1
|
Li X, Shen A, Xiao M, Li S, Yang W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int J Biol Macromol 2025; 294:139516. [PMID: 39761889 DOI: 10.1016/j.ijbiomac.2025.139516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Sulfated polysaccharides refer to polysaccharides containing sulfate groups on sugar units. In nature, sulfated polysaccharides are widely distributed in marine organisms, and the variation in sulfation sites, monosaccharide composition, and branched chain distribution among different species results in differences in the physicochemical properties and biological activities. From the latest perspective, this review summarized the types, structural characteristics, and potential health benefits of sulfated polysaccharides in marine foods. In recent years, marine-derived sulfated polysaccharides have been widely used as stabilizers and antimicrobial agents applied in nutraceutical delivery systems and food packaging, which depend on their interactions with food components. Hence, we outlined the non-covalent/covalent interactions of marine-derived sulfated polysaccharides with food components (e.g., proteins, polysaccharides, and polyphenols) as well as the application in food industry. Additionally, the prospects and potential development for sulfated polysaccharides are concluded, aiming to provide a deep understanding of marine-derived sulfated polysaccharides to promote the industrial application in food health.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ao Shen
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Miaorong Xiao
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| | - Weiwei Yang
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| |
Collapse
|
2
|
Gao B, Rao C, Lei X, Li S, Huang X, Liu Y, Ye D. Comprehensive insights into yeast mannoproteins:structural heterogeneity, winemaking, food processing, and medicine food homology. Food Res Int 2025; 202:115719. [PMID: 39967099 DOI: 10.1016/j.foodres.2025.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Mannoproteins (MPs) are primary constituents of yeast cell walls, which are extensively utilized in the winemaking process, in finished wines, and during wine aging to enhance aroma, stabilize pigments, improve wine body, and reduce astringency. However, existing research has mainly focused on the extraction of MPs and certain oenological properties. A review of the literature indicates that our understanding of the targets and mechanisms influenced by MPs related to winemaking characteristics remains limited. Furthermore, as further research on MPs progresses, it also has beneficial effects in other food processing and food healthcare. Therefore, this evaluation examines MPs from three aspects: extraction methods, corresponding structures, and performances, providing a more comprehensive and critical insight into the structure-activity relationship of MPs. In a word, it outlines the primary applications of MPs in food and aims to provide data support for more precise control over the use of MPs from a structural perspective.
Collapse
Affiliation(s)
- Binghong Gao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chuanyan Rao
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xingmeng Lei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Siqi Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaochuan Huang
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
4
|
Oyón-Ardoiz M, Manjón E, Escribano-Bailón MT, García-Estévez I. Potential Use of Torulaspora delbrueckii As a New Source of Mannoproteins of Oenological Interest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11606-11616. [PMID: 38722802 PMCID: PMC11117404 DOI: 10.1021/acs.jafc.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
In this work, three MP extracts obtained from Torulaspora delbrueckii were added to red wine, and the changes in phenolic composition, color, and astringency were evaluated by HPLC-DAD-ESI-MS, tristimulus colorimetry, and sensory analysis, respectively. The MP extracts modified wine phenolic composition differently depending on the type of MP. Moreover, two MP extracts were able to reduce wine astringency. The fact that the MP-treated wines showed an increased flavanol content suggests the formation of MP-flavanol aggregates that remain in solution. Furthermore, the formation of these aggregates may hinder the interaction of flavanols with salivary proteins in the mouth. The effect of these MPs might be associated with their larger size, which could influence their ability to bind flavanols and salivary proteins. However, one of the astringent-modulating MPs also produced a loss of color, highlighting the importance of assessing the overall impact of MPs on the organoleptic properties of wine.
Collapse
Affiliation(s)
- María Oyón-Ardoiz
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| | - Elvira Manjón
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| | | | - Ignacio García-Estévez
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| |
Collapse
|
5
|
Curiel-Fernández M, Cano-Mozo E, Ayestarán B, Guadalupe Z, Pérez-Magariño S. Influence of Grape Polysaccharide Extracts on the Phenolic Compounds and Color Characteristics of Different Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1985-1994. [PMID: 37587088 DOI: 10.1021/acs.jafc.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polysaccharides have an important role in the technological and sensory characteristics of wines. The aim of this work was to study the effects of the addition of four polysaccharide extracts obtained from grape products and byproducts to red wines during storage for 2 months on their phenolic composition and color. The four extracts rich in polysaccharides were obtained from grape must, white grape pomace, red grape marc, and red wine, and they were compared with a commercial inactivated yeast. These products were studied in three wines selected for their highest astringency and acidity characteristics. The highest differences were found in the red wines with high initial phenolic concentrations, which reduced their values. The addition of polysaccharide extracts from grape pomace or marc, must, or yeast can mainly be interesting in wines with high phenolic content since they may be useful to modulate the astringency of red wines. This is the first work that studies the effect of polysaccharide extracts obtained from grape byproducts in red wines, showing great possibilities of these products.
Collapse
Affiliation(s)
- María Curiel-Fernández
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Estela Cano-Mozo
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y el Vino, Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y el Vino, Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain
| | - Silvia Pérez-Magariño
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| |
Collapse
|
6
|
Brandão E, Jesus M, Guerreiro C, Maricato É, Coimbra MA, Mateus N, de Freitas V, Soares S. Development of a cell-based quaternary system to unveil the effect of pectic polysaccharides on oral astringency. Carbohydr Polym 2024; 323:121378. [PMID: 37940274 DOI: 10.1016/j.carbpol.2023.121378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/10/2023]
Abstract
Phenolic compounds are responsible for food unpleasant taste properties, including astringency, due to their ability to interact with salivary proteins and oral constituents. Astringency is a crucial attribute for consumer's acceptability. To fulfill the demand for both healthy and tasty food, polysaccharides raise as a good alternative to modulate astringency. In this work, a cell-based quaternary system was developed to evaluate the ability of polysaccharides to reduce the interaction between two classes of hydrolysable tannins - gallotannins (tannic acid) and ellagitannins (punicalagin) - and oral constituents (cells, salivary proteins and mucosal pellicle). So, pectic polysaccharide fractions isolated from grape skins, imidazole soluble polysaccharides (ISP) and carbonate soluble polysaccharides (CSP), as well as a commercial pectin, were tested. Results showed that the polysaccharide's effect depends on the structural features of the molecules involved. CSP fraction and pectin were the most effective, reducing the interactions between both tannins and the oral constituents, mainly in the complete oral model. The highest uronic acid content and the presence of methyl esterified groups could explain their high reduction ability. For tannic acid, the reduction effect increased along with the galloylation degree, while the interaction of β-punicalagin with the oral constituents was practically inhibited at 3.0 mg.mL-1.
Collapse
Affiliation(s)
- Elsa Brandão
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Mónica Jesus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Carlos Guerreiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Élia Maricato
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Susana Soares
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| |
Collapse
|
7
|
Zhang Z, Cai X, Lv Y, Tang X, Shi N, Zhou J, Yan M, Li Y. Self-healing, ultra-stretchable, and highly sensitive conductive hydrogel reinforced by sulfate polysaccharide from Enteromorpha prolifera for human motion sensing. Int J Biol Macromol 2023; 253:126847. [PMID: 37709219 DOI: 10.1016/j.ijbiomac.2023.126847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The synthesis of multifunctional conductive hydrogel has attracted extensive attention worldwide due to their integrated properties of stretchability, self-adhesion, self-healing, and high sensitivity, while it is still a challenge. Although various kinds of polysaccharides and their derivatives are used to achieve the aforementioned objective, there are few researches about hydrogel design introducing sulfated polysaccharide from Enteromorpha prolifera (SPE), which is rich in hydroxyl, sulfate, and carboxyl groups providing amounts of reaction sites for hydrogel synthesis. Herein, conductive hydrogel (PAA-Al3+-SPE3) reinforced by SPE was designed by simple one pot hot polymerization method. This hydrogel demonstrated charming extension ratio (up to 4027.40 %), strain stress (up to 59.94 kPa), compressive strength (19.71 Mpa), and high conductivity sensibility (GF 6.76, 300 % - 700 %). Additionally, PAA-Al3+-SPE3 showed good self-healing property (repaired autonomously after 60 s) and satisfied self-adhesion (31.11 kPa) due to the reversible hydrogen bonds and metal coordination interactions. Furthermore, the PAA-Al3+-SPE3 hydrogel showed great real-time sensing performance to monitor various motions. These findings suggest the potential of PAA-Al3+-SPE3 hydrogel as an affordable and reliable conductive sensing material. Meantime, the first utilization of SPE to construct flexible wearable sensors offers new route for the high-value application of Enteromorpha prolifera.
Collapse
Affiliation(s)
- Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujuan Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yue Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Tang
- Bureau of Agriculture and Rural Affairs of Donggang District, Rizhao 276800, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jiazhe Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Assunção Bicca S, Poncet-Legrand C, Roi S, Mekoue J, Doco T, Vernhet A. Exploring the influence of S. cerevisiae mannoproteins on wine astringency and color: Impact of their polysaccharide part. Food Chem 2023; 422:136160. [PMID: 37119599 DOI: 10.1016/j.foodchem.2023.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
The impact of the polysaccharide moiety of mannoproteins (MPs) on the color and astringency of red wines was studied respectively through spectrophotometry and their impact on tannin interactions with BSA. To this end, MPs with conserved native structures from four different Saccharomyces cerevisiae strains were used: a Wild-Type strain (BY4742, WT) taken as reference, mutants ΔMnn4 (with no mannosyl-phosphorylation) and ΔMnn2 (linear N-glycosylation backbone), and a commercial enological strain. MPs affected tannin-BSA interactions by delaying aggregation kinetics. To achieve it, a well-balanced density/compactness of the polysaccharide moiety of MPs was a key factor. MP-WT and MP-Mnn2 acted as weak copigments and induced a slight increase in the absorbance of Malvidin-3-O-Glucoside. The same MPs also promoted a synergistic effect during the copigmentation of Quercetin-3-O-Glucoside with Malvidin-3-O-Glucoside. The intensity of these hyperchromic effects was related to the accessibility of anthocyanins to negatively charged mannosyl-phosphate groups within the polysaccharide moiety.
Collapse
Affiliation(s)
- Saul Assunção Bicca
- SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France; Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France.
| | | | - Stéphanie Roi
- SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France
| | - Julie Mekoue
- Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France.
| | - Thierry Doco
- SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France.
| | - Aude Vernhet
- SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Wang N, Tian J, Guo L, Chen X, Hu B, Song S, Wen C. Fucoidan/κ-carrageenan mixed gel: Effect of anions of different valence including chloride, bromide, iodide, sulfate and phosphate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Structure-function relationships of pectic polysaccharides from broccoli by-products with in vitro B lymphocyte stimulatory activity. Carbohydr Polym 2023; 303:120432. [PMID: 36657866 DOI: 10.1016/j.carbpol.2022.120432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To study structure-function relationships of pectic polysaccharides with their immunostimulatory activity, broccoli by-products were used. Pectic polysaccharides composed by 64 mol% uronic acids, 18 mol% Ara, and 10 mol% Gal, obtained by hot water extraction, activated B lymphocytes in vitro (25-250 μg/mL). To disclose active structural features, combinations of ethanol and chromatographic fractionation and modification of the polysaccharides were performed. Polysaccharides insoluble in 80 % ethanol (Et80) showed higher immunostimulatory activity than the pristine mixture, which was independent of molecular weight range (12-400 kDa) and removal of terminal or short Ara side chains. Chemical sulfation did not promote B lymphocyte activation. However, the action of pectin methylesterase and endo-polygalacturonase on hot water extracted polysaccharides produced an acidic fraction with a high immunostimulatory activity. The de-esterified homogalacturonan region seem to be an important core to confer pectic polysaccharides immunostimulatory activity. Therefore, agri-food by-products are a source of pectic polysaccharide functional food ingredients.
Collapse
|
12
|
Effect of mannoproteins from different oenological yeast on pigment composition and color stability of red wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
The interfacial destabilization of bile salt-emulsified oil droplets, essential for lipase function, is mediated by Lycium barbarum L. leaf polysaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lei X, Wang S, Zhao P, Wang X. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins. Int J Biol Macromol 2022; 224:950-957. [DOI: 10.1016/j.ijbiomac.2022.10.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
15
|
Zhai HY, Li SY, Zhao X, Lan YB, Zhang XK, Shi Y, Duan CQ. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: a review. Food Chem 2022; 403:134467. [DOI: 10.1016/j.foodchem.2022.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
16
|
Song J, Yu Y, Chen M, Ren Z, Chen L, Fu C, Ma ZF, Li Z. Advancement of Protein- and Polysaccharide-Based Biopolymers for Anthocyanin Encapsulation. Front Nutr 2022; 9:938829. [PMID: 35782917 PMCID: PMC9247465 DOI: 10.3389/fnut.2022.938829] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Although evidence shows that anthocyanins present promising health benefits, their poor stability still limits their applications in the food industry. Increasing the stability of anthocyanins is necessary to promote their absorption and metabolism and improve their health benefits. Numerous encapsulation approaches have been developed for the targeted release of anthocyanins to retain their bioactivities and ameliorate their unsatisfactory stability. Generally, choosing suitable edible encapsulation materials based on biopolymers is important in achieving the expected goals. This paper presented an ambitious task of summarizing the current understanding and challenges of biopolymer-based anthocyanin encapsulation in detail. The food-grade edible microencapsulation materials, especially for proteins and polysaccharides, should be employed to improve the stability of anthocyanins for effective application in the food industry. The influence factors involved in anthocyanin stability were systematically reviewed and highlighted. Food-grade proteins, especially whey protein, caseinate, gelatin, and soy protein, are attractive in the food industry for encapsulation owing to the improvement of stability and their health benefits. Polysaccharides, such as starch, pectin, chitosan, cellulose, mucilages, and their derivatives, are used as encapsulation materials because of their satisfactory biocompatibility and biodegradability. Moreover, the challenges and perspectives for the application of anthocyanins in food products were presented based on current knowledge. The proposed perspective can provide new insights into the amelioration of anthocyanin bioavailability by edible biopolymer encapsulation.
Collapse
Affiliation(s)
- Jiahui Song
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Yue Yu
| | - Minghuang Chen
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Caili Fu
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Zheng feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Zheng feei Ma
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
17
|
Li Y, Zhang Z, Liu X, Che S, Shi N, Chen Y, Yan M. Adsorption behavior and mechanism of Lead (Pb 2+) by sulfate polysaccharide from Enteromorpha prolifera. Int J Biol Macromol 2022; 207:760-770. [PMID: 35351544 DOI: 10.1016/j.ijbiomac.2022.03.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Lead (Pb2+) pollution poses severe healthy and ecological risks to humans. In this work, sulfate polysaccharide from Enteromorpha prolifera (SPE) was utilized for Pb2+ adsorption from simulated intestinal fluid. In order to evaluate its adsorption behaviors comprehensively, batch adsorption of Pb2+ was investigated under different conditions. Results showed that SPE presents high adsorption ability for Pb2+ through chemical adsorption process and the maximum adsorption capacity for Pb2+ was 278.5 mg/g. And SPE exhibited higher removal efficiency (≥60%) for trace Pb2+ (<10 mg/L) compared to that of other adsorbents based on polysaccharide. Besides, its adsorption can be described by Langmuir isotherm and pseudo-second-order kinetic models. Further, XRD, FTIR, and XPS were used to characterize the possible interaction of Pb2+ with SPE, and the results showed that carboxyl and hydroxyl groups in SPE play more important role than that of sulfate group. Our work represents the first assessment of Pb2+ adsorption properties of SPE. This investigation highlights the potential application of SPE to protect the body from hazard of food-derived heavy metals.
Collapse
Affiliation(s)
- Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuai Che
- Key laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiming Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Weber F. Noncovalent Polyphenol-Macromolecule Interactions and Their Effects on the Sensory Properties of Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:72-78. [PMID: 34962801 DOI: 10.1021/acs.jafc.1c05873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noncovalent interactions between food macromolecules like proteins and polysaccharides with polyphenols have a broad and extensive impact on the sensory properties of food. Because of the structural diversity of the interaction partners and the corresponding variety of binding mechanisms, the determination of the distinct sensorial consequences and the correlation with molecular features is complicated. Well-documented examples include the attenuation of astringency elicited by tannins in the presence of polysaccharides or the precipitation of anthocyanins by cell-wall polysaccharides during fruit juice processing. The proposed mechanism suggests that there exist additional intricate interactions including ternary complexes. The analytical characterization of the formed complexes is difficult due to the reversible nature of these interactions.
Collapse
Affiliation(s)
- Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| |
Collapse
|
20
|
Tofalo R, Suzzi G, Perpetuini G. Discovering the Influence of Microorganisms on Wine Color. Front Microbiol 2021; 12:790935. [PMID: 34925298 PMCID: PMC8678073 DOI: 10.3389/fmicb.2021.790935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
21
|
The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021; 13:nu13124495. [PMID: 34960047 PMCID: PMC8709276 DOI: 10.3390/nu13124495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic metabolic diseases of the 21st century. Nevertheless, its prevalence might be attenuated by taking advantage of bioactive compounds commonly found in fruits and vegetables. This work is focused on the recovery of polyphenols and polysaccharide–polyphenol conjugates from grape pomace for T2DM management and prevention. Bioactives were extracted by solid–liquid extraction and by pressurized hot water extraction (PHWE). Polyphenolic fraction recovered by PHWE showed the highest value for total phenolic content (427 μg GAE.mg−1), mainly anthocyanins and proanthocyanidins, and higher antioxidant activity compared to the fraction recovered by solid–liquid extraction. Polysaccharide–polyphenol conjugates comprehended pectic polysaccharides to which approximately 108 μg GAE of phenolic compounds (per mg fraction) were estimated to be bound. Polyphenols and polysaccharide–polyphenol conjugates exhibited distinct antidiabetic effects, depending on the extraction methodologies employed. Extracts were particularly relevant in the inhibition of a-glucosidase activity, with free polyphenols showing an IC50 of 0.47 μg.mL−1 while conjugates showed an IC50 of 2.7, 4.0 and 5.2 μg.mL−1 (solid–liquid extraction, PHWE at 95 and 120 °C, respectively). Antiglycation effect was more pronounced for free polyphenols recovered by PHWE, while the attenuation of glucose uptake by Caco-2 monolayers was more efficient for conjugates obtained by PHWE. The antidiabetic effect of grape pomace bioactives opens new opportunities for the exploitation of these agri-food wastes in food nutrition, the next step towards reaching a circular economy in grape products.
Collapse
|
22
|
Dimopoulou M, Dols-Lafargue M. Exopolysaccharides Producing Lactic Acid Bacteria in Wine and Other Fermented Beverages: For Better or for Worse? Foods 2021; 10:2204. [PMID: 34574312 PMCID: PMC8466591 DOI: 10.3390/foods10092204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) from fermented beverages such as wine, cider and beer produce a wide range of exopolysaccharides (EPS) through multiple biosynthetic pathways. These extracellular polysaccharides constitute key elements for bacterial species adaptation to such anthropic processes. In the food industry, LAB polysaccharides have been widely studied for their rheological, functional and nutritional properties; however, these have been poorly studied in wine, beer and cider until recently. In this review, we have gathered the information available on these specific polysaccharide structure and, biosynthetic pathways, as well as the physiology of their production. The genes associated with EPS synthesis are also presented and compared. Finally, the possible role of EPS for bacterial survival and spread, as well as the risks or possible benefits for the winemaker and the wine lover, are discussed.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece;
| | - Marguerite Dols-Lafargue
- Unité de Recherche Œnologie EA 4577, University of Bordeaux, ISVV, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France
| |
Collapse
|
23
|
Zhang P, Ma W, Meng Y, Zhang Y, Jin G, Fang Z. Wine phenolic profile altered by yeast: Mechanisms and influences. Compr Rev Food Sci Food Saf 2021; 20:3579-3619. [PMID: 34146455 DOI: 10.1111/1541-4337.12788] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023]
Abstract
Grape phenolic compounds undergo various types of transformations during winemaking under the influences of yeasts, which further impacts the sensory attributes, thus the quality of wine. Understanding the roles of yeasts in phenolics transformation is important for controlling wine quality through fermentation culture selection. This literature review discusses the mechanisms of how yeasts alter the phenolic compounds during winemaking, summarizes the effects of Saccharomyces cerevisiae and non-Saccharomyces yeasts on the content and composition of phenolics in wine, and highlights the influences of mixed cultural fermentation on the phenolic profile of wine. Collectively, this paper aims to provide a deeper understanding on yeast-phenolics interactions and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yiqi Meng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Yue XF, Jing SS, Ni XF, Zhang KK, Fang YL, Zhang ZW, Ju YL. Anthocyanin and Phenolic Acids Contents Influence the Color Stability and Antioxidant Capacity of Wine Treated With Mannoprotein. Front Nutr 2021; 8:691784. [PMID: 34222310 PMCID: PMC8249586 DOI: 10.3389/fnut.2021.691784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), total flavonoid content, and total flavanol content in wine, whereas the addition of MP during storage had the opposite effect. The addition of MP before alcohol fermentation significantly increased the amount of individual anthocyanins and individual phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In addition, the addition of 0.3 g/L MP during storage increased the content of individual phenolic acids and TPC of wine. However, the addition of 0.1 g/L MP during storage significantly reduced the TPC, TAC, TTC, and individual anthocyanin content (except for malvidin-3-glucoside and malvidin-3-acetly-glucoside); meanwhile, the treatment attenuated the color stability and antioxidant capacity of wine. The results demonstrated that the addition of MP before alcohol fermentation could increase the functional components and improve the color stability and antioxidant capacity of wine.
Collapse
Affiliation(s)
- Xiao-Feng Yue
- College of Enology, Northwest A&F University, Xianyang, China
| | - Si-Si Jing
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xiao-Fan Ni
- College of Enology, Northwest A&F University, Xianyang, China
| | - Ke-Kun Zhang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Xianyang, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China.,Heyang Viti-Viniculture Station, Northwest A&F University, Xianyang, China
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Xianyang, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China.,Heyang Viti-Viniculture Station, Northwest A&F University, Xianyang, China
| | - Yan-Lun Ju
- College of Enology, Northwest A&F University, Xianyang, China
| |
Collapse
|
25
|
Garrido-Bañuelos G, Buica A, du Toit W. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Crit Rev Food Sci Nutr 2021; 62:7743-7759. [PMID: 33951953 DOI: 10.1080/10408398.2021.1918056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous research studies have evaluated factors influencing the nature and levels of phenolics and polysaccharides in food matrices. However, in grape and wines most of these works have approach these classes of compounds individually. In recent years, the number of publications interconnecting classes have increased dramatically. The present review relates the last decade's findings on the relationship between phenolics and polysaccharides from grapes, throughout the entire winemaking process up to evaluating the impact of their relationship on the red wine sensory perception. The combination and interconnection of the most recent research studies, from single interactions in model wines to the investigation of the formation of complex macromolecules, brings the perfect story line to relate the relationship between phenolics and polysaccharides from the vineyard to the glass. Grape pectin is highly reactive toward grape and grape derived phenolics. Differences between grape cultivars or changes during grape ripeness will affect the extractability of these compounds into the wines. Therefore, the nature of the grape components will be crucial to understand the subsequent reactions occurring between phenolics and polysaccharide of the corresponding wines. It has been demonstrated that they can form very complex macromolecules which affect wine color, stability and sensory properties.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa.,Product Design - Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
26
|
Osorio-Macías DE, Song D, Thuvander J, Ferrer-Gallego R, Choi J, Peñarrieta JM, Nilsson L, Lee S, Bergenståhl B. Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14564-14576. [PMID: 33236630 PMCID: PMC7735732 DOI: 10.1021/acs.jafc.9b07251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The particle matter of wine is mainly composed of wine colloids and macromolecules. The present work develops a methodology using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering, differential refractive index detector, and ultraviolet detector (AsFlFFF-MALS-dRI-UV) for the fractionation and determination of the molar mass, the hydrodynamic radius, and the apparent densities of the aggregates and macromolecules present in wine samples. The results from a set of six Argentinian high-altitude wines showed two main populations: the first population composed of wine colloids with higher UV-specific absorptivity and the second population composed of polysaccharides, such as arabinogalactans. The conformation results showed that population 1 consists of small and dense particles, while population 2 showed high molar masses and lower densities. The results demonstrated the use of AsFlFFF as a new, effective method for the fractionation and characterization of wine colloids and wine macromolecules in red wines with further potential applications.
Collapse
Affiliation(s)
- Daniel E. Osorio-Macías
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Dongsup Song
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Johan Thuvander
- Department of Chemical Engineering, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Raúl Ferrer-Gallego
- Centro Tecnológico del Vino (VITEC), Carretera de Porrera, km. 1, 43730 Falset, Spain
| | - Jaeyeong Choi
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- School of Chemistry, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Post Office Box 303, La Paz, Bolivia
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Seungho Lee
- Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| | - Björn Bergenståhl
- Department of Food Technology, Engineering and Nutrition, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
27
|
Fernandes A, Raposo F, Evtuguin DV, Fonseca F, Ferreira-da-Silva F, Mateus N, Coimbra MA, de Freitas V. Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydr Polym 2020; 255:117432. [PMID: 33436231 DOI: 10.1016/j.carbpol.2020.117432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Grape pectic polysaccharides-malvidin-3-O- β -d-glucoside binding was studied, aiming to unveil the impact of structural diversity of polysaccharides on anthocyanins-polysaccharides interactions. Polysaccharides were extracted with solutions of imidazole (ISP) and carbonate at 4 °C (CSP-4 °C) and room temperature (CSP-RT) and also recovered from the dialysis supernatant of the remaining cellulosic residue after the aqueous NAOH extraction of hemicellulosic polysaccharides (Sn-CR). Polysaccharides richer in homogalacturonan domains, like those present in the CSP-4 °C fraction had approximately 50-fold higher binding affinity to malvidin-3-O- β-d-glucoside, than polysaccharides with side chains (as ISP and CSP-RT extractable polysaccharides). CSP-4 °C polysaccharides showed a positive effect on malvidin-3-O- β-d-glucoside colour fading. Hydration equilibrium constant of malvidin-3-O- β-d-glucoside in the presence of CSP-4 °C polysaccharides was higher, showing the preferential stabilization of the flavylium cation. The results showed that anthocyanins colour stabilization can be promoted by pectic polysaccharide structures such as those extracted by cold carbonate.
Collapse
Affiliation(s)
- Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Filomena Raposo
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Dmitry V Evtuguin
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Fátima Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| |
Collapse
|
28
|
Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol 2020; 151:677-690. [DOI: 10.1016/j.ijbiomac.2020.02.192] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/20/2023]
|
29
|
Wu Y, Han Y, Tao Y, Li D, Xie G, Show PL, Lee SY. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Food Res Int 2020; 132:109098. [PMID: 32331662 DOI: 10.1016/j.foodres.2020.109098] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
In this study, four different selected wall materials (namely gelatin, soy protein isolate, maltodextrin and Arabic gum) were applied for blueberry anthocyanin extract encapsulation. The effect of these wall material types on the release and degradation of anthocyanin and the modulation of gut microbiota during in vitro simulated gastrointestinal digestion and colonic fermentation were investigated. It was found that the encapsulation of anthocyanin extract using appropriate wall material could significantly enhance the colonic accessibility of anthocyanins. Soy protein isolate and gelatin delayed the release of anthocyanins, whereas the other two wall materials displayed no significant effect on the release time of anthocyanins. Gut microbiota mainly metabolized some phenolic compounds such as 4-hydroxycinnamic acid and chlorogenic acid. Meanwhile, different fermented anthocyanin extract microcapsule broth could significantly decrease the composition and abundance of Firmicutes and increase that of Bacteroidetes. Furthermore, the presence of anthocyanin extract microcapsules, especially those encapsulated with soy protein isolate, promoted the biosynthesis of short-chain fatty acids by gut microbiota. It is concluded that, amongst the wall materials studied, soy protein isolate appeared to be a functional and suitable candidate to delay anthocyanin release and prevent disease through the promotion of gut health.
Collapse
Affiliation(s)
- Yue Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangjie Xie
- Zhihai Postgraduate Working Station, Zhenjiang, Jiangsu, 212000, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Sze Ying Lee
- Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
30
|
Guo WL, Chen M, Pan WL, Zhang Q, Xu JX, Lin YC, Li L, Liu B, Bai WD, Zhang YY, Ni L, Rao PF, Lv XC. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice. Int J Biol Macromol 2020; 145:1208-1218. [DOI: 10.1016/j.ijbiomac.2019.09.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
|
31
|
Echeverrigaray S, Scariot FJ, Menegotto M, Delamare APL. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity. Int J Food Microbiol 2020; 314:108383. [DOI: 10.1016/j.ijfoodmicro.2019.108383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
|
32
|
Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr Polym 2019; 230:115644. [PMID: 31887907 DOI: 10.1016/j.carbpol.2019.115644] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.
Collapse
|
33
|
Wang C, Xie Y. Interaction of Protein Isolate with Anthocyanin Extracted from Black Soybean and Its Effect on the Anthocyanin Stability. J Food Sci 2019; 84:3140-3146. [PMID: 31613008 DOI: 10.1111/1750-3841.14816] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
The interactions between black soybean protein isolate (B-SPI) and cyanidin 3-O-glucoside (C3G), anthocyanin extracted from black soybean coat was investigated under neutral conditions. The fluorescence spectra showed that C3G had fluorescence quenching effects on B-SPI. Thermodynamic parameters showed that ∆G < 0, which demonstrated that the binding was a spontaneous reaction. Since ΔH > 0 and ΔS > 0, the interactions between C3G and B-SPI was mainly hydrophobic interactions. Fourier infrared spectroscopy results suggested that the contents of α-helix and β-sheet structure showed an increasing trend, whereas the β-angle content displayed a decreasing trend. The degradation of C3G followed first-order kinetics at 85 °C and 100 °C. After the interactions with B-SPI, the degradation rate constant was decreased and the half-life of C3G was prolonged from 70.25 ± 0.90 min to 175.64 ± 38.04 min at 85 °C, from 62.68 ± 1.1 min to 72.51 ± 2.5 min at 100 °C (p < 0.05). The results indicated that the interactions of B-SPI and C3G improved the thermal stability of C3G under heating conditions.
Collapse
Affiliation(s)
- Chen Wang
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| | - Yanli Xie
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
34
|
Fernandes PA, Silva AM, Evtuguin DV, Nunes FM, Wessel DF, Cardoso SM, Coimbra MA. The hydrophobic polysaccharides of apple pomace. Carbohydr Polym 2019; 223:115132. [DOI: 10.1016/j.carbpol.2019.115132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/30/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
35
|
Lei X, Zhu Y, Wang X, Zhao P, Liu P, Zhang Q, Chen T, Yuan H, Guo Y. Wine polysaccharides modulating astringency through the interference on interaction of flavan-3-ols and BSA in model wine. Int J Biol Macromol 2019; 139:896-903. [DOI: 10.1016/j.ijbiomac.2019.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
|
36
|
Apple Pomace Extract as a Sustainable Food Ingredient. Antioxidants (Basel) 2019; 8:antiox8060189. [PMID: 31234319 PMCID: PMC6617305 DOI: 10.3390/antiox8060189] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022] Open
Abstract
Apple pomace is a by-product of apple processing industries with low value and thus frequent disposal, although with valuable compounds. Acidified hot water extraction has been suggested as a clean, feasible, and easy approach for the recovery of polyphenols. This type of extraction allowed us to obtain 296 g of extract per kg of dry apple pomace, including 3.3 g of polyphenols and 281 g of carbohydrates. Ultrafiltration and solid-phase extraction using C18 cartridges of the hot water extract suggested that, in addition to the apple native polyphenols detected by ultra-high-pressure liquid chromatography coupled to a diode-array detector and mass spectrometry UHPLC-DAD-ESI-MSn, polyphenols could also be present as complexes with carbohydrates. For the water-soluble polyphenols, antioxidant and anti-inflammatory effects were observed by inhibiting chemically generated hydroxyl radicals (OH•) and nitrogen monoxide radicals (NO•) produced in lipopolysaccharide-stimulated macrophages. The water-soluble polyphenols, when incorporated into yogurt formulations, were not affected by fermentation and improved the antioxidant properties of the final product. This in vitro research paves the way for agro-food industries to achieve more diversified and sustainable solutions towards their main by-products.
Collapse
|
37
|
Gao Y, Fangel JU, Willats WGT, Moore JP. Tracking polysaccharides during white winemaking using glycan microarrays reveals glycoprotein-rich sediments. Food Res Int 2019; 123:662-673. [PMID: 31285016 DOI: 10.1016/j.foodres.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Winemaking results in a significant amount of sediments that are formed in the tanks, the vats and in the bottles before and after fermentation. Little is known about the biochemical composition of these sediments apart from the fact that they are assumed to be derived in large part from the grape matrix. Glycan microarray technology offers a relatively rapid means to track the polysaccharides from their origin in the grape material and throughout the various steps in the winemaking process. In this study Comprehensive Microarray Polymer Profiling (CoMPP) was used to investigate the glycan-rich composition of particularly white grapes during winemaking and then investigate the effects of recombinant and commercial enzyme formulations on wine sediment compositions. The gross lees or sediments produced in the absence of enzymes were found to be composed of an abundance of homogalacturonans, rhamnogalacturonans, arabinans and galactans in addition to an abundance of extensins and arabinogalactan proteins. The addition of enzymes was shown to strip off the homogalacturonan and much of the rhamnogalacturonan with its side chains revealing a sediment layer composed almost exclusively of extensins and arabinogalactan proteins. The effect of winemaking techniques was shown to have an effect on the glycan-rich wine sediment compositions and holds implications for the management of gross lees in a winery environment.
Collapse
Affiliation(s)
- Yu Gao
- Center for Viticulture and Enology, Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China; Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Jonatan U Fangel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| |
Collapse
|
38
|
Fernandes PAR, Le Bourvellec C, Renard CMGC, Nunes FM, Bastos R, Coelho E, Wessel DF, Coimbra MA, Cardoso SM. Revisiting the chemistry of apple pomace polyphenols. Food Chem 2019; 294:9-18. [PMID: 31126510 DOI: 10.1016/j.foodchem.2019.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/15/2022]
Abstract
Hot water is an easily implementable process for polyphenols extraction. To evaluate the effect of this process on apple pomace, the overall polyphenolic composition was assessed before and after hot water extraction, followed by extractions with aqueous/organic solutions. As determined by UHPLC-DAD, flavan-3-ols were the main apple native polyphenols. Their amount decreased 50% after hot water extraction, while the other classes remained unchanged. Dihydrochalcones and hydroxycinnamic acid oxidation products, were also observed, alongside with non-extractable oxidised procyanidins that represented more than 4-fold the amount of native apple polyphenols in the pomace. Microwave superheated-water extraction of the insoluble cell wall material in water/acetone solutions and the high amounts of polyphenols that were insoluble in water/ethanol solutions suggested that oxidised procyanidins could be covalently linked to polysaccharides. These complexes represented up to 40% of the available polyphenols from apple pomace, potentially relevant for agro-food waste valuation.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carine Le Bourvellec
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Avignon University, F-84000 Avignon, France
| | - Catherine M G C Renard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Avignon University, F-84000 Avignon, France
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Department of Chemistry, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Rita Bastos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dulcineia F Wessel
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; School of Agriculture and CI&DETS, Polytechnic Institute of Viseu, 3500-606 Viseu, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
39
|
Qi X, Liu R, Chen M, Li Z, Qin T, Qian Y, Zhao S, Liu M, Zeng Q, Shen J. Removal of copper ions from water using polysaccharide-constructed hydrogels. Carbohydr Polym 2019; 209:101-110. [DOI: 10.1016/j.carbpol.2019.01.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
40
|
Unravelling the scientific research on grape and wine phenolic compounds: a bibliometric study. Scientometrics 2019. [DOI: 10.1007/s11192-019-03029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein. Food Chem 2018; 279:63-69. [PMID: 30611513 DOI: 10.1016/j.foodchem.2018.11.139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Blueberry wine is a new fruit wine with good taste and rich nutrition, but color change and anthocyanins (ACNs) content readily decrease during the production process. The effects of different content (0.2 g/L, 0.25 g/L, and 0.3 g/L) of mannoprotein (MP) on the blueberry wine were investigated in this study. The result showed that MP treatment inhibited the decrease in ACN content, reduced the content of total acid, increased the content of alcohol content in blueberry wine, maintained the color and improved the taste of blueberry wine. In addition, the effect was more pronounced as the MP concentration increased, with the optimum effect at 0.3 g/L. However, MP has no significant effect on the total sugar in blueberry wine. The results arising from this study provide new insights into blueberry wine production, by which treatment with MP maintain the color and ACNs contents, and improve the taste of blueberry wine.
Collapse
|
42
|
Minnaar P, Nyobo L, Jolly N, Ntushelo N, Meiring S. Anthocyanins and polyphenols in Cabernet Franc wines produced with Saccharomyces cerevisiae and Torulaspora delbrueckii yeast strains: Spectrophotometric analysis and effect on selected sensory attributes. Food Chem 2018; 268:287-291. [DOI: 10.1016/j.foodchem.2018.06.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/01/2022]
|
43
|
Zhu J, Zhang D, Tang H, Zhao G. Structure relationship of non–covalent interactions between phenolic acids and arabinan–rich pectic polysaccharides from rapeseed meal. Int J Biol Macromol 2018; 120:2597-2603. [DOI: 10.1016/j.ijbiomac.2018.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|