1
|
In vitro bioaccessibilities of vitamin C in baby biscuits prepared with or without UHT cow’s milk. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Zhang X, Wang J, Yang H, Zhou Y. A novel biosensor for detecting vitamin C in milk powder based on Hg 2+-mediated DNA structural changes. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220426121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Detection of Vitamin C (Vc) is very important to protect human health. A lot of methods have been developed for the detection of Vc. However, many methods require complex material preparation and skilled operators. Thus, a simple, label-free biosensor is still urgently needed.
Methods:
In this work, N-methylmesoporphyrin IX (NMM)/G-quadruplex pair was used as a label-free signal reporter. Without Vc, the G-quadruplex DNA and its incomplete complementary chain could form duplex structure by T-Hg(II)-T mismatch. In this case, the G-quadruplex structure could not be formed. When Vc was added, the Hg2+ was reduced to Hg(0). Then, the G-quadruplex DNA became free and formed G-quadruplex structure to emit fluorescence signal.
Results:
Under optimal conditions, this biosensor showed a good linear response in the range of 0.2 - 4.0 μM and a low limit of detection (19.9 nM). This biosensor also had good selectivity towards Vc. Meanwhile, the satisfactory recovery rates (93.2%-102.8%) suggested that this biosensor had attractive potential for measuring Vc in real samples.
Conclusion:
In this work, a simple label-free fluorescent biosensor for the detection of Vc based on Hg2+-mediated DNA structural changes had been developed. The whole experiment was simple and all reagents were commercialized. The label-free detection was realized by NMM/G-quadruplex as a signal reporter. This biosensor was very sensitive with a low limit of detection. And it had a potential practical application for the Vc detection in milk powder.
Collapse
Affiliation(s)
- Xingping Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jiujun Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| |
Collapse
|
3
|
Alorabi M, Mohammed DS, Mostafa-Hedeab G, El-Sherbeni SA, Negm WA, Mohammed AIA, Al-kuraishy HM, Nasreldin N, Alotaibi SS, Lawal B, Batiha GES, Conte-Junior CA. Combination Treatment of Omega-3 Fatty Acids and Vitamin C Exhibited Promising Therapeutic Effect against Oxidative Impairment of the Liver in Methotrexate-Intoxicated Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4122166. [PMID: 35496049 PMCID: PMC9045995 DOI: 10.1155/2022/4122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Doha Saad Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department–Faculty of Medicine, Beni-Suef University, Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Ali Ismail A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, P.O. Box 72511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
4
|
Shi L, Dong X, Zhang G, Zhang Y, Zhang C, Dong C, Shuang S. Lysosome targeting, Cr(vi) and l-AA sensing, and cell imaging based on N-doped blue-fluorescence carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3561-3568. [PMID: 34313265 DOI: 10.1039/d1ay00977j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-doped blue-fluorescence carbon dots (N-CDs) were fabricated via a one-pot hydrothermal method using folic acid and p-phenylenediamine. The obtained N-CDs exhibited strong fluorescence (FL) with a considerable quantum yield (QY) of 21.8% and exceptional optical stability under different conditions. Upon introducing Cr(vi), blue FL of N-CDs was distinctly quenched. On subsequent addition of l-AA, the FL of N-CDs could be partially recovered. The fluorescence changes of N-CDs have been utilized to detect Cr(vi) and l-AA in aqueous solutions with linear ranges of 0.10-150 μM and 0.75-2.25 mM, respectively, as well as limit of detection values of 9.4 nM and 25 μM, respectively. Furthermore, as-obtained N-CDs can be extended to monitor the fluctuation of intracellular Cr(vi) and l-AA. More intriguingly, N-CDs can target lysosomes with a satisfactory Pearson correction coefficient of 0.87, which indicates a promising application prospect in the biomedical field.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Albuquerque TG, Costa HS, Oliveira MBPP. 4-hydroxy-2-alkenals in foods: a review on risk assessment, analytical methods, formation, occurrence, mitigation and future challenges. Crit Rev Food Sci Nutr 2021; 62:3569-3597. [PMID: 33397127 DOI: 10.1080/10408398.2020.1867499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Undoubtedly, significant advances were performed concerning 4-hydroxy-2-alkenals research on foods, and their formation by double oxidation of polyunsaturated fatty acids. But further studies are still needed, especially on their occurrence in foods enriched with n-3 and n-6 fatty acids, as well as in foods for infants and processed foods. Major factors concerning the formation of 4-hydroxy-2-alkenals were discussed, namely the influence of fatty acids composition, time/temperature, processing conditions, salt, among others. Regarding mitigation, the most effective strategies are adding phenolic extracts to foods matrices, as well as other antioxidants, such as vitamin E. Exposure assessment studies revealed 4-hydroxy-2-alkenals values that could not be considered a risk for human health. However, these toxic compounds remain unaltered after digestion and can easily reach the systemic circulation. Therefore, it is crucial to develop in vivo research, with the inclusion of the colon phase, as well as, cell membranes of the intestinal epithelium. In conclusion, according to our review it is possible to eliminate or effectively decrease 4-hydroxy-2-alkenals in foods using simple and economic practices.
Collapse
Affiliation(s)
- Tânia Gonçalves Albuquerque
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P, Lisbon, Portugal.,REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Instituto Universitário Egas Moniz, Lisbon, Portugal
| | - Helena S Costa
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P, Lisbon, Portugal.,REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | |
Collapse
|
6
|
Bettazzi F, Ingrosso C, Sfragano PS, Pifferi V, Falciola L, Curri ML, Palchetti I. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem 2020; 344:128692. [PMID: 33349504 DOI: 10.1016/j.foodchem.2020.128692] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
An easy and reliable method based on a novel electroanalytical nanostructured sensor has been developed to perform quantification of vitamin C in commercial and fortified cow-milk-based formulae and foods for infants and young children. The work is motivated by the need of a reliable analytical tool to be applied in quality control laboratories for the quantitative assessment of vitamin C where its rapid and cost-effective monitoring is essential. The ad hoc designed sensor, based on disposable screen-printed carbon electrodes modified with Au nanoparticles decorated reduced graphene oxide flakes, exhibits a LOD of 0.088 mg L-1. The low cost, easy sample preparation, fast response and high reproducibility (RSD ≈ 8%) of the proposed method highlight its suitability for usage in quality control laboratories for determining vitamin C in real complex food matrices, envisaging the application of the sensing platform in the determination of other compounds relevant in food chemistry and food manufacturing.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Chiara Ingrosso
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Patrick Severin Sfragano
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Valentina Pifferi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Luigi Falciola
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - M Lucia Curri
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
7
|
Ding Y, Zhao M, Yu J, Li Z, Zhang X, Ma Y, Li H, Chen S. Preparation of NiMn2O4/C necklace-like microspheres as oxidase mimetic for colorimetric determination of ascorbic acid. Talanta 2020; 219:121299. [DOI: 10.1016/j.talanta.2020.121299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
|
8
|
Koraqi H, Durmishi N, Azemi D, Selimi S. The effect of storage on the quality parameters of baby food. POTRAVINARSTVO 2020. [DOI: 10.5219/1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this paper was focused on the quality changes of baby food stored at different temperature (4 °C, 20 °C, 40 °C and 60 °C) for 15 days. During storage, chemical and nutritional parameters analysis were carried out. Commercial fruits based baby food are the products usually made with fruits, sugar, and variable additives. As the foodstuffs intended for particular nutritional uses, baby foods for infants and young children conform to a set of strict guidelines e.g. nutritional quality, the addition of additives, labeling. However, being an important supplement to children‘s diet and for their progressive adaptation to ordinary food, the nutritional quality of commercial fruits baby food is very important. Samples of commercial fruits baby food from the market and pharmacies were analyzed by parameters: pH, total soluble solids, moisture, total acidity, vitamin C, proteins, sugars, and lipids. All samples of baby food are produced by foreign companies since currently, no Kosovo manufacturers are producing this range of products. The nutritional quality parameters are important to assess the quality of the product and how it can be safely stored. However, as a precaution, storage remarks in the product labels should always be followed.
Collapse
|
9
|
Zhang Q, Zhu Z, Ni Y. Interaction between aspirin and vitamin C with human serum albumin as binary and ternary systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118356. [PMID: 32325408 DOI: 10.1016/j.saa.2020.118356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Foods generally contain special ingredients which easily to interact with drugs human intaking, thus affecting drug efficacy and excretion, and even cause adverse reactions. Vitamin C (Vit. C) is abundant in fresh fruits and vegetables. It plays a regulatory role in redox metabolism, and its absence can cause scurvy. Aspirin (ASP) can be used to treat many diseases, is the earliest, common and widely used as antipyretic, analgesic and antirheumatic medicine. Human serum albumin (HSA) is the most abundant protein in vertebrate plasma and has the property of combining and transporting endogenous and exogenous substances. In this paper, the effects of Vit. C on the combination of ASP and HSA were studied by multi-spectra and voltammetric approaches. Fluorescence spectra showed that the quenching mode between Vit. C and HSA is dynamic, and the main binding force is hydrophobic force. The quenching mode between ASP and HSA is static one, and the main binding force is hydrogen bond and van der Waals force. For ternary biological system of (HSA-ASP)-Vit. C, the binding constant decreases compared with HSA-Vit. C system. However, for (HSA-Vit. C)-ASP system, the binding constant does not change when compared with binary system of HSA-ASP. Based on the technology combination of voltammetry, infrared, three-dimensional fluorescence and circular dichroism (CD), it is proved that the existence of ASP will influence the binding process of Vit. C to HSA. It could be concluded that taking Vit. C first doesn't affect the absorption of ASP and may be good for health; in contrast, it is not good to take Vit. C immediately as one have just taken ASP, because the existence of ASP reduce the absorption of Vit. C for human body.
Collapse
Affiliation(s)
- Qiulan Zhang
- School of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Zhi Zhu
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yongnian Ni
- School of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
10
|
Determination and evaluation of in vitro bioaccessibility of added vitamin C in commercially available fruit-, vegetable-, and cereal-based baby foods. Food Chem 2020; 330:127166. [PMID: 32535312 DOI: 10.1016/j.foodchem.2020.127166] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022]
Abstract
Knowing the bioaccessibility of vitamin C in foodstuffs produced for infants and young children is necessary to determine their daily vitamin C intake. The purpose of the present study was to investigate the bioaccessibility of vitamin C in fruit-, vegetable-, and cereal-based baby foodstuffs by an in vitro digestion model at varying gastric pHs. The concentrations of measured vitamin C were higher than the declared amounts on their label. The bioaccessibility of vitamin C ranged from 10.4 to 43.4%, and from 0.4 to 19.2% in fruit- and vegetable-based baby foodstuffs (declared vitamin C fortified) at gastric pH 1.5 and 4, respectively. For cereal-based baby foodstuffs, the bioaccessibility ranged from 1.3 to 53.8%, and from 0.3 to 26.3% at gastric pH 1.5 and 4, respectively. As revealed in this research, the bioaccessibility of vitamin C in baby foodstuffs is very low in both gastric pH conditions.
Collapse
|
11
|
Guan H, Han B, Gong D, Song Y, Liu B, Zhang N. Colorimetric sensing for ascorbic acid based on peroxidase-like of GoldMag nanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117277. [PMID: 31229917 DOI: 10.1016/j.saa.2019.117277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 05/13/2023]
Abstract
A new scheme for sensitive and rapid colorimetric detection of ascorbic acid (AA) has been developed by the GoldMag-ABTS free radical scavenging system. The well-dispersed Gold and magnetic particles (GoldMag) was successfully prepared by self-assembly method and characterized by Fourier transform infrared (FTIR), X-Ray Photoelectron Spectroscopic (XPS) techniques. Nanocomposites combine the advantages of superparamagnetic, biocompatibility and high catalytic activity of Fe3O4 and gold nanoparticles (AuNPs) and exhibit enhanced the intrinsic peroxidase-like activity, which can be used to catalyze the oxidation of the peroxidase substrates 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) produce a green-colored product in presence of hydrogen peroxide. Ascorbic acid as an effective antioxidant have scavenging effects on ABTS radicals and induce the reduction of green ABTS.+ to colorless ABTS2-, resulting in a significant green color fading. On this basis, a rapid, sensitive and selective colorimetric assay for ascorbic acid has been developed. Under optimal conditions, ascorbic acid has a linear response range from 0.01 mmol/L to 1 mmol/L with a detection limit of 0.12 μmol/L and a short assay time of the 30 s. Furthermore, the colorimetric system showed good sensitivity, stability, selectivity, and repeatability. It also successfully applied to the determination of ascorbic acid in real samples.
Collapse
Affiliation(s)
- Huanan Guan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China.
| | - Bolin Han
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Dezhuang Gong
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Yan Song
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Bo Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| |
Collapse
|
12
|
CHANG D, HAYAT K, ABBAS S, ZHANG X. Ascorbic acid encapsulation in a glassy carbohydrate matrix via hot melt extrusion: Preparation and characterization. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.02918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawei CHANG
- Shaanxi University of Science and Technology, P R China
| | | | - Shabbar ABBAS
- COMSATS Institute of Information Technology, Pakistan
| | | |
Collapse
|
13
|
Ultrasound-Assisted Matrix Solid-Phase Dispersion Coupled with Reversed-Phase Dispersive Liquid–Liquid Microextraction for Determination of Vitamin C in Various Matrices. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01547-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Song S, Liang F, Li M, Du F, Dong W, Gong X, Shuang S, Dong C. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:58-68. [PMID: 30822735 DOI: 10.1016/j.saa.2019.02.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/07/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
A fluorescent sulfur and nitrogen dual-doped carbon dots (S,N-CDs) was prepared by a simple and one-step acid-base neutralization and exothermic carbonization method. Hexavalent chromium (Cr(VI)) could effectively quench the fluorescence of S,N-CDs based on inner filter effect (IFE) and dynamic quenching, whereas ascorbic acid (AA) could recover the fluorescence of S,N-CDs/Cr(VI) because of IFE weakening. So an "on-off-on" and label-free nano-probe consecutive determination of Cr(VI) and AA was constructed. This nano-probe system demonstrated excellent selectivity and sensitivity to Cr(VI) and AA with linear range of 0.065-198 μmol/L (3.38-10,296 μg/L) and 6.6-892 μmol/L (1.16-157 mg/L), respectively. Meanwhile, the as-prepared S,N-CDs possess low toxicity and could be used for multi-color cell imaging in SMMC 7721 cells. More importantly, this nano-probe was successfully employed for detection of Cr(VI) in tap water and AA in food samples. In view of its simple detection condition, rapid response, wide linear range, low detection limit and inexpensive instrument, the as-constructed nano-probe system could have a wide range of potential application, including water quality monitoring and evaluation, food inspection and testing and biomedical analysis.
Collapse
Affiliation(s)
- Shengmei Song
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Fan Liang
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Minglu Li
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Fangfang Du
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|