1
|
Giulia T, Vallauri G, Pavese V, Valentini N, Ruffa P, Botta R, Torello Marinoni D. Identification of the hazelnut cultivar in raw kernels and in semi-processed and processed products. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe request for an efficient traceability system able to identify hazelnut cultivars along the entire processing chain is becoming a critical point for avoiding fraudulent practices and safeguarding the interests of growers, food processors and consumers. In this study, DNA was extracted from different hazelnut matrices, including plant material (leaf, kernel and kernel episperm), and processed foods (paste, grain, flour and different types of snacks containing hazelnuts). The efficiency of Simple Sequence Repeat (SSR) markers was tested to identify the hazelnut cultivar ‘Tonda Gentile’ in all the supply chain. The analysis at 10 SSR loci was able to verify the presence/absence of the alleles of a declared cultivar contained in these matrices. The SSR analysis of DNA from raw episperm offers the possibility of identifying the mother cultivar and is suggested as an effective way to discover frauds since DNA analysis can be performed on individual kernels. For food matrices containing hazelnuts, the presence of the mother cultivar’s DNA can be assessed based on the identification of its alleles in the sample, although the presence of multiple alleles from the pollenizers makes the interpretation of results more difficult.
Collapse
|
3
|
Xia Y, Chen F, Jiang L, Li S, Zhang J. Development of an Efficient Method to Extract DNA from Refined Soybean Oil. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Ramli US, Tahir NI, Rozali NL, Othman A, Muhammad NH, Muhammad SA, Tarmizi AHA, Hashim N, Sambanthamurthi R, Singh R, Manaf MAA, Parveez GKA. Sustainable Palm Oil-The Role of Screening and Advanced Analytical Techniques for Geographical Traceability and Authenticity Verification. Molecules 2020; 25:molecules25122927. [PMID: 32630515 PMCID: PMC7356346 DOI: 10.3390/molecules25122927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
Palm oil production from oil palm (Elaeis guineensis Jacq.) is vital for the economy of Malaysia. As of late, sustainable production of palm oil has been a key focus due to demand by consumer groups, and important progress has been made in establishing standards that promote good agricultural practices that minimize impact on the environment. In line with the industrial goal to build a traceable supply chain, several measures have been implemented to ensure that traceability can be monitored. Although the palm oil supply chain can be highly complex, and achieving full traceability is not an easy task, the industry has to be proactive in developing improved systems that support the existing methods, which rely on recorded information in the supply chain. The Malaysian Palm Oil Board (MPOB) as the custodian of the palm oil industry in Malaysia has taken the initiative to assess and develop technologies that can ensure authenticity and traceability of palm oil in the major supply chains from the point of harvesting all the way to key downstream applications. This review describes the underlying framework related to palm oil geographical traceability using various state-of-the-art analytical techniques, which are also being explored to address adulteration in the global palm oil supply chain.
Collapse
Affiliation(s)
- Umi Salamah Ramli
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
- Correspondence: ; Tel.: +60-3-8769-4495
| | - Noor Idayu Tahir
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Nurul Liyana Rozali
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Abrizah Othman
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Nor Hayati Muhammad
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Syahidah Akmal Muhammad
- School of Industrial Technology/Analytical Biochemistry Research Centre, Universiti Sains Malaysia, USM, George Town 11800, Penang, Malaysia;
| | - Azmil Haizam Ahmad Tarmizi
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Norfadilah Hashim
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Rajinder Singh
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Mohamad Arif Abd Manaf
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (N.I.T.); (N.L.R.); (A.O.); (N.H.M.); (A.H.A.T.); (N.H.); (R.S.); (R.S.); (M.A.A.M.); (G.K.A.P.)
| |
Collapse
|
5
|
Fang L, Ren D, Wang Z, Liu C, Wang J, Min W. Protective role of hazelnut peptides on oxidative stress injury in human umbilical vein endothelial cells. J Food Biochem 2018; 43:e12722. [PMID: 31353565 DOI: 10.1111/jfbc.12722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Abstract
The crude protein hydrolysates of wild hazel have good immunoregulation and antioxidation effects. However, the components responsible for their antioxidation effect remain unknown. In this study, six antioxidative peptides (EW, DWDPK, ADGF, SGAF, ETTL, and AGGF) were tested for their protective effects on oxidative stress injury in human umbilical vein endothelial cells (HUVECs). The results demonstrated that the six peptides are nontoxic and have a protective effect on oxidative stress injury induced by Ang II. Three peptides (EW, ADGF, and DWDPK) inhibited the morphological changes, downregulated the content of lactate dehydrogenase and malondialdehyde, upregulated the activity of antioxidant enzymes catalase, total superoxide dismutase and glutathione peroxidase, and scavenged reactive oxygen species (ROS) in HUVECs. Quantitative reverse transcriptive polymerase chain reaction and western blot assays indicated that these three peptides regulated NADPH oxidase activity and ROS production by reducing NOX4 and p22phox levels. Overall, they have a significant protective effect against oxidative stress injury and have potential application in developing new functional foods. PRACTICAL APPLICATIONS: Corylus heterophylla Fisch is a good quality wild hazel distributed in Northeast China. Wild hazelnut of the species C. heterophylla Fisch was selected as experimental object and has high nutritive values and have abundant proteins (20%-30%), fats (40%-50%), carbohydrates (13%-24%), dietary fibers (8.2%-9.6%), vitamins, and micronutrients. Our results indicate that hazelnut peptides (EW, ADGF, and DWDPK) can ensure normal growth of cells by protecting important antioxidant enzyme systems, by enhancing antioxidant defense, by directly affecting nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and by reducing intracellular reactive oxygen species (ROS) production in HUVECs, indicating that the three antioxidative peptides have a protective effect against Ang II-induced oxidative stress injury. Therefore, the antioxidative peptides from C. heterophylla Fisch may be a promising candidate for functional food ingredients and/or pharmaceuticals.
Collapse
Affiliation(s)
- Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Zuhao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| |
Collapse
|