1
|
Cohen JP, DiCaprio A, He J, Reibarkh M, Small J, Schombs M. Method for Screening Sodium Cyanoborohydride for Free Cyanide Content and Its Impact on Bioconjugation Chemistry. Bioconjug Chem 2025; 36:245-252. [PMID: 39912422 PMCID: PMC11843608 DOI: 10.1021/acs.bioconjchem.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Sodium cyanoborohydride (CBH) is commonly used as a mild reducing agent in the reductive amination of aldehydes and free amines. Within the pharmaceutical industry, this reaction is employed in the bioconjugation of proteins and peptides. Free cyanide species such as HCN and NaCN are known residual impurities in CBH that can contribute to the formation of undesired side products including cyanoamines and cyanohydrins. In commercial processes, the potential for bound cyanated species requires an analytical control strategy to monitor and mitigate any risk to human health. Given these concerns, minimization of cyanated side products is of utmost priority and can be achieved through a robust control strategy of quantitative screening of starting materials for free cyanide. Alternative risk mitigation strategies such as purification of bound cyanide containing species to pure species are less effective due to minor chemical differences between the expected product and bound cyanide species. Herein, we present a simple chromatographic assay for the quantitation of free cyanide in the raw material sodium cyanoborohydride. Method development, robustness evaluation, and scientific soundness assessment are reported with excellent linearity, accuracy, precision, and specificity. Additionally, this method was applied for the evaluation of raw material supplied from 10 commercial sources, none of which report a specification for free cyanide within their certificate of analysis. The measured free cyanide from these vendors ranged from 8 to 80 mM concentration, thereby confirming the value of screening these raw materials. Finally, we demonstrate the impact of free cyanide on a model bioconjugation reaction between ornithine and glyceraldehyde.
Collapse
Affiliation(s)
- Jarrod P. Cohen
- Vaccine Analytical
Research & Development, Merck &
Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Adam DiCaprio
- Analytical
Enabling Capabilities, Merck & Co.,
Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jian He
- Vaccine Analytical
Research & Development, Merck &
Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Mikhail Reibarkh
- Analytical
Enabling Capabilities, Merck & Co.,
Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - James Small
- Analytical
Enabling Capabilities, Merck & Co.,
Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Matthew Schombs
- Vaccine Analytical
Research & Development, Merck &
Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Ren M, Yang F, Hua L, Liu S, Zhang S, Xie Y, Jiang J, Chen P, Wen Y, Wang L, Li H. Rapid and high-throughput measurement of cyanide in liquor by negative photoionization time-of-flight mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Ghosh S, Gulhane A, Sharma P, Kale S, Kangralkar V, Pawar R, Goel SK, Mallya AD, Dhere RM. Quantitation of free cyanide using ion exchange chromatography in Neisseria meningitidis serogroups A, C, W, Y and X conjugates used in vaccine manufacture. Biologicals 2023; 81:101664. [PMID: 36791627 DOI: 10.1016/j.biologicals.2023.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Polysaccharide vaccines essentially used in the prevention of bacterial infections are known to be good immunogens when conjugated to an immunogenic protein using various cyanylating agents. Analysis of residual cyanide in polysaccharide conjugate vaccines is an ardent task due to the complexity of the sample matrices and the lack of suitable methods. We report a selective ion chromatography method with electrochemical detection using IonPac AS7 column for estimation of residual cyanide in meningococcal serogroups A, C, W, Y and X bulk conjugates in presence of other interfering ions. Gold electrode and Ag/AgCl reference electrode ensures sensitivity and reproducibility of cyanide quantitation. The calibration curve of the method is linear having r2 ≥0.990 over the concentration range 1.45 ng/mL to 93.10 ng/mL. The recovery of cyanide in bulk conjugates ranged between 96.0% and 108.9%. The limits of detection and quantitation were 0.50 ng/mL and 1.45 ng/mL which corresponds to 0.31 ng/μg and 0.91 ng/μg of polysaccharide respectively. The method validation and feasibility study were performed using Men W and Men X bulk conjugates respectively with in house residual cyanide specification due to unavailability of pharmacopeia guidelines. The method is reproducible and can accurately quantify residual cyanide in purified meningococcal bulk conjugates.
Collapse
Affiliation(s)
- Saurav Ghosh
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Ashishkumar Gulhane
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Pankaj Sharma
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Sameer Kale
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Vivek Kangralkar
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Rakesh Pawar
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Sunil Kumar Goel
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Asha D Mallya
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India.
| | - Rajeev M Dhere
- Serum Institute of India Pvt Ltd, Serum, Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| |
Collapse
|
4
|
Imidazole-derived new colorimetric/fluorometric chemosensor for the sensitive recognition of CN− ions: Real-time application in food samples and fluorescence bio-imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Xie S, Wang H, Li N, Liu Y, Wu J, Xu Y, Xie J. A gold coating nanoporous anodized alumina oxide membrane as the substrate for rapid surface enhanced Raman spectroscopy detection of conjugated cyanide in fingertip blood. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Yoon Y, Jo S, Lee DH, Lee TS. Synthesis of fluorescent, ortho-azonaphthol-containing conjugated polymer for ratiometric fluoride ion sensing. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
8
|
Skok A, Vishnikin A, Bazel Y. Online determination of sulfide using an optical immersion probe combined with headspace liquid-phase microextraction. RSC Adv 2022; 12:17675-17681. [PMID: 35765321 PMCID: PMC9200051 DOI: 10.1039/d2ra01010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
A new design for headspace liquid phase microextraction in combination with an optical immersion probe (HS-LPME-OIP) was proposed and successfully tested for the determination of sulfide in wine and water samples. The developed method is based on the release of hydrogen sulfide from the aqueous phase after the addition of orthophosphoric acid and its extraction with an aqueous solution of 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB). The analytical signal was recorded using an optical probe immersed in a vial containing 200 μL of 0.1 mM DTNB solution. Using the optical immersion probe in combination with HS-LPME allowed to register the analytical signal online and significantly improve the reproducibility of sulfide determination compared to known microextraction approaches. In the proposed approach, the problems with drop stability, limitations in mixing rate or extraction time, too small volume of the acceptor phase and stability of the holding the acceptor phase in the hole of the optical probe were also satisfactorily solved. The calibration graph was linear in the range of 16–256 μg L−1 with a correlation coefficient of 0.9992. The limit of detection was 6 μg L−1. A new design for headspace liquid phase microextraction combined with an optical probe.![]()
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice Moyzesova 11 040 01 Košice Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University Gagarin Av. 72 49010 Dnipro Ukraine
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice Moyzesova 11 040 01 Košice Slovak Republic
| |
Collapse
|
9
|
Simple and highly sensitive 2-hydroxy-1,4-naphthoquinone/glassy carbon sensor for the electrochemical detection of [Ni(CN)4]2− in metallurgical industry wastewater. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ikuta Y, Shimono K, Tsubouchi Y, Sugita T, Kobayashi K, Sugiyama F, Kozaki D, Iwamoto S, Mori M. Retention of inorganic anions using mesoporous zirconia spheres modified with anion-exchange groups as the stationary phase for ion chromatography. ANAL SCI 2022; 38:563-569. [DOI: 10.1007/s44211-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 11/01/2022]
|
11
|
Rahimi F, Anbia M. Nitrogen-rich silicon quantum dots: facile synthesis and application as a fluorescent "on-off-on" probe for sensitive detection of Hg 2+ and cyanide ions. LUMINESCENCE 2022; 37:598-609. [PMID: 35037385 DOI: 10.1002/bio.4195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The sensitive and reliable detection of Hg2+ and CN- as harsh environmental contaminants are of great importance. In view of this, a novel "on-off-on" fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detecting Hg2+ and CN- ions in aqueous media. NR-SiQDs were synthesized by a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with L-asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photo- and pH-stability. The fluorescence emission was effectively quenched by Hg2+ (turn off) due to the formation of a non-fluorescent stable NR-SiQDs/Hg2+ complex while after the addition of cyanide ions (CN- ), Hg2+ ions can be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn on) due to the formation of highly stable [Hg (CN)4 ]2- species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN- , respectively. Finally, the NR-SiQDs based fluorescence probe was utilized to detect Hg2+ and CN- ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| |
Collapse
|
12
|
Zhou Z, Hu H, Xia L, Li G, Xiao X. A bisspiropyran fluorescent probe for the selective and rapid detection of cyanide anion in liqueurs. NEW J CHEM 2022. [DOI: 10.1039/d1nj05773a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel bisspiropyran-fluorescent probe was synthesized and applied in the selective and rapid CN− detection in liqueurs.
Collapse
Affiliation(s)
- Ziqiang Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Hongzhi Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
13
|
Determination of cyanide concentration by chronoamperometry, cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Tang Q, Dan F, Ma S, Zeng X, Lan H. A Colorimetric and Fluorescent Probe Based on Quinoline‐Indolium for Detection of CN
−
in Aqueous Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qian Tang
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Feijun Dan
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Shanghu Ma
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| | - Xiaoyan Zeng
- College of Chemistry Central China Normal University Wuhan Hubei 430079 P.R. China
| | - Haichuang Lan
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang Hubei 443002 P.R. China
| |
Collapse
|
15
|
Wu L, Zhang C, Long Y, Chen Q, Zhang W, Liu G. Food additives: From functions to analytical methods. Crit Rev Food Sci Nutr 2021; 62:8497-8517. [PMID: 34058921 DOI: 10.1080/10408398.2021.1929823] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Food additives refer to all kinds of trace substances used in food or food processing to preserve flavor or enhance food taste, appearance, or other qualities. At present, artificial synthetic food additives have gradually replaced the natural food additives and many problems related to food additives, involving the abuse of food additives, excessive additives or even toxic additives. Obviously, food additives can bring people great sensory enjoyment and commercial convenience, but they may also cause potential risks to human health. So, it is of high significance to conduct quantitative analysis on the content of food additives. According to their functions and the regulatory requirements of food additives, this review starts from the classification and structures of various food additives involving colorants, preservatives, antioxidants, sweeteners, emulsifiers, stabilizers, thickeners, gelling agents. It then summarizes and discusses analytical methods for quantification of food additives including modern immunoassays and other biotechnological methods. The proposed review aspires to fill in the knowledge gap of food additives between academia and industry by covering all kinds of analytical methods for quantifying food additives.
Collapse
Affiliation(s)
- Long Wu
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, P.R. China.,Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, P.R. China
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, P.R. China
| | - Yingxi Long
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, P.R. China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, P.R. China
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, P.R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
16
|
Anning C, Wang J, Chen P, Batmunkh I, Lyu X. Determination and detoxification of cyanide in gold mine tailings: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1117-1126. [PMID: 31603399 DOI: 10.1177/0734242x19876691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanide is among the most toxic chemicals widely employed in the cyanidation process to leach precious minerals, such as gold and silver, by the minerals processing companies worldwide. This present article reviews the determination and detoxification of cyanide found in gold mine tailings. Most of the cyanide remains in the solution or the slurries after the cyanidation process. The cyanide species in the gold tailings are classified as free cyanide, weak acid dissociation, and metallocyanide complexes. Several methods, such as colorimetric, titrimetric, and electrochemical, have been developed to determine cyanide concentrations in gold mine effluents. Application of physical, natural, biological, and chemical methods to detoxify cyanide to a permissible limit (50 mg L-1) can be achieved when the chemical compositions of cyanide (type of species) present in the tailings are known. The levels of cyanide concentration determine the impact it will have on the environment.
Collapse
Affiliation(s)
- Cosmos Anning
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Ping Chen
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Idermunkh Batmunkh
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xianjun Lyu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
17
|
High performance cyanide sensing with tunable limit of detection by stimuli-responsive gold nanoparticles modified with poly (N,N-dimethylaminoethyl methacrylate). Talanta 2019; 204:198-205. [DOI: 10.1016/j.talanta.2019.05.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022]
|
18
|
Analyzing 2-acetyl-4(5)-(1,2,3,4-tetrahydroxybutyl)-imidazole in beverages by dispersive micro-solid phase extraction using polymer cation exchange sorbent followed by ion chromatography and liquid chromatography coupled with tandem mass spectrometry. Food Chem 2019; 292:260-266. [DOI: 10.1016/j.foodchem.2019.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/11/2019] [Accepted: 04/06/2019] [Indexed: 11/18/2022]
|
19
|
Vahid B, Hassanzadeh J, Khodakarami B. CdSe quantum dots-sensitized chemiluminescence system and quenching effect of gold nanoclusters for cyanide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:322-329. [PMID: 30669095 DOI: 10.1016/j.saa.2019.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
An efficient chemiluminescence resonance energy transfer (CRET) induced chemiluminescence (CL) system was developed for the sensitive determination of cyanide ion (CN-) in environmental and biological samples. The selected CL reaction was hydrogen peroxide (H2O2)-bicarbonate (HCO3-) system with an ultra-weak emission at about 470 nm. It was found that glutathione-stabilized CdSe quantum dots (CdSe QDs) superbly increase the obtained CL intensity. The high performance CRET between the CL emitters and CdSe QDs with a broad absorption was mainly responsible for the observed improving effect. The absorption spectrum of QDs completely overlaps with the CL emission wavelength of H2O2-HCO3- system. Besides, CdSe QDs could also catalyze the CL reaction of H2O2-HCO3-, efficiently. On the other hand, it was observed that the gold nanoclusters (Au NCs) could prohibit the CRET system and turn off the CL emission. This diminishing effect can be useful for the analytical application. Herein, it was successfully exploited for the selective recognition of CN-, using its leaching effect on Au NCs. After efficient dissolution of NCs, the CRET to CdSe QDs restored and the CL emission was again turned on. This strategy resulted in a high sensitive and reliable measurement of CN- in the concentration range of 2-225 nM, with a detection limit of 0.46 nM.
Collapse
Affiliation(s)
- Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Behzad Khodakarami
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
20
|
Ding M, Wang K. Determination of cyanide in bamboo shoots by microdiffusion combined with ion chromatography-pulsed amperometric detection. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172128. [PMID: 29765664 PMCID: PMC5936929 DOI: 10.1098/rsos.172128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/13/2018] [Indexed: 06/01/2023]
Abstract
A practical method for the determination of cyanide in bamboo shoots has been developed using microdiffusion preparation integrated with ion chromatography-pulsed amperometric detection (IC-PAD). Cyanide was released from bamboo shoots after Conway cell microdiffusion, and then analysed by IC-PAD. In comparison with the previously reported methods, derivatization and ion-pairing agent addition were not required in this proposed microdiffusion combined with IC-PAD method. The microdiffusion parameters were optimized including hydrolysis systems, temperature, time, and so on. Under the optimum conditions, the linear range of the calibration curve for cyanide was 0.2-200.0 µg kg-1 with satisfactory correlation coefficients of 0.9996 and the limit of detection was 0.2 µg kg-1 (S/N = 3). The spiked recovery range was from 92.8 to 98.6%. The intra-day and inter-day relative standard deviations of cyanide were 2.7-14.9% and 3.0-18.3%, respectively. This method was proved to be convenient in operation with high sensitivity, precision and accuracy, and was successfully applied in the determination of cyanide in bamboo shoot samples.
Collapse
|
21
|
Li Y, Li H, Li M, Li C, Sun D, Yang B. Porous boron-doped diamond electrode for detection of dopamine and pyridoxine in human serum. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|