect of ultrasonic treatment on the enzymatic transesterification of medium-long-medium (MLM) lipids using 2-monoacylglycerol, bearing distinct fatty acids at the sn-2 position with palmitic acid, octadecanoic acid, oleic acid, eicosapentaenoic acid, and docosahexaenoic acids as sn-2 acyl donors. The effects of ultrasonic treatment conditions, including substrate concentration, reaction temperature and time, and enzyme loading, on the insertion of fatty acids into the sn-2 acyl position of MLM lipids were investigated. The data showed that low-frequency ultrasonic treatment could remarkably improve the insertion rate of polyunsaturated fatty acid (PUFA) into the sn-2 position of MLM lipids, compared with the conventional treatment method. By increasing the ultrasonic frequency from 20 to 30 KHz, while maintaining power at 150 W, the rate of synthesis of monounsaturated fatty acid and PUFA increased from 23.7% and 26.8% to 26.6% and 32.4% (p < 0.05), respectively. Moreover, ultrasonic treatment reduced the optimum reaction temperature from 45 to 35°C. However, the activity of Lipozyme RM-IM treated with ultrasound considerably declined from 31.10% to 26.90% (p < 0.05) after its fourth cycle, which was lower than that without ultrasonic treatment. This work provokes new routes for the utilization of ultrasonic technology in the synthesis of MLM lipids using different fatty acids as sn-2 acyl donors.
Collapse
Affiliation(s)
- Qiang Wang
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Yuejie Xie
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - David R. Johnson
- Department of Food ScienceUniversity of MassachusettsAmherstMassachusetts
| | - Yuanyuan Li
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Zhifei He
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
| | - Hongjun Li
- College of Food ScienceSouthwest UniversityBeibei, ChongqingChina
| |
Collapse
|
18
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
19
|
Enzymatic modification of grapeseed (Vitis vinifera L.) oil aiming to obtain dietary triacylglycerols in a batch reactor. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Lian W, Wang W, Tan CP, Wang J, Wang Y. Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids. Bioprocess Biosyst Eng 2018; 42:321-329. [DOI: 10.1007/s00449-018-2036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
21
|
Zheng Z, Dai Z, Cao Y. Isolation, Purification of DPAn-3 from the Seal Oil Ethyl Ester. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenxiao Zheng
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Zhiyuan Dai
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province; Hangzhou 310012 China
| | - Yalun Cao
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| |
Collapse
|
22
|
Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent-tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil. Food Chem 2017; 245:934-942. [PMID: 29287462 DOI: 10.1016/j.foodchem.2017.11.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 11/21/2017] [Indexed: 01/20/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential to human health and can be produced by enzymatic esterification. Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil contained a lipase that was stable at varying pH and in various solvents, salts, and chemicals. This lipase exhibited high efficiency for omega-3 (n-3), and its production was optimized using a response surface method. Acylglycerols (AGs) rich in n-3 were produced by extraction of the free fatty acids (FFAs) from flaxseed oil, concentration of PUFAs, and enzymatic esterification by the Celite-immobilized lipase. The resulting product contained 50% (w/w) PUFAs, including 42% (w/w) α-linolenic and 9.7% (w/w) linoleic acid. The n-6/n-3 ratio in the product was 0.24, which differed markedly from the high values for this ratio in seed oils. Therefore, the A. sediminis lipase appears to be a good candidate enzyme for ester synthesis and especially for production of n-3-rich AGs for food industries.
Collapse
|