1
|
Bahçıvan A, Şaylan M, Sagdic O, Bakırdere S. CoSn(OH) 6 nanocubes as a solid sorbent for the effective preconcentration of copper ions in cinnamon (Cinnamomum zeylanicum) extract. Food Chem 2024; 447:139037. [PMID: 38513484 DOI: 10.1016/j.foodchem.2024.139037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
This study was aimed at developing a simple and efficient CoSn(OH)6 nanocubes-based preconcentration method for the preconcentration of copper ions from cinnamon extracts for determination by flame atomic absorption spectrometry. The cube-shaped sorbent was synthesized using the simple stoichiometric co-precipitation method under ambient conditions. Experimental factors of the method were evaluated with a comprehensive optimization approach to maximize the extraction efficiency for the analyte. Under the optimal conditions, the limit of detection (LOD), limit of quantitation (LOQ), and linear dynamic range were recorded as 0.98 µg/L, 3.28 µg/L, and 4.0-75 µg/L, respectively. The enhancement factor was calculated as 101.6-fold by comparing the LODs of the optimized and direct analysis systems. Percent recoveries were found to be within an acceptable range (77.6-115 %), with high repeatability using matrix matching calibration strategy. Results validated the proposed method as a highly efficient extraction approach for the monitoring of copper ions in herbal cinnamon extracts.
Collapse
Affiliation(s)
- Aleyna Bahçıvan
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Meltem Şaylan
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; İstanbul Health and Technology University, Department of Pharmacy, 34421 İstanbul, Turkiye
| | - Osman Sagdic
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Turkiye.
| |
Collapse
|
2
|
Alharbi W, Alharbi KH, Alotaibi AA, Gomaa HEM, Abdel Azeem SM. Digital image determination of copper in food and water after preconcentration and magnetic tip separation for in-cavity desorption/color development. Food Chem 2024; 442:138435. [PMID: 38266415 DOI: 10.1016/j.foodchem.2024.138435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
A new analytical method for measuring copper in food and water was developed and validated, employing a solid-phase extraction (SPE) technique combined with digital-image-based (DIB) detection. A novel magnetic adsorbent of zinc ferrite/Citrullus colocynthis biochar (ZF@C.BC) was used to preconcentrate copper. A magnetic tip was used to separate the copper-loaded adsorbent from the extraction medium and to dispense it to the DIB plate. In-situ desorption and development of the spot color with iodide-starch reagent were carried out, and a digital image of the developed spots was captured using a smartphone and processed using ImageJ software. The copper adsorption capacity was 91.3 mg g-1. Desorption was effected using a 0.3 mol L-1 hydrochloric acid. The preconcentration factor was 300, the limit of detection was 4.8 μg L-1, the linearity was 16-600 μg L-1 and the sample throughput was 12 h-1. The developed approach was validated by analyzing food and water samples, confirming recoveries ≥ 91 % and 88 %, respectively, with RSD ≤ 8.4 %, n = 3.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Khadijah H Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Abdullah A Alotaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, 11911, AdDawadimi, Saudi Arabia; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| | - Hassan E M Gomaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, 11911, AdDawadimi, Saudi Arabia; Department of Nuclear Safety Engineering, Nuclear Installations Safety Division, Atomic Energy Authority, Cairo 11765, Egypt; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| | - Sami M Abdel Azeem
- Chemistry Department, Faculty of Science, Fayoum University, 35514 Fayoum, Egypt; Chemistry Department, Al-Quwayiyah College of Science and Humanities, Shaqra University, 11971, Kingdom of Saudi Arabia; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| |
Collapse
|
3
|
Norouzi M, Noormoradi N, Mohammadi M. Nanomagnetic tetraaza (N 4 donor) macrocyclic Schiff base complex of copper(ii): synthesis, characterizations, and its catalytic application in Click reactions. NANOSCALE ADVANCES 2023; 5:6594-6605. [PMID: 38024320 PMCID: PMC10662036 DOI: 10.1039/d3na00580a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this research, a novel nanomagnetic tetra-azamacrocyclic Schiff base complex of copper(ii) was produced via a post-synthetic surface modification of an Fe3O4 surface by a silane-coupling agent that contains acetylacetone functionalities at the end of its chain. Moreover, the target Cu complex that involves a tetradentate Schiff base ligand was obtained from a template reaction with o-phenylenediamine and Cu(NO3)2·3H2O. Furthermore, the prepared complex was nominated as [Fe3O4@TAM-Schiff-base-Cu(II)]. The Fourier-transform infrared (FT-IR) analysis indicates the presence of a Schiff-base-Cu complex in the catalyst. X-ray spectroscopy (EDS) and TGA analysis reveal that approximately 6-7% of the target catalyst comprises hydrocarbon moieties. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) images demonstrate the presence of uniformly shaped particles, nearly spherical in nature, with sizes ranging from 9 to 18 nm. [Fe3O4@TAM-Schiff-base-Cu(II)] was applied as a catalyst for the click synthesis of a diverse range of 5-substituted-1H-tetrazoles in PEG-400 as a green medium. Regarding the electrical properties of the Cu(ii) complex, the presence of a tetra-aza (N4 donor) macrocyclic Schiff base as an N-rich ligand was reasonable - leading to its excellent capacity to catalyze these organic transformations. Finally, the high magnetization value (44.92 emu g-1) of [Fe3O4@TAM-Schiff-base-Cu(II)] enables its recycling at least four times without compromising the catalytic efficiency.
Collapse
Affiliation(s)
- Masoomeh Norouzi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Nasim Noormoradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| |
Collapse
|
4
|
Tokalıoğlu Ş, Demirişler MS, Şahan H, Patat Ş. Environmentally friendly nanoflower Al 2O 3@carbon spheres as adsorbent for dispersive solid-phase microextraction of copper and lead in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5846-5854. [PMID: 37874290 DOI: 10.1039/d3ay01579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A fast and simple dispersive solid-phase microextraction method (d-SPμE) was described for the determination of copper and lead in food, water, and sediments using FAAS. Firstly, nanoflower Al2O3@carbon spheres composite (NF Al2O3@CSs) was synthesized and then characterized. The obtained NF Al2O3@CSs was used for the d-SPμE of copper and lead in aqueous solutions. The influence of important parameters like pH, contact time, eluent conditions, volume of sample, and competing ion effects on the d-SPμE efficiency of copper and lead was investigated. They were pH, 7; eluent, 2 mol L-1 HCl (2 mL); sample volume, 250 mL for copper and 150 mL for lead with recoveries ≥90%. The adsorption and elution of analytes on NF Al2O3@CSs were realized quickly without vortexing. The LODs of the d-SPμE for copper and lead were found to be 0.69 μg L-1 and 2.8 μg L-1, respectively, while its PF was 125 for copper and 75 for lead. The intra-day precision and inter-day repeatability (RSD%, n = 7) were 1.3% and 1.6% for Cu(II) and 2.3% and 3.2% for Pb(II), respectively. Finally, the accuracy of the d-SPμE was investigated by determination of the analytes in four certified reference materials (TMDA-53.3 Lake water, NW-TMDA-54.6 Lake water, NIST 1573a Tomato leaves, and NIST RM 8704 Buffalo River Sediment). The analyte recoveries together with analyses of dam water, river water, wastewater, sea water, sumac, tea, chocolate, and lentils were studied. The results indicate that recoveries ranged from 90 to 103% in water samples and 91 to 110% in food samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Halil Şahan
- Kayseri University, Department of Basic Sciences of Engineering, 38280, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| |
Collapse
|
5
|
Zhu CT, Huang KY, Zhou QL, Zhang XP, Wu GW, Peng HP, Deng HH, Chen W, Noreldeen HAA. Multi-excitation wavelength of gold nanocluster-based fluorescence sensor array for sulfonamides discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122138. [PMID: 36442343 DOI: 10.1016/j.saa.2022.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs. Moreover, the fluorescence excitation spectrum has rich information characteristics, especially for the interaction between fluorophore and quencher via various mechanisms. However, the excitation wavelength-guided sensor array construction does not draw proper attention. To address these issues, we used BSA-AuNCs as a single probe to construct a sensor array for the detection of five SAs. The selected SAs showed different quenching effects on the fluorescence intensities of BSA-AuNCs. The changes in the fluorescence intensity at different excitation wavelengths (λ = 230, 250, and 280 nm) have been applied to construct our sensor array and address the distinguishability between the selected SAs. With helping of pattern recognition methods, five different SAs have been identified at three different concentrations. Additionally, qualitative analysis at different moral ratios and quantitative analysis at nanogram concentrations have been considered. Moreover, the proposed sensor array was successfully used to distinguish between different SAs in commercial milk with an accuracy of 100 %. This study provides a simple and powerful approach to SAs detection. Also, it shows a broad application prospect in the field of food and drug monitoring.
Collapse
Affiliation(s)
- Chen-Ting Zhu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Qing-Lin Zhou
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Xiang-Ping Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
6
|
Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Mahmoudian M, Sarrafi AHM, Konoz E, Niazi A. Magnetic Dispersive Solid‐Phase Extraction Using Toner Powder for Trace Determination of Heavy Metals in Vegetables and Aqueous Media by FAAS: Box‐Behnken Design. ChemistrySelect 2022. [DOI: 10.1002/slct.202203738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masoumeh Mahmoudian
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | | | - Elaheh Konoz
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Ali Niazi
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
8
|
Şaylan M, Demirel R, Ayyıldız MF, Chormey DS, Çetin G, Bakırdere S. Nickel hydroxide nanoflower-based dispersive solid-phase extraction of copper from water matrix. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:133. [PMID: 36409393 DOI: 10.1007/s10661-022-10653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, a dispersive solid-phase extraction method based on Ni(OH)2 nanoflowers (Ni(OH)2-NFs-DSPE) was developed to separate and preconcentrate copper ions from tap water samples for determination by flame atomic absorption spectrometry (FAAS). Ni(OH)2-NFs was synthesized using a homogeneous precipitation technique and used as sorbent for copper preconcentration. X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to characterize the synthesized sorbent. All experimental variables were carefully optimized to achieve a high enhancement factor of 107.5-folds with respect to the detection sensitivity of the conventional FAAS. The proposed method's analytical parameters including LOD, LOQ, and linear range were determined as 1.33 μg/L, 4.42 μg/L, and 3.0-40 μg/L, respectively. To assess the applicability and reliability of the developed method, optimal conditions were applied to tap water samples and satisfactory percent recoveries (94-103%) were obtained for the samples spiked at 20 and 30 μg/L. This validated the accuracy and feasibility of the developed method to real samples. The developed method can be described as a simple, efficient, and rapid analytical approach for the accurate determination of trace copper ions in water samples.
Collapse
Affiliation(s)
- Meltem Şaylan
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
- Department of Pharmacy, İstanbul Health and Technology University, Seyitnizam Street, No: 85, Istanbul, Turkey
| | - Rabia Demirel
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
| | | | - Doste Selali Chormey
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, Istanbul, Turkey
| | - Gülten Çetin
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey.
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Cankaya, 06690, Ankara, Turkey.
| |
Collapse
|
9
|
A rapid one-step process for the isolation of antibacterial peptides by silica-decorated Fe3O4nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Absalan Y, Gholizadeh M, Choi HJ. Magnetized solvents: Characteristics and various applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Yıldız H, Tokalıoğlu Ş, Soykan C. Preparation of polyacrylonitrile/polyindole conducting polymer composite and its use for solid phase extraction of copper in a certified reference material. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118826. [PMID: 32858449 DOI: 10.1016/j.saa.2020.118826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
A polyacrylonitrile/polyindole (PAN/PIN) [50, 50] conducting polymer composite was chemically synthesized using FeCl3 as an oxidizing agent in chloroform solution and nitrogen atmosphere at 10 °C. The formation of the composite was supported by Fourier transform infrared spectroscopy. The morphological properties of the composite were investigated by atomic force microscopy and scanning electron microscopy. The thermal properties of the composite were examined by using thermogravimetric analyses. It was found that the composite had good thermal stability. The conducting polymer composite was used for the first time as an adsorbent for solid phase extraction of Cu (II). The optimum pH was found to be 7. The adsorption and elution shaking times were 5 and 15 min, respectively. The elution was done with 5 mL of 2 mol L-1 HNO3. The accuracy of the developed method was confirmed by analyzing certified reference material (TMDA-70.2 Lake Water).
Collapse
Affiliation(s)
- Halit Yıldız
- Department of Environmental Engineering, Engineering Faculty, University of Erciyes, 38039 Kayseri, Turkey
| | - Şerife Tokalıoğlu
- Department of Chemistry, Science Faculty, University of Erciyes, 38039 Kayseri, Turkey.
| | - Cengiz Soykan
- Department of Materials Science and Nanotechnology Engineering, Engineering Faculty, University of Uşak, 64200 Uşak, Turkey.
| |
Collapse
|
12
|
Choline proline ionic liquid-modified magnetic graphene oxide combined with HPLC for analysis of fenthion. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
|
14
|
|
15
|
Moallaei H, Bouchara JP, Rad A, Singh P, Raizada P, Tran HN, Zafar MN, Giannakoudakis DA, Hosseini-Bandegharaei A. Application of Fusarium sp. immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chem 2020; 322:126757. [DOI: 10.1016/j.foodchem.2020.126757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/11/2019] [Accepted: 04/05/2020] [Indexed: 11/15/2022]
|
16
|
Aydin F, Çakmak R, Levent A, Soylak M. Silica Gel‐Immobilized 5‐aminoisophthalohydrazide: A novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples. Appl Organomet Chem 2020; 34. [DOI: https:/doi.org/10.1002/aoc.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/07/2019] [Indexed: 07/01/2024]
Abstract
A novel silica sorbent, silica gel‐immobilized 5‐aminoisophthalohydrazide (SiO2‐APH), was prepared by the condensation of 3‐chloropropyl‐functionalized silica gel with 5‐aminoisophthalohydrazide (APH) derived from dimethyl 5‐aminoisophthalate as a starting material and used for separation and preconcentration of Cu, Zn, and Pb metals in water samples using Flame Atomic Absorption Spectrometry (FAAS). The characterization of the new sorbent was carried out by Elemental Analysis, Thermogravimetric Analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Important analytical parameters including as pH, amount of sorbent, type and amount of eluting solvent, sample volume, vortex and ultrasonic bath time, matrix ions that effect the developed SiO2‐APH‐solid phase extraction (SPE) method were investigated and optimum parameters were detected. Recoveries of examined metals were obtained as 98% for Cu and Pb and 101% for Zn. The relative standard deviation (RSD, n = 8) of Cu, Zn and Pb metals were 3.2, 2.8 and 1.6%, respectively. Limit of detections (LODs) (n = 10) were found as 2.7 μg L−1 for Cu, 7.4 μg L−1 for Zn and 3.5 μg L−1 for Pb μg L−1. The accuracy of the new method was assessed by analyzing of TMDA‐51.4 and TMDA‐70.2 certified reference materials. The results obtained for metals were in a good agreement with certified values. Addition/recovery test was applied to the real well, river, dam and stream water samples to check the accuracy of the method. The results showed that the developed SiO2‐APH‐SPE method can be effectively used as an alternative method for determination of Cu, Zn, and Pb metals in water samples.
Collapse
Affiliation(s)
- Funda Aydin
- Faculty of Pharmacy, Department of Basic Sciences Van Yüzüncü Yıl University 65080 Van Turkey
| | - Reşit Çakmak
- Vocational School of Health Services Batman University 72060 Batman Turkey
| | - Abdulkadir Levent
- Faculty of Science and Letters, Department of Chemistry Batman University 72100 Batman Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry Erciyes University 38039 Kayseri Turkey
| |
Collapse
|
17
|
Aydin F, Çakmak R, Levent A, Soylak M. Silica Gel‐Immobilized 5‐aminoisophthalohydrazide: A novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Funda Aydin
- Faculty of Pharmacy, Department of Basic SciencesVan Yüzüncü Yıl University 65080 Van Turkey
| | - Reşit Çakmak
- Vocational School of Health ServicesBatman University 72060 Batman Turkey
| | - Abdulkadir Levent
- Faculty of Science and Letters, Department of ChemistryBatman University 72100 Batman Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of ChemistryErciyes University 38039 Kayseri Turkey
| |
Collapse
|
18
|
Liu X, Tong Y, Zhang L. Tailorable yolk-shell Fe3O4@graphitic carbon submicroboxes as efficient extraction materials for highly sensitive determination of trace sulfonamides in food samples. Food Chem 2020; 303:125369. [DOI: 10.1016/j.foodchem.2019.125369] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
19
|
Gao Y, Wang Y, Yan Y, Tang K, Ding CF. Self-assembly of poly(ionic liquid) functionalized mesoporous magnetic microspheres for the solid-phase extraction of preservatives from milk samples. J Sep Sci 2019; 43:766-773. [PMID: 31746547 DOI: 10.1002/jssc.201900851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95-105%, the liner range were within 0.1-600 ng/mL, and the relative standard deviations were even lower than 5%.
Collapse
Affiliation(s)
- Yiqian Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Yucen Wang
- Ningbo Foreign Language School, Ningbo, P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
20
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Mehrani Z, Ebrahimzadeh H, Asgharinezhad AA, Moradi E. Determination of copper in food and water sources using poly m-phenylenediamine/CNT electrospun nanofiber. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Ebrahimi B, Mohammadiazar S, Ardalan S. New modified carbon based solid phase extraction sorbent prepared from wild cherry stone as natural raw material for the pre-concentration and determination of trace amounts of copper in food samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Zhan M, Jia H, Fan J, Yu H, Amador E, Chen W. Two D-π-A Schiff-Base-Functionalized Silica Gel Adsorbents for Preconcentration of Copper Ions in Foods and Water for Detection. Anal Chem 2019; 91:6103-6110. [DOI: 10.1021/acs.analchem.9b00647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meihong Zhan
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
| | - Jiayuan Fan
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, United States
| | - Wei Chen
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, United States
| |
Collapse
|
24
|
Ramezanpour M, Raeisi SN, Shahidi SA, Ramezanpour S, Seidi S. Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk. Anal Biochem 2019; 570:5-12. [DOI: 10.1016/j.ab.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
|
25
|
Ghanavati Nasab S, Semnani A, Karimi M, Javaheran Yazd M, Cheshmekhezr S. Synthesis of ion-imprinted polymer-decorated SBA-15 as a selective and efficient system for the removal and extraction of Cu(ii) with focus on optimization by response surface methodology. Analyst 2019; 144:4596-4612. [DOI: 10.1039/c9an00586b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ion-imprinted polymer-decorated SBA-15 (SBA-15-IIP) for the adsorption of copper was synthesized and characterized using different techniques, including FT-IR, XRD, TG/DTA, SEM, BET, and TEM.
Collapse
Affiliation(s)
| | - Abolfazl Semnani
- Department of Chemistry
- Faculty of Sciences
- University of Shahrekord
- Shahrekord
- Iran
| | - Meghdad Karimi
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Mehdi Javaheran Yazd
- Young Researchers and Elite Club
- Khomeinishahr Branch
- Islamic Azad University
- Khomeinishahr
- Iran
| | - Setareh Cheshmekhezr
- Environmental Engineering Department
- Graduate Faculty of Environment
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
26
|
Lu Y, Wang B, Yan Y, Liang H. Location-Controlled Synthesis of Hydrophilic Magnetic Metal-organic Frameworks for Highly Efficient Recognition of Phthalates in Beverages. ChemistrySelect 2018. [DOI: 10.1002/slct.201802739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yujie Lu
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211, P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211, P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211, P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211, P. R. China
| |
Collapse
|
27
|
Tong Y, Liu X, Zhang L. Green construction of Fe 3O 4@GC submicrocubes for highly sensitive magnetic dispersive solid-phase extraction of five phthalate esters in beverages and plastic bottles. Food Chem 2018; 277:579-585. [PMID: 30502188 DOI: 10.1016/j.foodchem.2018.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
A well-designed core-shelled Fe3O4@graphitic carbon (Fe3O4@GC) submicrocube was in situ constructed in a simple, relatively green and eco-friendly ways basing on one-step pyrolysis of low-cost waste napkins-coated Fe2O3 submicrocubes. The Fe3O4@GC submicrocubes showed unique architectures where in situ generated thin graphitic carbon layer wrapped on the surface of Fe3O4, resulting in excellent affinity to five phthalate esters (PAEs), good reusability and rapid magnetic separation, therefore were employed as magnetic dispersive solid-phase extraction material combined with HPLC to simultaneously detect five trace PAEs in beverages and plastic bottles. Under optimized conditions, recoveries (80.0%-112.8%), precision (RSDs ≤ 8.8%), and limits of detection (LODs) for beverages (0.09-0.28 μg L-1) and plastic bottles (0.01-0.03 μg g-1) were obtained. This work not only establishes an effective method for simultaneous determination of five PAEs, but also opens up a new strategy to design/construct magnetic graphitic carbon-encapsulated core-shell materials using low-cost/recyclable napkins as carbon source.
Collapse
Affiliation(s)
- Yao Tong
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
28
|
Novel controllable hydrophilic thermo-responsive molecularly imprinted resin adsorbent prepared in water for selective recognition of alkaloids by thermal-assisted dispersive solid phase extraction. J Pharm Biomed Anal 2018; 160:386-396. [PMID: 30121557 DOI: 10.1016/j.jpba.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
A novel controllable hydrophilic thermo-responsive molecularly imprinted resin (T-MIR) with a switchable zipper-like architecture was synthesized in the aqueous phase and applied to the selective recognition and extraction of alkaloids by positive temperature regulation. In this synthesis process of T-MIR, 2-acrylamide-2- methylpropanesulfonic acid (AMPS) and acrylamide (AAm) were coupled as zipper-like thermo-responsive monomers, resorcinol, and melamine as hydrophilic monomers, formaldehyde as a cross-linker, and berberine chloride (BerbC) as the template. The resulting T-MIR achieved the controlled rebinding and release of BerbC from temperature stimuli (25-45 °C) and the adsorption process followed the Langmuir isotherm (R2>0.99856) and pseudo-second-order kinetic model (R2>0.98138). The highest theory adsorption ability (33.44 mg/g) and recognition ability (imprinting factor: 4.71) of T-MIR was activated between poly(AMPS) and poly(AAm) in the zipper-like architecture at 35 °C. T-MIR was then applied to the selective recognition alkaloids by dispersive solid phase extraction. The limit of detection and limit of quantitation of the method were less than 0.025 mg/L and 0.082 mg/mL, respectively. The recoveries of the proposed method at three spiked levels were 96.8-100.8%, with a relative standard deviation of less than 4.8%. In contrast to previous thermo-responsive materials, this switchable zipper-like hydrophilic T-MIR with good adsorption, specificity recognition, and excellent temperature controllable properties provides a unique alternative to the selective recognition and controlled rebind-release alkaloids by the temperature signal.
Collapse
|