1
|
Li D, Liu R, Tao Y, Shi Y, Wang P, Han Y. Enhancement of the carboxymethylation of corn starch via induced electric field. Carbohydr Polym 2023; 319:121137. [PMID: 37567727 DOI: 10.1016/j.carbpol.2023.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to enhance the synthesis of carboxymethyl starch (CMS) by induced electric field (IEF). Corn starch was alkalized, pumped into IEF system, and then reacted with monochloroacetic acid at excitation voltages of 0-400 V. IEF enhanced the carboxymethylation by accelerating the rate of OH- and ClCH2COO- attacking starch particles and slightly intensifying the thermal effect by ~7.1 °C (30 min). Compared with the control (0 V), IEF increased the degree of substitution and reaction efficiency by 0.056-0.148 and 9.37-24.56 %, caused more destruction in starch granular and crystal structure, and thus increased its water solubility, swelling power, and paste transparency. Furthermore, some new crystals were formed during IEF treatment, which enhanced the thermostability of CMS, showing an increase of the maximum decomposition temperature by 16-26 °C. Overall, the results classified that IEF could improve the carboxymethylation and enhance the thermostability of products, which provided guides for the applications of electro-techniques in starch modification involving charged species.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ruyuan Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Wang W, Xue L, Dong Y, Xia Z, Liu X, Chen G, Yang N, Song W, Du X. Application of multistage induced electric field for acid hydrolysis of starch in a continuous-flow reactor. Int J Biol Macromol 2022; 221:703-713. [PMID: 36096250 DOI: 10.1016/j.ijbiomac.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Herein, a multistage induced electric field (IEF) combined with a continuous-flow reactor was utilized to assist the acid hydrolysis of corn, potato, and waxy corn starch for avoiding plate corrosion and heavy metal leakage. It was found that adding IEF stages was beneficial to improve the hydrolysis efficiency. Treating potato, corn, and waxy corn starch via continuous-flow IEF increased the reducing sugar contents up to 78.76 %, 57.86 %, and 66.18 %, respectively. The electrical conductivity of starch grew with the reaction stages, while starch yield demonstrated the opposite trend. Treated starch had higher solubility and gelatinization peak temperature than native starch, with the gelatinization enthalpy showing fluctuations. Meanwhile, the swelling power decreased as the number of IEF stages was increased. Observations of Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that the treated starch became more ordered, and crystalline regions were destroyed to various degrees with pores forming on particle surfaces. These variations could be attributed to acid hydrolysis and IEF.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Liping Xue
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China.
| | - Yongwei Dong
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Zhengyi Xia
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Xin Liu
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Gaosong Chen
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenlu Song
- School of Engineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| | - Xinxin Du
- School of Life Science and Bioengineering, Jining University, 1 Xingtan Road, Qufu 273155, China
| |
Collapse
|
4
|
Intensifying the moderate electric field-induced modification of maize starch by 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 2022; 292:119654. [DOI: 10.1016/j.carbpol.2022.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
|
5
|
Zhang L, Liu F, Jin Y, Wu S, Xu X, Yang N. Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Han AM, Yang N, Jin Y, Ali B, Xu X. Effects of induced voltage on pectin extraction from apple pomace compared with conventional heat extraction. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aye Myo Han
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Na Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Barkat Ali
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Food Sciences Research Institute National Agricultural Research Centre Islamabad Pakistan
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi China
| |
Collapse
|
7
|
Li D, Yang N, Wu Z, Xu E, Zhou Y, Cui B, Han Y, Tao Y. Effects of connection mode on acid hydrolysis of corn starch during induced electric field treatment. Int J Biol Macromol 2022; 200:370-377. [PMID: 34999042 DOI: 10.1016/j.ijbiomac.2021.12.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/02/2023]
Abstract
This study aimed to explore the effect of induced electric field (IEF) treatment on acid hydrolysis of corn starch by altering the connection modes of sample coils of a 4-reactor IEF system. Results suggested that IEF treatment could enhance the hydrolysis of corn starch and series connection (1. RRRR, η=16ESi2Pin4ZSi+Zload) exhibited higher energy efficiency than parallel (9. (RRRR), η=4ESi2PinZSi+4Zload), thus contributing to more extensive hydrolysis. Although no new functional group was formed, the starch granules were partially cracked into pieces and the crystallinity was slightly increased after IEF-assisted hydrolysis. Differential scanning calorimetry results indicated that IEF-assisted hydrolysis increased the gelatinization temperatures but decreased the enthalpy of starch, with a greatest variation was observed by series connection. Rapid visco-analysis showed that IEF-assisted hydrolysis greatly decreased the pasting viscosity of corn starch and also series connection showed the strongest reduction. The obtained results could provide a theoretical guide for the applications of IEF technology in biomaterial processing.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Na Yang
- College of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, Shandong Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yuyi Zhou
- College of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, Shandong Province, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
8
|
He C, Yang N, Jin Y, Wu S, Pan Y, Xu X, Jin Z. Application of induced electric field for inner heating of kiwifruit juice and its analysis. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Li D, Jiang L, Tao Y, Yang N, Han Y. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Xue L, Ma Y, Yang N, Wei H. Modification of corn starch via innovative contactless thermal effect from induced electric field. Carbohydr Polym 2021; 255:117378. [PMID: 33436209 DOI: 10.1016/j.carbpol.2020.117378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Growing attention has been focused on modifications of starch using electric field, but electrode corrosion and metal contamination remain unavoidable during the process. To solve these problems, the magneto-induced electric field was used to assist corn starch hydrolysis due to its thermal effect. Results indicated that the method accelerated corn starch acid hydrolysis and decreased the treatment time. The reducing sugar content increased to 0.59 g/L after a 60 s treatment, which was 353.44 % higher than the 20 s treatment, while the average degree of polymerization reached a minimum. The treated starch showed increased solubility and swelling power, as well as decreased freeze-thaw stability. X-ray diffraction, fourier transform infrared spectroscopy, and scanning electron microscopy results suggested that the physicochemical changes of corn starch were due to the thermal effect of the induced electric field. This study is expected to provide an important basis for applying new electric field hydrolysis technology to starch modification.
Collapse
Affiliation(s)
- Liping Xue
- Department of Life Science and Engineering, Jining University, 1 Xingtan Road, Qufu, 273155, PR China
| | - Yalu Ma
- Department of Life Science and Engineering, Jining University, 1 Xingtan Road, Qufu, 273155, PR China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; Guangdong Licheng Detection Technology Co., Ltd, No.6 Shennong Road, Zhongshan, 528437, PR China.
| | - Haixiang Wei
- Department of Life Science and Engineering, Jining University, 1 Xingtan Road, Qufu, 273155, PR China
| |
Collapse
|
11
|
Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wu S, Yang N, Jin Y, Li D, Xu Y, Xu X, Jin Z. Development of an innovative induction heating technique for the treatment of liquid food: Principle, experimental validation and application. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Li DD, Yang N, Tao Y, Xu EB, Jin ZY, Han YB, Xu XM. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Li DD, Tao Y, Shi YN, Han YB, Yang N, Xu XM. Effect of re-acetylation on the acid hydrolysis of chitosan under an induced electric field. Food Chem 2020; 309:125767. [DOI: 10.1016/j.foodchem.2019.125767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
|
15
|
Isolation of yeast strains from Chinese liquor Daqu and its use in the wheat sourdough bread making. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ethylenediamine/glutaraldehyde-modified starch: A bioplatform for removal of anionic dyes from wastewater. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Advances in chemical modifications of starches and their applications. Carbohydr Res 2019; 476:12-35. [DOI: 10.1016/j.carres.2019.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|
18
|
Prasertsung I, Aroonraj K, Kamwilaisak K, Saito N, Damrongsakkul S. Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohydr Polym 2019; 205:472-479. [DOI: 10.1016/j.carbpol.2018.10.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 01/09/2023]
|
19
|
Zhang M, Yang N, Guo L, Li D, Wu S, Wu F, Jin Z, Xu X. Physicochemical properties of apple juice influenced by induced potential difference (induced electric field) during disposable continuous-flow treatment. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field. Food Chem 2018; 259:157-165. [DOI: 10.1016/j.foodchem.2018.03.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
|
21
|
Fonseca LM, da Silva FT, Antunes MD, Mello El Halal SL, Lim LT, Dias ARG. Aging Time of Soluble Potato Starch Solutions for Ultrafine Fibers Formation by Electrospinning. STARCH-STARKE 2018. [DOI: 10.1002/star.201800089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; 96010-900 Pelotas RS Brazil
- Department of Food Science; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - Francine Tavares da Silva
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; 96010-900 Pelotas RS Brazil
| | - Mariana Dias Antunes
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; 96010-900 Pelotas RS Brazil
| | | | - Loong-Tak Lim
- Department of Food Science; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; 96010-900 Pelotas RS Brazil
| |
Collapse
|
22
|
|
23
|
Gaquere-Parker A, Taylor T, Hutson R, Rizzo A, Folds A, Crittenden S, Zahoor N, Hussein B, Arruda A. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase. ULTRASONICS SONOCHEMISTRY 2018; 41:404-409. [PMID: 29137768 DOI: 10.1016/j.ultsonch.2017.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/24/2023]
Abstract
Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis.
Collapse
Affiliation(s)
- Anne Gaquere-Parker
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States.
| | - Tamera Taylor
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Raihannah Hutson
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Ashley Rizzo
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Aubrey Folds
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Shastina Crittenden
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Neelam Zahoor
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Bilal Hussein
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| | - Aaron Arruda
- Department of Chemistry, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, United States
| |
Collapse
|
24
|
Wu F, Jin Y, Li D, Zhou Y, Guo L, Zhang M, Xu X, Yang N. Electrofluid hydrolysis enhances the production of fermentable sugars from corncob via in/reverse-phase induced voltage. BIORESOURCE TECHNOLOGY 2017; 234:158-166. [PMID: 28319764 DOI: 10.1016/j.biortech.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
To improve the economic value of lignocellulosic biomasses, an innovative electrofluidic technology has been applied to the efficient hydrolysis of corncob. The system combines fluidic reactors and induced voltages via magnetoelectric coupling effect. The excitation voltage had a positive impact on reducing sugar content (RSC). But, the increase of voltage frequency at 400-700Hz caused a slight decline of the RSC. Higher temperature limits the electrical effect on the hydrolysis at 70-80°C. The energy efficiency increased under the addition of metallic ions and series of in-phase induced voltage to promote hydrolysis. In addition, the 4-series system with in-phase and reverse-phase induced voltages under the synchronous magnetic flux, exhibited a significant influence on the RSC with a maximum increase of 56%. High throughput could be achieved by increasing series in a compact system. Electrofluid hydrolysis avoids electrochemical reaction, electrode corrosion, and sample contamination.
Collapse
Affiliation(s)
- Fengfeng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dandan Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yuyi Zhou
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Lunan Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Mengyue Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Na Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|