1
|
Li B, Han C, Feng G, Guo J, Wan Z, Yang X. Enhanced creaminess of plant-based milk via enrichment of papain hydrolyzed oleosomes. Food Res Int 2024; 198:115322. [PMID: 39643379 DOI: 10.1016/j.foodres.2024.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
There is an increased consumer demand for plant-based milk in substituting dairy milk due to the ethical, health concerns and environmentally-friendly choice. However, perceived creaminess as dominant attributes present a big challenge in consumer acceptance for those milk alternatives. In this study, we developed a novel and easily scalable strategy to enhance the creaminess of soy milk via enrichment of oleosomes. The soybean oleosome creams were extracted and hydrolyzed with papain, resulting in formation of oil droplets with more phospholipid and less protein at the surface, which significantly reduce friction coefficient in the presence of saliva (from 0.15 to 0.03 at a speed around 50 mm/s). Moreover, blending papain-hydrolyzed oleosome creams with raw soy milk enables the creation of a plant-based milk that matches the nutritional profile, lubrication properties, and creaminess of full-fat dairy milk. QCM-D and passive microrheology were employed to characterize hydration of oleosomes into the mucin layer and relevant viscosity change, suggesting that papain hydrolyzed oleosome might decrease friction coefficient via hydration lubrication mechanism. This approach could be applied to enhance the creaminess mouthfeel and nutritional profile of plant-based milk.
Collapse
Affiliation(s)
- Biao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanwu Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxin Feng
- Laboratory of Marin Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Liu S, Zhao Z, Zhou P, Deng Y, Liu G, Li P, Zeng J, Zhang Y, Zhang M. Impact of Oil Bodies on Structure, Rheology and Function of Acid-Mediated Soy Protein Isolate Gels. Foods 2024; 13:1289. [PMID: 38731660 PMCID: PMC11083650 DOI: 10.3390/foods13091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Oil bodies (OBs) are naturally occurring pre-emulsified oil droplets that have broad application prospects in emulsions and gels. The main purpose of this research was to examine the impact of the OB content on the structure and functional aspects of acid-mediated soy protein isolate (SPI) gel filled with OBs. The results indicated that the peanut oil body (POBs) content significantly affected the water holding capacity of the gel. The rheological and textural analyses showed that POBs reduced the gel strength and hardness. The scanning electron and confocal laser scanning microscopy analyses revealed that POBs aggregated during gel formation and reduced the gel network density. The Fourier transform infrared spectrum (FTIR) analysis demonstrated that POBs participated in protein gels through hydrogen bonds, steric hindrance and hydrophobic interactions. Therefore, OBs served as inactive filler in the acid-mediated protein gel, replaced traditional oils and provided alternative ingredients for the development of new emulsion-filled gels.
Collapse
Affiliation(s)
- Songbin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Jiarui Zeng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Z.Z.); (P.Z.); (Y.D.); (G.L.); (P.L.); (J.Z.)
| |
Collapse
|
3
|
Zaaboul F, Tian T, Borah PK, Di Bari V. Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties. Food Chem 2024; 436:137630. [PMID: 37871553 DOI: 10.1016/j.foodchem.2023.137630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
This study investigates the potential use of peanut oil bodies as a fat replacer in ice cream. We explored the effects of different treatments, fresh (FOB), heated (HOB), and roasted (ROB) peanut oil bodies on ice cream preparation. Heat treatment altered the intrinsic protein profile on the oil bodies' surface, subsequently influencing the ice cream's properties. Notably, heat treatment increases the oil bodies' size and the absolute value of ζ-potential. The rheological analysis provided information about void volumes, indicating easier air incorporation during whipping for ROB (72 to 300 nm) than FOB (107 to 55 nm). ROB ice cream displays a high overrun and a lower melting rate compared to FOB ice cream. Moreover, thermal treatment reduces the beany flavors, n-hexanal, and 2-pentenylfuran. Overall, this study reveals peanut oil bodies as a promising platform for rational design of fat-substituted plant-based ice creams.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom.
| | - Tian Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pallab Kumar Borah
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom
| | - Vincenzo Di Bari
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom.
| |
Collapse
|
4
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
5
|
Jin W, Yang X, Shang W, Wu Y, Guo C, Huang W, Deng Q, Peng D. Assembled structure and interfacial properties of oleosome-associated proteins from Camellia oleifera as natural surface-active agents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, Fischer AM, Fluhr R. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6816-6837. [PMID: 35918065 DOI: 10.1093/jxb/erac329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a developmental process allowing nutrient remobilization to sink organs. We characterized flag leaf senescence at 7, 14, and 21 d past anthesis in two near-isogenic barley lines varying in the allelic state of the HvNAM1 transcription factor gene, which influences senescence timing. Metabolomics and microscopy indicated that, as senescence progressed, thylakoid lipids were transiently converted to neutral lipids accumulating in lipid droplets. Senescing leaves also exhibited an accumulation of sugars including glucose, while nitrogen compounds (nucleobases, nucleotides, and amino acids) decreased. RNA-Seq analysis suggested lipid catabolism via β-oxidation and the glyoxylate cycle, producing carbon skeletons and feeding respiration as a replacement of the diminished carbon supply from photosynthesis. Comparison of the two barley lines highlighted a more prominent up-regulation of heat stress transcription factor- and chaperone-encoding genes in the late-senescing line, suggesting a role for these genes in the control of leaf longevity. While numerous genes with putative roles in nitrogen remobilization were up-regulated in both lines, several peptidases, nucleases, and nitrogen transporters were more highly induced in the early-senescing line; this finding identifies processes and specific candidates which may affect nitrogen remobilization from senescing barley leaves, downstream of the HvNAM1 transcription factor.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kendra Hertweck
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Chen Y, Liao X, Zhang C, Kong X, Hua Y. Hydrolyzing behaviors of endogenous proteases on proteins in sesame milk and application for producing low-phytate sesame protein hydrolysate. Food Chem 2022; 385:132617. [DOI: 10.1016/j.foodchem.2022.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
8
|
zaaboul F, Zhao Q, Xu Y, Liu Y. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Chen Y, Pei H, Dai Q, Zhang C, Kong X, Hua Y. Raw walnut kernel: A natural source for dietary proteases and bioactive proteins. Food Chem 2022; 369:130961. [PMID: 34479012 DOI: 10.1016/j.foodchem.2021.130961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
Walnut kernels are health-promoting nuts, which are mainly attributed to polyunsaturated fatty acids, phenolics, and phytosterols. However, the information concerning benefits of walnut proteins are limited. In this study, endopeptidases, aminopeptidases, carboxypeptidases, superoxide dismutases, catalases, and phospholipases with respective relative abundance of 2.730, 1.728, 0.477, 3.148, 0.743, and 0.173‰ were identified by liquid chromatography tandem mass spectrometry. These endogenous proteases exhibited activity in a broad pH range of 2-6.5, and optimal at pH 4.5 and 50 °C. Aspartic endopeptidases were predominant endopeptidases, followed by cysteine ones. There were two types of aspartic endopeptidases, one (not inhibited by pepstatin A) exerted activity at pH 2-3 and the other (inhibited by pepstatin A) optimal at pH 4.5. Carboxypeptidases were optimal at pH 4.5, and aminopeptidases exerted activity at pH near 6.5. These endogenous proteases assisted the digestion of walnut proteins, and soaking, especially peeling, greatly improved the in vitro digestibility.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Haoming Pei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Lichun W, Sun Y, Kang M, Zhong M, Qi B, Li Y. Effect of Pasteurization on Membrane Proteins and Oxidative Stability of Oil Bodies in Various Crops. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wu Lichun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yufan Sun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mengxue Kang
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mingming Zhong
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Baokun Qi
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yang Li
- College of Food Northeast Agricultural University Harbin 150030 China
- Harbin Institute of Green Food Science Harbin 150030 China
- Harbin Institute of Food Industry Harbin 150030 China
| |
Collapse
|
11
|
Composition and structural characterization of peanut crude oil bodies extracted by aqueous enzymatic method. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Physicochemical and rheological properties of peanut oil body following alkaline pH treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Chen Y, Li H, Zhang C, Kong X, Hua Y. Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Huina Li
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
14
|
Structure, assembly and application of novel peanut oil body protein extracts nanoparticles. Food Chem 2021; 367:130678. [PMID: 34388634 DOI: 10.1016/j.foodchem.2021.130678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Oil bodies (OBs), which are found mainly in the seeds or nuts of oleaginous plants, are spherical droplets with a triacylglycerol core covered by phospholipid-protein layer. Oil body protein extracts (OBPEs), mainly oleosins, contribute to the unique physicochemical stability of OBs. The application of OBPEs in aqueous environment has been greatly limited by their highly hydrophobic structures. In this study, OBPEs were successfully extracted from peanut seeds and their profiles were characterized by LC-MS/MS. OBPEs nanoparticles were successfully assembled in aqueous environment for the first time using the antisolvent precipitation method. The mean diameter of OBPEs nanoparticles was 215.6 ± 1.8 nm with a polydispersity index of 0.238 ± 0.005. The morphology of these colloidal particles was found to be roughly spherical shape as confirmed by transmission electron microscopy (TEM). Oil-in-water (O/W) Pickering emulsions with good stability against coalescence could be formed at protein concentration as low as 0.1 mg/mL. Cryo-scanning electron microscopy (cryo-SEM) confirmed that spherical nanoparticles were packed at the oil-water interface. This research will greatly expand the applications of OBPEs in structuring the interfaces and developing novel formulations in the food and pharmaceutical fields.
Collapse
|
15
|
Niu R, Zhou L, Chen F, Zhu T, Duan X. Effect of enzyme on the demulsification of emulsion during aqueous enzymatic extraction and the corresponding mechanism. Cereal Chem 2021. [DOI: 10.1002/cche.10401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ruihao Niu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Longzheng Zhou
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Fusheng Chen
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Tingwei Zhu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xiaojie Duan
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
16
|
Structural and interfacial characterization of oil bodies extracted from Camellia oleifera under the neutral and alkaline condition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Sesame water-soluble proteins fraction contains endopeptidases and exopeptidases with high activity: A natural source for plant proteases. Food Chem 2021; 353:129519. [PMID: 33740507 DOI: 10.1016/j.foodchem.2021.129519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Recently, the interest in the plant proteases has greatly increased. However, only a few of proteases are isolated from the hugely produced oilseeds for the practical utilizations. In this study, the raw sesame milk prepared from peeled sesame seeds was separated into floating, skim, and precipitate fractions by centrifugation. The predominant aspartic endopeptidases and serine carboxypeptidases, which exerted high synergetic activity at pH 4.5-5 and 50-60 °C, were identified in the skim by the liquid chromatography tandem mass spectrometry, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protease inhibitor assay, trichloroacetic acid-nitrogen soluble index (TCA-NSI), and free amino acid analyses. By incubating the mixture (protein content, 2%) of skim and precipitate at pH 4.5 and 50 °C for 6 h, the TCA-NSI and free amino acids achieved to 38.42% and 3148 mg/L, respectively. Moreover, these proteases efficiently degraded the proteins from soybean, peanut, and bovine milk.
Collapse
|
18
|
Niu R, Chen F, Liu C, Duan X. Composition and Rheological Properties of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J Oleo Sci 2021; 70:375-383. [PMID: 33583919 DOI: 10.5650/jos.ess20247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the relationship between the composition and rheological properties of peanut oil bodies from aqueous enzymatic extraction was evaluated. Aqueous enzymatic extraction using a combination of cellulase and pectinase at a 1:1 ratio effectively destroyed the structure of the cell wall and resulted in the maximum oil body yield of 90.7%. The microstructure and interfacial membrane composition of the peanut oil bodies were observed by confocal laser scanning microscopy. The oil bodies contained three inherent proteins (oleosin, caleosin, and steroleosin) along with two adsorbed foreign proteins (arachin and lipoxygenase). Five phospholipids were detected using 31P nuclear magnetic resonance spectroscopy. Among them, phosphatidylcholine, which plays a major role in the stability of oil bodies, was the most abundant. The measured rheological properties indicated that the oil bodies were a typical elastic system. Elevated temperature and high-speed shear destroyed the binding between proteins and phospholipids, reducing the oil body stability. The findings will facilitate the commercial application of peanut oil bodies by improving the extraction rate of peanut oil bodies and clarifying their stabilization mechanism.Practical Application: This paper studies the enzymatic extraction, composition and rheological properties of peanut oil bodies. It provides a theoretical basis for the large-scale application of peanut oil bodies in the food and cosmetic industries. It is beneficial to improve the application value of peanut resources.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Food Science and Technology, Henan University of Technology
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology
| | - Chen Liu
- College of Food Science and Technology, Henan University of Technology
| | - Xiaojie Duan
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
19
|
Chen Y, Zhang H, Zhang C, Kong X, Hua Y. Characterization of endogenous endopeptidases and exopeptidases and application for the limited hydrolysis of peanut proteins. Food Chem 2020; 345:128764. [PMID: 33310254 DOI: 10.1016/j.foodchem.2020.128764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
Research concerning the utilization of oilseed endogenous proteases is scarce. Herein, we investigated the peanut proteases and their effects on peanut proteins. Liquid chromatography tandem mass spectrometry analysis showed that peanut contained several endopeptidases and exopeptidases. Protease inhibitor assay and analysis of cleavage sites showed that the obvious proteolytic activity at pH 2-5 and 20-60 °C was from aspartic endopeptidases (optimal at pH 3) and one legumain (pH 4). The above endopeptidases destroyed five and six IgE-binding epitopes of Ara h 1 at pH 3 and 4, respectively. Ara h 1 (>95%) and arachin (50-60%) could be hydrolyzed to generate 10-20 kDa and <4 kDa peptides at pH 3, which was enhanced by the pH 3 → 4 incubation. Further, the limited hydrolysis improved the gel-forming ability and in vitro digestibility (approximately 15%) of peanut proteins. Free amino acid analysis showed that the activity of exopeptidases was low at pH 2-5.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hongsheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Zhou L, Chen F, Liu K, Zhu T, Jiang L. Combination of Alcalase 2.4 L and CaCl 2 for aqueous extraction of peanut oil. J Food Sci 2020; 85:1772-1780. [PMID: 32484970 DOI: 10.1111/1750-3841.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
The combined application of CaCl2 and Alcalase 2.4 L to the aqueous extraction process of peanuts was evaluated as a method to destabilize the oil body (OB) emulsion and improve the oil yield. After adding 5 mM CaCl2 , the oil yield was reached to 92.0% which was similar with that obtained using Alcalase 2.4 L alone, and the required enzyme loading was decreased by approximately 60 times. In addition, the demulsification mechanism during aqueous extraction process was also investigated. Particle size and zeta-potential measurements indicated that the stability of the peanut OB emulsion dramatically decreased when CaCl2 was added. Under these conditions, the demulsification of Alcalase 2.4 L performed was more efficiently. SDS-PAGE results showed that adding CaCl2 changed the subunit structure of the peanut OB interface proteins and promoted the cross-linking among the arachin Ara h3 isoforms, resulting in unstable emulsions.
Collapse
Affiliation(s)
- Longzheng Zhou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
21
|
Shao Q, Liu X, Su T, Ma C, Wang P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1568. [PMID: 31921234 PMCID: PMC6914826 DOI: 10.3389/fpls.2019.01568] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 05/10/2023]
Abstract
Oil bodies (OBs) are ubiquitous dynamic organelles found in plant seeds. They have attracted increasing attention recently because of their important roles in plant physiology. First, the neutral lipids stored within these organelles serve as an initial, essential source of energy and carbon for seed germination and post-germinative growth of the seedlings. Secondly, they are involved in many other cellular processes such as stress responses, lipid metabolism, organ development, and hormone signaling. The biological functions of seed OBs are dependent on structural proteins, principally oleosins, caleosins, and steroleosins, which are embedded in the OB phospholipid monolayer. Oleosin and caleosin proteins are specific to plants and mainly act as OB structural proteins and are important for the biogenesis, stability, and dynamics of the organelle; whereas steroleosin proteins are also present in mammals and play an important role in steroid hormone metabolism and signaling. Significant progress using new genetic, biochemical, and imaging technologies has uncovered the roles of these proteins. Here, we review recent work on the structural or metabolic roles of these proteins in OB biogenesis, stabilization and degradation, lipid homeostasis and mobilization, hormone signal transduction, stress defenses, and various aspects of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Zhou LZ, Chen FS, Hao LH, Du Y, Liu C. Peanut Oil Body Composition and Stability. J Food Sci 2019; 84:2812-2819. [PMID: 31546282 DOI: 10.1111/1750-3841.14801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
This study was aimed to assess the effect of membrane structure on the stability of peanut oil bodies extracted by enzyme-assisted extraction. The influence of pH, NaCl concentration, and temperature on the physicochemical properties of peanut oil bodies was characterized using ζ-potential and particle size. The results indicated that the peanut oil bodies had strong stability (ζ-potential, >20 mV) at pH values away from the isoelectric point (pH 4.8), at a low salt concentration (NaCl concentration, <10 mM), and in a certain temperature range (35 to 55 °C). The stable structure of the oil body was closely related to its structure. Phospholipids, along with membrane proteins, were major components of the oil body membrane. Therefore, the phospholipid composition and content were measured and the types of membrane proteins of the oil bodies were identified. The results showed that phosphatidylcholine and phosphatidylserine were major components of the oil body phospholipids. Two-dimensional electrophoresis showed that the oil bodies contained both intrinsic proteins and extrinsic proteins, which might play an important role in the stability of oil bodies during enzyme-assisted extraction processing.
Collapse
Affiliation(s)
- Long-Zheng Zhou
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Fu-Sheng Chen
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Li-Hua Hao
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China.,Henan Institute of Product Quality Supervision and Inspection
| | - Yan Du
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Chen Liu
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| |
Collapse
|
23
|
Zaaboul F, Cao C, Raza H, Jun ZZ, Xu YJ, Liu YF. The Triacylglycerol Profile of Oil Bodies and Oil Extracted from Argania spinosa Using the UPLC Along with the Electrospray Ionization Quadrupole-Time-of-Flight Mass Spectrometry (LC-Q-TOF-MS). J Food Sci 2019; 84:762-769. [PMID: 30875441 DOI: 10.1111/1750-3841.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/28/2022]
Abstract
The triacylglycerol (TAG) matrix of argan oil (AO) bodies (AOB) along with the TAGs of AO extracted from the same kernels using an organic solvent, were identified and quantified using the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generally, both samples showed a similar TAGs profile but AO found to have three extra TAGs in low amount. In total 23 and 26 different TAGs were identified in AOBs and AO, respectively. The most abundant TAGs were OOL, POO, OOO, and POL in both samples. Furthermore, oleic acid, linoleic acid, and palmitic acid were the major fatty acids in both AOBs and AO. To the best of our knowledge, this is the first research that studied the TAGs matrix of an oil body revealing no major difference between the TAGs profile protected by the AOBs membrane and the oil extracted from the whole seed. PRACTICAL APPLICATION: Seed and kernels oil bodies emulsion tend to be the new source of emulsified oil in food and cosmetic industries. However, before replacing a product with another, we have to make sure that the new alternative can offer better or at least similar benefits. Our results showed that the triacylglycerols (TAGs) matrix and the argan oil (AO) share the same TAGs profile with a relatively close percentage. Therefore, AO bodies can be the perfect pre-emulsified oil for some food products like sauces and creams.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Zhao Zheng Jun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Yong Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Yuan Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| |
Collapse
|
24
|
Zaaboul F, Matabaro E, Raza H, Xin BD, Duhoranimana E, Cao C, Liu Y. Validation of a Simple Extraction Method for Oil Bodies Isolated from Peanuts. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Boxin D. Xin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Emmanuel Duhoranimana
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University1800 Lihu AvenueWuxiJiangsu 214122P.R. China
| |
Collapse
|