1
|
Yang Q, Lyu Y, Wu Z, Li X, Liu K. Effect of Sourdough-Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter. Foods 2024; 13:2730. [PMID: 39272496 PMCID: PMC11395332 DOI: 10.3390/foods13172730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fagao is one of China's traditional gluten-free staple foods made with rice or corn flour. Corn Fagao prepared by co-fermentation with sourdough and yeast exhibits better quality and less staling compared to traditional yeast-fermented Fagao. The physicochemical properties of corn Fagao batter during sourdough-yeast co-fermentation were investigated. The results showed that compared with yeast fermentation, the gas production and viscosity of the batter increased with co-fermentation. The co-fermented batter showed a higher hydrolysis of starch and less amylose content. The integrity of starch granules in the co-fermented batter was damaged more seriously, and the crystallinity and short-range ordered structure were less than in the yeast-fermented batter, even though the crystal structure type of starch did not obviously change. The peak viscosity, minimum viscosity, final viscosity, decay value, and recovery value of the corn batter were reduced by co-fermentation, which improved the thermal stability of the batter and slowed down the aging. Co-fermentation also resulted in a more pronounced reduction in protein subunit content than yeast fermentation. The changes in the physicochemical properties of the corn Fagao batter help explain the improvement in quality of corn Fagao made from the co-fermentation method and may provide theoretical references for co-fermentation with sourdough and yeast to other gluten-free foods.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingguo Lyu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China
| | - Zhenhua Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Dan H, Gu Z, Li C, Fang Z, Hu B, Wang C, Chen S, Tang X, Ren Y, Wu W, Zeng Z, Liu Y. Effect of fermentation time and addition amount of rice sourdoughs with different microbial compositions on the physicochemical properties of three gluten-free rice breads. Food Res Int 2022; 161:111889. [DOI: 10.1016/j.foodres.2022.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
|
3
|
Marzano M, Calasso M, Caponio GR, Celano G, Fosso B, De Palma D, Vacca M, Notario E, Pesole G, De Leo F, De Angelis M. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front Microbiol 2022; 13:1003437. [PMID: 36406432 PMCID: PMC9666361 DOI: 10.3389/fmicb.2022.1003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium spp., and Bacillus coagulans) into semolina. Three fresh pasta variants were made using (i) the traditional protocol (control), MAP (20:80 CO2:N2), and barrier packaging, (ii) the experimental MAP (40:60 CO2:N2) and barrier packaging, and (iii) the experimental MAP, barrier packaging, and bioprotective cultures. Their effects on physicochemical properties (i.e., content on macro elements, water activity, headspace O2, CO2 concentrations, and mycotoxins), microbiological patterns, protein, and volatile organic compounds (VOC) were investigated at the beginning and the end of the actual or extended shelf-life through traditional and multi-omics approaches. We showed that the gas composition and properties of the packaging material tested in the experimental MAP system, with or without bioprotective cultures, positively affect features of fresh pasta avoiding changes in their main chemical properties, allowing for a storage longer than 120 days under refrigerated conditions. These results support that, although bioprotective cultures were not all able to grow in tested conditions, they can control the spoilage and the associated food-borne microbiota in fresh pasta during storage by their antimicrobials and/or fermentation products synergically. The VOC profiling, based on gas-chromatography mass-spectrometry (GC-MS), highlighted significant differences affected by the different manufacturing and packaging of samples. Therefore, the use of the proposed MAP system and the addition of bioprotective cultures can be considered an industrial helpful strategy to reduce the quality loss during refrigerated storage and to increase the shelf life of fresh pasta for additional 30 days by allowing the economic and environmental benefits spurring innovation in existing production models.
Collapse
Affiliation(s)
- Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Calasso
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giusy Rita Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Elisabetta Notario
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Francesca De Leo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
4
|
Ramos-Vivas J, Tapia O, Elexpuru-Zabaleta M, Pifarre KT, Armas Diaz Y, Battino M, Giampieri F. The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods. Molecules 2022; 27:molecules27175585. [PMID: 36080356 PMCID: PMC9457839 DOI: 10.3390/molecules27175585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- CIBER of Infectious Diseases—CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.R.-V.); (M.B.)
| | - Olga Tapia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.R.-V.); (M.B.)
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| |
Collapse
|
5
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
7
|
Pontonio E, Arora K, Dingeo C, Carafa I, Celano G, Scarpino V, Genot B, Gobbetti M, Di Cagno R. Commercial Organic Versus Conventional Whole Rye and Wheat Flours for Making Sourdough Bread: Safety, Nutritional, and Sensory Implications. Front Microbiol 2021; 12:674413. [PMID: 34322100 PMCID: PMC8312275 DOI: 10.3389/fmicb.2021.674413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Organic farming is gaining a broad recognition as sustainable system, and consumer demand for organic products has increased dramatically in the recent past. Whether organic agriculture delivers overall advantages over conventional agriculture is, however, contentious. Here, the safety, nutritional, and sensory implications of using commercial organic rye, soft, and durum wheat flours rather than conventional-made sourdough bread have been investigated. Culture-dependent and culture-independent approaches were used to explore the microbial architecture of flours and to study their dynamics during sourdough propagation. Besides biochemical features, the main nutritional (amino acid content, asparagine level, and antioxidant activity) characteristics of sourdoughs were investigated, and their effect on the structural, nutritional, and sensory profiles of breads assessed. Overall, the organic farming system led to flours characterized by lower content of asparagine and cell density of Enterobacteriaceae while showing higher concentration of total free amino acids. Differences of the flours mirrored those of sourdoughs and breads. The use of sourdough fermentation guaranteed a further improvement of the flour characteristics; however, a microbial and sensory profile simplification as well as a slight decrease of the biochemical parameters was observed between breads with sourdough after one-cycle fermentation and 10 days of propagation.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Kashika Arora
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Carafa
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Scarpino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
8
|
Perri G, Rizzello CG, Ampollini M, Celano G, Coda R, Gobbetti M, De Angelis M, Calasso M. Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods 2021; 10:foods10071489. [PMID: 34199014 PMCID: PMC8306093 DOI: 10.3390/foods10071489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
A comprehensive study into the potential of bioprocessing techniques (sprouting and sourdough fermentation) for improving the technological and nutritional properties of wheat breads produced using barley and lentil grains was undertaken. Dextran biosynthesis in situ during fermentation of native or sprouted barley flour (B or SB) alone or by mixing SB flour with native or sprouted lentil flour (SB-L or SB-SL) by Weissella paramesenteroides SLA5, Weissella confusa SLA4, Leuconostoc pseudomesenteroides DSM 20193 or Weissella confusa DSM 20194 was assessed. The acidification and the viscosity increase during 24 h of fermentation with and without 16% sucrose (on flour weight), to promote the dextran synthesis, were followed. After the selection of the fermentation parameters, the bioprocessing was carried out by using Leuconostoc pseudomesenteroides DSM 20193 (the best LAB dextran producer, up to 2.7% of flour weight) and a mixture of SB-SL (30:70% w/w) grains, enabling also the decrease in the raffinose family oligosaccharides. Then, the SB-SL sourdoughs containing dextran or control were mixed with the wheat flour (30% of the final dough) and leavened with baker’s yeast before baking. The use of dextran-containing sourdough allowed the production of bread with structural improvements, compared to the control sourdough bread. Compared to a baker’s yeast bread, it also markedly reduced the predicted glycemic index, increased the soluble (1.26% of dry matter) and total fibers (3.76% of dry matter) content, giving peculiar and appreciable sensory attributes.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | | | | | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland;
- Helsinki Institute of Sustainability Science, Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bozen, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
- Correspondence: ; Tel.: +39-080-544-2948
| |
Collapse
|
9
|
Lau SW, Chong AQ, Chin NL, Talib RA, Basha RK. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021; 9:microorganisms9071355. [PMID: 34201420 PMCID: PMC8306212 DOI: 10.3390/microorganisms9071355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sourdough is the oldest form of leavened bread used as early as 2000 BC by the ancient Egyptians. It may have been discovered by accident when wild yeast drifted into dough that had been left out resulting in fermentation of good microorganisms, which made bread with better flavour and texture. The discovery was continued where sourdough was produced as a means of reducing wastage with little known (at that point of time) beneficial effects to health. With the progress and advent of science and technology in nutrition, sourdough fermentation is now known to possess many desirable attributes in terms of health benefits. It has become the focus of attention and practice in modern healthy eating lifestyles when linked to the secret of good health. The sourdough starter is an excellent habitat where natural and wild yeast plus beneficial bacteria grow by ingesting only water and flour. As each sourdough starter is unique, with different activities, populations and interactions of yeast and bacteria due to different ingredients, environment, fermentation time and its carbohydrate fermentation pattern, there is no exact elucidation on the complete make-up of the sourdough microbiome. Some lactic acid bacteria (LAB) strains that are part of the sourdough starter are considered as probiotics which have great potential for improving gastrointestinal health. Hence, from a wide literature surveyed, this paper gives an overview of microbial communities found in different sourdough starters. This review also provides a systematic analysis that identifies, categorises and compares these microbes in the effort of linking them to specific functions, particularly to unlock their health benefits.
Collapse
Affiliation(s)
| | | | - Nyuk Ling Chin
- Correspondence: ; Tel.: +603-9769-6353; Fax: +603-9769-4440
| | | | | |
Collapse
|
10
|
Arora K, Ameur H, Polo A, Di Cagno R, Rizzello CG, Gobbetti M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread. Foods 2020; 9:foods9121837. [PMID: 33321806 PMCID: PMC7763431 DOI: 10.3390/foods9121837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Triticale has been suggested for human consumption due to its valuable nutritional composition. The aim of this study was to evaluate volatile compound dynamics in the technological processes of triticale bread and triticale bread with sourdough prepared using Lactobacillus sanfranciscensis based cultures. Two types of sourdough ready-to-use sourdough and two-stage sourdough were used for bread making. Triticale bread without sourdough was used as a control. Volatile compounds from a headspace of flour blend, sourdough, as well as mixed dough, fermented dough, bread crumb and crust were extracted using solid-phase microextraction (SPME) in combination with gas chromatography/mass spectrometry. Alcohols, mainly 1-hexanol, were the main volatiles in the triticale flour blend, whereas in the headspace of sourdough samples ethyl-acetate, ethanol and acetic acid dominated. Two-stage sourdough after 30 min fermentation showed the highest sum of peak areas formed by 14 volatile compounds, resulting in substrates for further aroma development in bread. A total of 29 compounds were identified in the bread: in the crumb the dominant volatile compounds were alcohols, ketones, acids, but in the crust—alcohols, aldehydes, furans dominated. The use of two-stage sourdough provided a more diverse spectrum of volatile compounds. Such volatile compounds as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 2-hydroxy-2-butanone, 2-methylpropanoic acid, and acetic acid were identified in all the analysed samples in all stages of bread making.
Collapse
|
12
|
Çakır E, Arıcı M, Durak MZ. Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 2020; 130:450-456. [PMID: 32782196 DOI: 10.1016/j.jbiosc.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to characterize the biodiversity of lactic acid bacteria (LAB) isolated from spontaneously-fermented hull-less barley sourdough and to determine its technological properties. Biodiversity was investigated by analysis of colonies isolated from sourdough on four different agar media. Of the 80 isolates, 67 were rapidly pre-identified as LAB using Fourier transforms infrared spectroscopy (FTIR). As a result of cluster analysis, 32 lactic acid bacteria chosen from different branches were identified. According to the polymerase chain reaction (PCR) results, 9 different species were identified: Pediococcus (dominant species), Lactobacillus curvatus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus musae, Lactobacillus paralimentarius, Leuconostoc mesenteroides and Lactobacillus equigenerosi. The most species and strain diversity among the media was determined in ModMRS environment. Unlike other studies about hull-less barley, Lactobacillus equigenerosi was identified in this study. LABs were identified with salt and acid tolerance. Generally, different levels of antibacterial activity in these species were shown against (rope spoilage) food borne pathogens. The greatest antimicrobial effect was observed for Pediococcus acidilactici SAB26, Lactobacillus plantarum SAB15 and Pediococcus acidilactici SAB13 compared to the other strains. Pediococcus species were found to have the highest antifungal effect against Penicillium carneum, Aspergillus flavus and A. niger. The phytase activity of LAB, which increases mineral bioavailability, was observed to be highest in Lactobacillus plantarum, Pediococcus pentosaceus, and Leuconostoc mesenteroides.
Collapse
Affiliation(s)
- Elif Çakır
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey.
| | - Muhammet Arıcı
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| | - Muhammed Zeki Durak
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
13
|
Perri G, Calabrese FM, Rizzello CG, De Angelis M, Gobbetti M, Calasso M. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Montemurro M, Celano G, De Angelis M, Gobbetti M, Rizzello CG, Pontonio E. Selection of non-Lactobacillus strains to be used as starters for sourdough fermentation. Food Microbiol 2020; 90:103491. [PMID: 32336362 DOI: 10.1016/j.fm.2020.103491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/11/2020] [Accepted: 03/21/2020] [Indexed: 12/15/2022]
Abstract
The suitability of forty-one non-Lactobacillus strains to be used as selected starters for sourdough fermentation was evaluated. According to the data collected, Pediococcus pentosaceus OA1 and S3N3 and Leuconostoc citreum PRO17 were selected based on the optimal acidification and growth performances and the intense proteolytic activity (increase of TFFA up to 80%) on whole wheat flour doughs. A relevant degradation of phytic acid (up to 58%) and the increase of phenols content and scavenging activity (4- and 2-folds, respectively) were also observed. The technological performances were compared to two representative Lactobacillus strains (Lactobacillus plantarum and Lactobacillus sanfranciscensis). The investigation of the robustness of the selected strains during the propagation (back-slopping procedure) showed their long-term dominance only when singly-inoculated; while Leuc. citreum PRO17 dominated the fermentation when the strains were co-inoculated. The sourdoughs obtained by the non-Lactobacillus selected strains (singly or pooled) were used for breadmaking. Selected sourdoughs allowed the production of breads characterized by in-vitro protein digestibility (IVPD) higher than that of breads obtained with Lactobacillus strains or baker's yeast. The aroma profile, estimated by GC/MS, was complex and characterized by high concentration of the typical compounds (hexanol, 3-methylbutanol and 2-pentylfuran) of sourdough bread.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Carlo G Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
15
|
Sun L, Li X, Zhang Y, Yang W, Ma G, Ma N, Hu Q, Pei F. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Weckx S, Van Kerrebroeck S, De Vuyst L. Omics approaches to understand sourdough fermentation processes. Int J Food Microbiol 2019; 302:90-102. [DOI: 10.1016/j.ijfoodmicro.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
|
17
|
Assessment of Ready-to-Use Freeze-dried Immobilized Biocatalysts as Innovative Starter Cultures in Sourdough Bread Making. Foods 2019; 8:foods8010040. [PMID: 30669666 PMCID: PMC6352066 DOI: 10.3390/foods8010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study the effect of innovative biocatalysts as starter cultures in sourdough bread making was explored. The biocatalysts consisted of Lactobacillus paracasei K5 and Lactobacillus bulgaricus ATCC 11842 (in single and mixed form), immobilized on delignified wheat bran (DWB), and freeze dried without cryoprotectants. The parameters monitored were physicochemical characteristics, mold and rope spoilage appearance, volatile composition, and organoleptic characteristics. Results obtained showed that both biocatalysts exhibit good fermentative activity. However, the best results were achieved when freeze-dried immobilized L. paracasei K5 was applied as a single culture. In particular, the produced bread had a higher acidity (8.67 mL 0.1 N NaOH) and higher organic load (2.90 g/kg lactic acid and 1.11 g/kg acetic acid). This outcome was the main reason why this bread was preserved more regarding mold spoilage (14 days) and rope spoilage (12 days), respectively. In addition, the employment of freeze-dried immobilized L. paracasei K5 led to bread with better aromatic profile in terms of concentrations and number of volatile compounds produced as gas chromatography/mass spectrometry (GC/MS) analysis proved. Finally, no significant differences were observed through sensorial tests. Last but not least, it should be highlighted that the used microorganisms were cultured in cheese whey, minimizing the cost of the proposed biotechnological procedure.
Collapse
|
18
|
Minervini F, Dinardo FR, Celano G, De Angelis M, Gobbetti M. Lactic Acid Bacterium Population Dynamics in Artisan Sourdoughs Over One Year of Daily Propagations Is Mainly Driven by Flour Microbiota and Nutrients. Front Microbiol 2018; 9:1984. [PMID: 30210469 PMCID: PMC6119722 DOI: 10.3389/fmicb.2018.01984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
This study aimed to: (i) assess at what extent traditional, daily propagated, sourdough can be considered a stable microbial ecosystem; (ii) ascertain the drivers of stability/variability. For this purpose, samples of sourdough, flour and environment were collected over 1 year from three different bakeries located in Altamura, Castellana Grotte, and Matera. Culture-dependent and –independent analyses were carried out on all the samples. In addition, sourdough and flour were subjected to biochemical characterization. In all the sourdoughs sampled at the same bakery, cell density of lactic acid bacteria fluctuated of one-two log cycles. However, 16S metagenetic analysis showed that sourdough bacterial microbiota was remarkably stable, in terms of species. Yet, some differences were found during time at intra-specific level. Indeed, bacterial strains succeeded in a 1-year lapse of time or even in 6-months, such as in the case of strains isolated from Altamura sourdough samples. Residual carbohydrates, lactic acid, ethanol and free amino acids varied in the same sourdough collected at different sampling times. These variations could be attributed to combination of various factors, such as fermentation temperature and strain succession. In addition, concentration of flour nutrients varied over 1 year and, in some cases, in a shorter time lapse. This may have favored certain strains over others. For this reason and also because of its inherent contamination by lactic acid bacteria, we found flour as the major driver of strains succession.
Collapse
Affiliation(s)
- Fabio Minervini
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesca R Dinardo
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
19
|
Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int J Food Microbiol 2018; 302:35-46. [PMID: 30177230 DOI: 10.1016/j.ijfoodmicro.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the effect of soft (Triticum aestivum) and durum (Triticum durum) wheat flours at different extraction rate (type 00, 0, 1 and 2) and wholemeal flours on the microbial composition and functionality of type I sourdough. Enterobacteriaceae constituted the main component of the microbiome of refined soft and durum wheat flours. On the contrary, wholemeal durum wheat flour harboured mainly Xanthomonadaceae. Differences were also found between the soft and durum wheat flours. After 8 h of fermentation (1 day), a different behaviour of the microbiome components was observed. All the mature sourdoughs harboured a core microbiome constituted by 4 species (Pediococcus pentosaceus, Lactobacillus brantae, Pediococcus argentinicus and Weissella cibaria). Based on the type of flour, the relative abundance of each core species differed among sourdoughs. In addition, other dominant lactic acid bacteria species were variously detected in sourdoughs. Mature sourdoughs showed marked variations for the concentrations of glucose, fructose, maltose, lactic and acetic acids, ethanol and free amino acids (FAA). Specific correlations (r > 0.7; FDR < 0.05) were found between the microbiome and total phenols, fibres and metabolome of mature sourdoughs. Breads made by using wholemeal soft wheat or durum wheat doughs started by wholemeal wheat flour-based sourdoughs were characterized by the highest total amount of free cations (Ca2+, Zn2+, Fe2+, Mg2+), antioxidant activity and improved sensory traits.
Collapse
|
20
|
Mantzourani I, Plessas S, Odatzidou M, Alexopoulos A, Galanis A, Bezirtzoglou E, Bekatorou A. Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chem 2018; 271:259-265. [PMID: 30236675 DOI: 10.1016/j.foodchem.2018.07.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
The novel Lactobacillus paracasei K5 strain, recently isolated from Greek cheese, was evaluated as potential sourdough bread starter. Breads were made using different amounts of L. paracasei sourdoughs as well as traditional sourdough for comparison. Quality characteristics of the breads (acidity and rising) were examined, as well as rope spoilage through macroscopic observations and molecular analysis (PCR-DGGE). The highest acidity levels (3.15 g lactic acid and 1.13 g acetic acid per kg of bread) and better resistance to rope spoilage were observed when bread contained 30% w/w L. paracasei K5 sourdough. Spoilage in the L. paracasei K5 breads was observed at 15-16 days, 5 days later than the control breads. In addition, L. paracasei K5 sourdough improved the bread sensory properties, as reflected by consumer preference and GC/MS analysis of aroma volatiles. Therefore, L. paracasei K5 can be successfully used for sourdough bread making with good quality and extended shelf-life.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece.
| | - Maria Odatzidou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26500 Patras, Greece
| |
Collapse
|
21
|
Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. RECYCLING 2018. [DOI: 10.3390/recycling3020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|