1
|
Sikorska E, Nowak P, Pawlak-Lemańska K, Sikorski M. Characterization and Classification of Direct and Commercial Strawberry Beverages Using Absorbance–Transmission and Fluorescence Excitation–Emission Matrix Technique. Foods 2022; 11:foods11142143. [PMID: 35885386 PMCID: PMC9323525 DOI: 10.3390/foods11142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The subject of this study was to characterize the absorption and fluorescence spectra of various types of strawberry beverages and to test the possibility of distinguishing between direct juices and pasteurized commercial products on the basis of their spectral properties. An absorbance and transmission excitation–emission matrix (A-TEEMTM) technique was used for the acquisition of spectra. The obtained spectra were analyzed using chemometric methods. The principal component analysis (PCA) revealed differences in both the absorption spectra and excitation–emission matrices (EEMs) of two groups of juices. The parallel factor analysis (PARAFAC) enabled the extraction and characterization of excitation and emission profiles and the relative contribution of four fluorescent components of juices, which were related to various groups of polyphenols and nonenzymatic browning products. Partial least squares–discriminant analysis (PLS-DA) models enabled 100% correct class assignment using the absorption spectra in the visible region, unfolded EEMs, and set of emission spectra with excitation at wavelengths of 275, 305, and 365 nm. The analysis of variable importance in projection (VIP) suggested that the polyphenols and nonenzymatic browning products may contribute significantly to the differentiation of commercial and direct juices. The results of the research may contribute to the development of fast methods to test the quality and authenticity of direct and processed strawberry juices.
Collapse
Affiliation(s)
- Ewa Sikorska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległosci 10, 61-875 Poznan, Poland;
- Correspondence:
| | - Przemysław Nowak
- Faculty of Chemistry, Department of Spectroscopy and Magnetism, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (P.N.); (M.S.)
| | - Katarzyna Pawlak-Lemańska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległosci 10, 61-875 Poznan, Poland;
| | - Marek Sikorski
- Faculty of Chemistry, Department of Spectroscopy and Magnetism, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (P.N.); (M.S.)
| |
Collapse
|
2
|
Okino S, Kokawa M, Islam MZ, Kitamura Y. Effects of Apple Juice Manufacturing Processes on Procyanidin Concentration and Nondestructive Analysis by Fluorescence Fingerprint. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
New method for rapid identification and quantification of fungal biomass using ergosterol autofluorescence. Talanta 2020; 219:121238. [PMID: 32887129 DOI: 10.1016/j.talanta.2020.121238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
This research reports on the development of a method to identify and quantify fungal biomass based on ergosterol autofluorescence using excitation-emission matrix (EEM) measurements. In the first stage of this work, several ergosterol extraction methods were evaluated by APCI-MS, where the ultrasound-assisted procedure showed the best results. Following an experimental design, various quantities of the dried mycelium of the fungus Schizophyllum commune were mixed with the starchy solid residue (BBR) from the babassu (Orbignya sp.) oil industry, and these samples were subjected to several ergosterol extraction methods. The EEM spectral data of the samples were subjected to Principal Component Analysis (PCA), which showed the possibility to qualitatively evaluate the presence of ergosterol in the samples by ergosterol autofluorescence without the addition of any reagent. In order to assess the feasibility of quantifying fungal biomass using ergosterol autofluorescence, the EEM spectral data and known amounts of fungal biomass were modeled using partial least squares (PLS) regression and a procedure of backward selection of predictors (AutoPLS) was applied to select the Excitation-Emission wavelength pairs that provide the lowest prediction error. The results revealed that the amount of fungal biomass in samples containing interfering substances (BBR) can be accurately predicted with R2CV = 0.939, R2P = 0.936, RPDcv = 4.07, RPDp = 4.06, RMSECV = 0.0731 and RMSEP = 0.0797. In order to obtain an easy-to-understand equation that expresses the relationship between fungal biomass and fluorescence intensity, multiple linear regression (MLR) was applied to the VIP variables selected by the AutoPLS method. The MLR model selected only 2 variables and showed a very good performance, with R2CV = 0.862, R2P = 0.809, RPDcv = 2.18, RPDp = 2.35, RMSECV = 0.137 and RMSEP = 0.138. This study demonstrated that ergosterol autofluorescence can be successfully used to quantify fungal biomass even when mixed with agroindustrial residues, in this case BBR.
Collapse
|
4
|
Milosavljević DM, Mutavdžić DR, Radotić K, Milivojević JM, Maksimović VM, Dragišić Maksimović JJ. Phenolic Profiling of 12 Strawberry Cultivars Using Different Spectroscopic Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4346-4354. [PMID: 32202778 DOI: 10.1021/acs.jafc.9b07331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenolic compounds of 12 strawberry cultivars were profiled using spectrophotometry, spectrofluorometry, and high-performance liquid chromatography-mass spectrometry, coupled with multivariate regression analysis. Total phenolic content, total anthocyanin content, and total antioxidant capacity (TPC, TACY, and TAC, respectively) and concentrations of individual phenolics were evaluated, and the multivariate statistic was employed to identify the most promising cultivars based on their phenolic content. According to the principal component analysis, TAC was strongly correlated with the TPC (0.81), pointing out its importance in overall antioxidant activity. 'Joly', 'Laetitia', and 'Asia' cultivars were distinguished from others as the richest in concerning identified anthocyanins, almost all flavonoids and phenolic acids. Multivariate curve resolution with alternating least squares indicated the presence of two main types of fluorophores assigned to anthocyanins and phenolics, in which emission spectral ratios also showed the highest values in the referred cultivars. These cultivars could be recommended to consumers in terms of the health functionality of fruit.
Collapse
Affiliation(s)
- Dragica M Milosavljević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dragosav R Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | | | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | | |
Collapse
|
5
|
Estimation of ‘Hass’ Avocado (Persea americana Mill.) Ripeness by Fluorescence Fingerprint Measurement. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Rahman MM, Shibata M, ElMasry G, Nakazawa N, Nakauchi S, Hagiwara T, Osako K, Okazaki E. Expeditious prediction of post-mortem changes in frozen fish meat using three-dimensional fluorescence fingerprints. Biosci Biotechnol Biochem 2019; 83:901-913. [DOI: 10.1080/09168451.2019.1569494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
The present study was conducted to characterize fluorophores in the fish body using three-dimensional fluorescence fingerprints (3D-FFs) and to utilize these 3D-FFs obtained from frozen horse mackerel (Trachurus japonicus) fillets to predict early post-mortem changes. Alive fish were sacrificed instantly, preserved in ice until 2 days, and then filleted, vacuum packed, and frozen. Subsequently, 3D-FFs of the frozen fillets were acquired using F-7000 aided with a fiber probe. Post-mortem freshness changes were tracked by measuring adenylate energy charge (AEC) values and nicotinamide adenine dinucleotide (NAD and NADH) content. Partial least squares regression models for predicting AEC values and NADH content in frozen fish meat showed good fittings, with R2 of 0.90 and 0.85, by utilizing eight and five excitation wavelengths, respectively, based on their fluorescence features acquired from standard fluorophores. This novel approach of 3D-FFs could be utilized as an efficient technique for at-line monitoring of frozen fish quality.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries Technology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Gamal ElMasry
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Naho Nakazawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Emiko Okazaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Hu L, Ma S, Yin C, Liu Z. Quality evaluation and traceability of Bletilla striata by fluorescence fingerprint coupled with multiway chemometrics analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1413-1424. [PMID: 30191565 DOI: 10.1002/jsfa.9344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Traditional methods of evaluating herbs were mainly based on chromatographic techniques. They usually included tedious sample preparation procedures, taking tens of minutes to hours, and consume solvents as well as standards for external calibration. In this paper, the feasibility of employing a fluorescence fingerprint coupled with multi-way chemometrics analysis for quality evaluation and traceability of Bletilla striata were investigated. RESULTS Relative concentrations of four markers presented in B. striata were determined by using a four-component self-weighted alternating trilinear decomposition (SWATLD) model. These markers could be applied to accurate classification and quality control of B. striata samples from different regions. Furthermore, multiway principal component analysis, multilinear partial least squares discriminant analysis (PLS-DA), unfolded PLS-DA, and SWATLD-PLS-DA models were applied to classify the B. striata samples according to their geographic origins. Consistent results were obtained showing that B. striata samples could be successfully grouped based on their geographical origins and quality. CONCLUSION Our results revealed that the method developed can be used for quality evaluation and traceability of B. striata. Compared with the chromatographic methods, the method employed in this study was more convenient, simpler, and more sensitive. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leqian Hu
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuai Ma
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Chunling Yin
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhimin Liu
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|