1
|
Cheng Y, Wang C, Chang X, Jia X, Liu Z, Liu B, Gao Z, Zhou H. Development of a colorimetric/fluorescence dual-mode immunoassay for aflatoxin B1 based on streptavidin-induced gold nanoparticle aggregation. Mikrochim Acta 2024; 192:11. [PMID: 39643724 DOI: 10.1007/s00604-024-06843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
A dual-mode immunoassay method was developed for colorimetric and fluorescence detection of aflatoxin B1 (AFB1) based on streptavidin-induced gold nanoparticle aggregation (AuNP@SA). AuNP-modified streptavidin-biotin labeling AFB1 complete antigen aggregations (AuNP@SA@Bio-BSA-AFB1) were synthesized as the competitive binding and dual-mode probe. AuNP@SA@Bio-BSA-AFB1 aggregations possessed high colorimetric and fluorescence quenching intensities. AFB1 antibodies modified immunomagnetic microspheres were used as the capture probe. The competitive binding between AFB1 and AuNP@SA@Bio-BSA-AFB1 leads to changes in color and fluorescence intensity. The detection limit of the colorimetric method is 6.95 ng·mL-1, while that of the fluorescence method is 0.07 ng·mL-1. The practicality of the proposed strategy was demonstrated by determining AFB1 in spiked peanut samples.
Collapse
Affiliation(s)
- Yaqian Cheng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenxi Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Xueyu Chang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Zesheng Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Baolin Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China.
| |
Collapse
|
2
|
Tang S, He B, Liu Y, Wang L, Liang Y, Wang J, Jin H, Wei M, Ren W, Suo Z, Xu Y. A dual-signal mode electrochemical aptasensor based on tetrahedral DNA nanostructures for sensitive detection of citrinin in food using PtPdCo mesoporous nanozymes. Food Chem 2024; 460:140739. [PMID: 39116770 DOI: 10.1016/j.foodchem.2024.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.
Collapse
Affiliation(s)
- Shi Tang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Longdi Wang
- COFCO Lijin (Tianjin) Grain and Oil Co., Ltd., Tianjin, 300112, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
3
|
Wang L, Wen Y, Li L, Yang X, Li W, Cao M, Tao Q, Sun X, Liu G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. BIOSENSORS 2024; 14:170. [PMID: 38667163 PMCID: PMC11048167 DOI: 10.3390/bios14040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The discrimination and recognition of biological targets, such as proteins, cells, and bacteria, are of utmost importance in various fields of biological research and production. These include areas like biological medicine, clinical diagnosis, and microbiology analysis. In order to efficiently and cost-effectively identify a specific target from a wide range of possibilities, researchers have developed a technique called differential sensing. Unlike traditional "lock-and-key" sensors that rely on specific interactions between receptors and analytes, differential sensing makes use of cross-reactive receptors. These sensors offer less specificity but can cross-react with a wide range of analytes to produce a large amount of data. Many pattern recognition strategies have been developed and have shown promising results in identifying complex analytes. To create advanced sensor arrays for higher analysis efficiency and larger recognizing range, various nanomaterials have been utilized as sensing probes. These nanomaterials possess distinct molecular affinities, optical/electrical properties, and biological compatibility, and are conveniently functionalized. In this review, our focus is on recently reported optical sensor arrays that utilize nanomaterials to discriminate bioanalytes, including proteins, cells, and bacteria.
Collapse
Affiliation(s)
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| | | | | | | | | | | | | | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| |
Collapse
|
4
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
5
|
Guo L, Li Y, Gao S, Ren L. Detection of ochratoxin A using a "turn-on" fluorescence assay based on guanine quenching of the aptamer. ANAL SCI 2023; 39:51-57. [PMID: 36242755 PMCID: PMC9569010 DOI: 10.1007/s44211-022-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin with high carcinogenicity; therefore, it is crucial to establish a simple, rapid, and sensitive method for its detection. In this study, we developed a "turn-on" fluorescence assay for detecting OTA based on guanine quenching of the aptamer. The method uses fluorescein (FAM) fluorophore to label the complementary strand of the OTA aptamer, Fc-DNA. In the absence of OTA, the Fc-DNA hybridizes with the aptamer to form a double strand. Due to the occurrence of photo-induced electron transfer (PET), the FAM fluorescence signal is quenched as the FAM on the Fc-DNA approaches the guanine of the aptamer at the 5' end. When OTA is present, the aptamer binds to it and thus, is unable to hybridize with Fc-DNA to form a double strand; the FAM fluorescence signal is restored as FAM moves away from the guanine of the aptamer. The assay achieved OTA detection at a detection limit of 28.4 nM. The application of the original guanine of the aptamer as the quenching agent helps avoid the complex designing and labeling of the aptamer, which ensures the high affinity of the aptamer for OTA. Meanwhile, this "turn-on" detection mode helps avoid potential false-positive results as in the "turn-off" mode and improves the assay's sensitivity. Additionally, the method has good selectivity and can be used to detect OTA in traditional Chinese medicine. This method provides a simple, low-cost, and rapid method for OTA detection.
Collapse
Affiliation(s)
- Limin Guo
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China.
| | - Yun Li
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Shichao Gao
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Lei Ren
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| |
Collapse
|
6
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Nawaz MAH, Fazal MW, Akhtar N, Nawaz MH, Hayat A, Yu C. Multifunctional Smart ZnSe-Nanostructure-Based Fluorescent Aptasensor for the Detection of Ochratoxin A. BIOSENSORS 2022; 12:844. [PMID: 36290981 PMCID: PMC9599676 DOI: 10.3390/bios12100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Herein, we present a comprehensive investigation of rationally designed zinc selenide (ZnSe) nanostructures to achieve highly negatively charged ZnSe nanostructures. A Microwave-assisted hydrothermal synthesis method was used to synthesize three types of ZnSe nanostructures, i.e., nanorods, µ-spheres and nanoclusters, as characterized by a zeta potential analyzer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and BET, which were labeled as type A, B and C. Three different solvents were used for the synthesis of type A, B and C ZnSe nanostructures, keeping other synthesis conditions such as temperature, pressure and precursors ratio constant. Based on two heating time intervals, 6 and 9 h, types A, B and C were further divided into types A6, A9, B6, B9, C6 and C9. ZnSe nanostructures were further evaluated based on their fluorescent quenching efficiency. The maximum fluorescence quenching effect was exhibited by the ZnSe-B6 type, which can be attributed to its highly negative surface charge that favored its strong interaction with cationic dye Rhodamine B (Rh-B). Further, the optimized ZnSe-B6 was used to fabricate an aptasensor for the detection of a food-based toxin, ochratoxin-A (OTA). The developed aptasensor exhibited a limit of detection of 0.07 ng/L with a wide linear range of 0.1 to 200 ng/L.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Waseem Fazal
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Naeem Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Liu ZA, Zuo YN, Xia Y, Sun J, Zhu S. Enhanced detection of ascorbic acid with cascaded fluorescence recovery of a dual-nanoquencher system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3632-3637. [PMID: 36052693 DOI: 10.1039/d2ay01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An innovative strategy with target-triggered cascade fluorescence recovery of a dual-nanoquencher system was developed to detect ascorbic acid (AA). Herein, manganese dioxide (MnO2) nanosheets and gold nanoparticles (AuNPs) were used as nanoquenchers simultaneously. Owing to their synergistic effects, the fluorescence of 2,3-diaminophenazine (DAP) was decreased efficiently, thus minimizing the background fluorescence. The introduction of AA triggered the decomposition of MnO2 into Mn2+, which induced the aggregation of AuNPs. Both the decomposed MnO2 and aggregated AuNPs possess weak quenching abilities towards DAP. Such a cascade amplification strategy enhanced the detection sensitivity for AA with a LOD as low as 6.7 nM, which was two orders of magnitude lower than that of MnO2-based fluorescence assay. Furthermore, this amplification strategy was successfully applied to detect AA in food samples.
Collapse
Affiliation(s)
- Zhi-Ang Liu
- TEM Laboratory, Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu City, 273165, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, 810001, Qinghai, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
9
|
Preparation and Validation of Ultra-sensitive Aptamers by Computer Simulation and Site-Specific Mutation. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Highly sensitive and selective detection of Ochratoxin a using modified graphene oxide-aptamer sensors as well as application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for rapid and sensitive detection of ochratoxin A. Biosens Bioelectron 2022; 207:114164. [DOI: 10.1016/j.bios.2022.114164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
|
12
|
Jiang L, Han Y, Li Y, Li Z, Zhang S, Zhu X, Liu Z, Chen Y, Fernandez-Garcia S, Tang Y, Chen X. Split-Type Assay for Wide-Range Sensitive Sensing of Ochratoxin A with Praseodymia Nanorods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HMN. Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. CHEMOSPHERE 2022; 292:133320. [PMID: 34952020 DOI: 10.1016/j.chemosphere.2021.133320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.
Collapse
Affiliation(s)
- Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, 144402, Punjab, India
| | - Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
14
|
Shahdeo D, Khan AA, Alanazi AM, Bajpai VK, Shukla S, Gandhi S. Molecular Diagnostic of Ochratoxin A With Specific Aptamers in Corn and Groundnut via Fabrication of a Microfluidic Device. Front Nutr 2022; 9:851787. [PMID: 35399674 PMCID: PMC8988673 DOI: 10.3389/fnut.2022.851787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Ochratoxin A (OTA) is one of the predominant mycotoxins that contaminate a wide range of food commodities. In the present study, a 36-mer aptamer was used as a molecular recognition element coupled with gold nanoparticles (AuNPs) for colorimetric detection of OTA in a microfluidic paper-based analytical device (μPADs). The μPADs consisted of three zones: control, detection, and sample, interconnected by channels. UV-vis spectroscopy (UV-vis), Dynamic Light Scattering (DLS), and Transmission Electron Microscopy (TEM) were used for characterization of AuNPs and AuNPs/Aptamer. According to the colorimetric assay, limit of detection (LOD) was found to be 242, 545.45, and 95.69 ng/mL in water, corn, and groundnut, respectively. The HPLC detection method achieved acceptable coefficient in standard curves (r 2 = 0.9995), improved detection range, and recovery rates in spiked corn and groundnut samples as 43.61 ± 2.18% to 87.10 ± 1.82% and 42.01 ± 1.31% to 86.03 ± 2.64% after multiple sample extractions and cleanup steps. However, the developed μPADs analytical device had the potent ability to rapidly detect OTA without any extraction pre-requirement, derivatization, and cleanup steps, thus illustrating its feasibility in the animal health sector, agricultural, and food industries.
Collapse
Affiliation(s)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agricultural Division, The Energy and Resources Institute, TERI Gram, Gurugram, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
15
|
Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 2022; 414:2953-2969. [PMID: 35296913 DOI: 10.1007/s00216-022-03960-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.
Collapse
|
16
|
A Label-Free Colorimetric Assay Based on Gold Nanoparticles for the Detection of H2O2 and Glucose. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The significance of sensing hydrogen peroxide (H2O2) is due to its ubiquity, being a potential biomarker as well as an end-product of several oxidation reactions. Herein, based on gold nanoparticles (AuNPs) and coupled with single-stranded DNA (ssDNA) and ceria nanoparticles (CeO2), we developed a novel colorimetric method to detect H2O2 and glucose in NaCl solutions. In the presence of H2O2, ssDNA adsorbed on the surface of CeO2 could be released and subsequently decorated AuNPs, resulting in a distinct color change of the aqueous solution from purple to red, which could be observed by the naked eye. Since H2O2 can be produced in the process of glucose oxidation by glucose oxidase (GOx), this approach can also be employed to detect glucose. By employing this sensing system, the detection limits for H2O2 and glucose are about 0.21 μM and 3.01 µM, respectively. Additionally, monitoring the content of glucose in blood serum samples was successfully achieved by the proposed strategy. This work opens a potential avenue for the quantitative detection of H2O2 and glucose in clinical diagnostics.
Collapse
|
17
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
18
|
An ultrasensitive electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex using methylene blue as an electrochemical probe for insulin detection. Anal Bioanal Chem 2021; 413:7451-7462. [PMID: 34668997 DOI: 10.1007/s00216-021-03703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
This work introduces an electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex for sensitive and selective determination of insulin using differential pulls voltammetry. Au@Fe-MIL-88 with a large surface area was synthesized and employed as a suitable substrate for immobilization of the aptamer (APT-Au@Fe-MIL-88). Methylene blue (MB), as an electrochemical probe, was intercalated into the aptamer. Graphene oxide (GO) and zinc sulfide (ZnS) were placed on the Au electrode to amplify the MB current. Also, ZnS improves the immobilization of APT-Au@Fe-MIL-88 into the aptasensor through the strong interaction of Au-S. In the presence of the insulin, MB is released from the aptamer due to DNA conformational change, and as a result, the peak intensity of the intercalated MB was decreased. Under optimal conditions, the change in the current of MB was proportional to the insulin concentration in the range of 5.0 × 10-16-5.0 × 10-11 mol L-1, with a superior ultra-low detection limit of 1.3 × 10-16 mol L-1. It was observed that the aptasensor is suitable for determining insulin in serum samples with good sensitivity and reproducibility and with recoveries ranging from 96.4 to 102.0%. The relative standard deviations (RSD) were lower than 3.8% (n = 3).
Collapse
|
19
|
Li Q, Kang Y, Yin S, Qian Y, Cai Y, Yang Z. Graphene Oxide Synergy with the Conjugation of DNA and Quantum Dots for the Sensitive Detection of Ochratoxin A. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Guo Z, Tian J, Cui C, Wang Y, Yang H, Yuan M, Yu H. A label-free aptasensor for turn-on fluorescent detection of ochratoxin a based on SYBR gold and single walled carbon nanohorns. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Alizadeh N, Hashemi J, Shahdost-Fard F. Spectrofluorimetric study of the complexation of ochratoxin A and Cu 2+: Towards the hybrid fluorimetric sensor and visual detection of ochratoxin A in wheat flour samples from farm to fork. Food Chem 2021; 350:129204. [PMID: 33618086 DOI: 10.1016/j.foodchem.2021.129204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/27/2020] [Accepted: 01/24/2021] [Indexed: 01/04/2023]
Abstract
In this study, the ochratoxin A (OTA) interaction with some metal cations exhibits a quenching effect of the Cu2+, Co2+, and Ni2+ in the OTA intrinsic fluorescence intensity. The property of the OTA fluorescence change in complexation with the Cu2+ has been applied in developing a label-free and selective fluorimetric sensor for fast detection of the OTA trace amounts in wheat flour samples. The achieved color difference map (CDM) based on the spectral profile provides the technical support for the rapid visual sensing of OTA in the wheat flour samples. The feasibility of the hybrid fluorimetric sensor and visual OTA detection in wheat flour samples has been confirmed with the high-performance liquid chromatography (HPLC) method as a standard method. The calculated LOD (0.4 ng g-1) and LOQ (1.2 ng g-1) values of the proposed method are much lower than the maximum permissible limit of OTA value reported by the European Union (5 ng g-1).
Collapse
Affiliation(s)
- Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran; Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
| | - Javad Hashemi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
22
|
Hitabatuma A, Pang YH, Yu LH, Shen XF. A competitive fluorescence assay based on free-complementary DNA for ochratoxin A detection. Food Chem 2020; 342:128303. [PMID: 33158674 DOI: 10.1016/j.foodchem.2020.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023]
Abstract
An ultrasensitive, rapid, and specific method for Ochratoxin A (OTA) detection was designed using complementary sequence to aptamer as a target of molecular beacon (MB). The designed loop structure of the MB has the same sequence as the aptamer with a complementary DNA (cDNA) which translates the level of the target into a measurable response. The presence of the target holds aptamer at the corresponding amount and the additional cDNAs are consumed by unbound aptamers which avails free cDNAs that resulting in fluorescence rising due to unfolding of MBs. Under the optimized conditions, the fluorescence intensity increased linearly with OTA concentration over the range of 10 pg mL-1-1 µg mL-1 with the detection limit of 0.247 pg mL-1. The application of this assay in wheat sample in comparison with HPLC-MS/MS method, demonstrated that the new assay could be a potential sensing platform for OTA detection.
Collapse
Affiliation(s)
- Aloys Hitabatuma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; International Joint Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
23
|
A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 2020; 218:121159. [DOI: 10.1016/j.talanta.2020.121159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
|
24
|
Xiong Z, Wang Q, Xie Y, Li N, Yun W, Yang L. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem 2020; 338:128122. [PMID: 33091999 DOI: 10.1016/j.foodchem.2020.128122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
a dual DNA tweezers nanomachine was developed for one-step simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples. The dual DNA tweezers are locked by the aptamers of mycotoxins, resulting the "turn off" of fluorescent signal. In the presence of AFB1 and OTA, the aptamers can bind with their corresponding targets, resulting the "open" of DNA tweezers and the "turn on" of the fluorescent signals. The limits of detections were 3.5 × 10-2 ppb for AFB1 and 0.1 ppb for OTA. Moreover, the applicability of the method was further demonstrated by conducting a limited survey on 5 samples collected from various sources. The recoveries of this method change from 90.0% to 110.0% for simultaneous detection of AFB1 or OTA and the RSDs vary from 4.1% to 9.2%. Detection uncertainties were within 5% (with a 95% confidence level).
Collapse
Affiliation(s)
- Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China; Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea
| | - Qiang Wang
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Yuejie Xie
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Ning Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
25
|
He Y, Tian F, Zhou J, Zhao Q, Fu R, Jiao B. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121758. [PMID: 31796354 DOI: 10.1016/j.jhazmat.2019.121758] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
An innovative colorimetric method based on enzyme-induced gold nanoparticle aggregation was developed to detect the activity of alkaline phosphatase (ALP), and it was further applied to construct an aptasensor to monitor ochratoxin A (OTA) concentrations. In the presence of ALP, the substrate ascorbic acid 2-phosphate was hydrolyzed to generate ascorbic acid (AA). Subsequently, reduction of MnO2 nanosheets by AA produced manganese ions, which mediated gold nanoparticle aggregation. The color of the detection solution changed from brown-red to purple to blue as the ALP concentration increased, and a detection limit of 0.05 U·L-1 was achieved. Furthermore, this strategy was successfully utilized to devise a target-responsive aptasensor for colorimetric detection of an important mycotoxin, OTA, which causes food poisoning and has various toxic effects on humans. The proposed method offers high sensitivity with a detection limit as low as 5.0 nM together with high specificity. When applied to analyze red wine and grape juice samples, no complex sample pretreatment or bulky instruments were required. Overall, a colorimetric platform based on enzyme-induced gold nanoparticle aggregation was successfully established to improve the simplicity and sensitivity of ALP and OTA detection. This platform appears highly promising for mycotoxin-related food safety monitoring.
Collapse
Affiliation(s)
- Yue He
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| | - Fengyu Tian
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Jing Zhou
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Ruijie Fu
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China
| | - Bining Jiao
- Citrus Research Institute, Southwest University, Chongqing, 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, PR China; National Citrus Engineering Research Center, Chongqing, 400712, PR China.
| |
Collapse
|
26
|
Zhu C, Liu D, Li Y, Shen X, Ma S, Liu Y, You T. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosens Bioelectron 2019; 150:111814. [PMID: 31740254 DOI: 10.1016/j.bios.2019.111814] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
A novel ratiometric electrochemical aptasensor was developed for Ochratoxin A (OTA) detection based on the binding of methylene blue (MB) to DNA with a dual signal amplification strategy. The formation of dsDNA structures between ferrocene-labeled complementary DNA (Fc-cDNA), the OTA aptamer, and complementary helper DNA (hDNA) caused Fc away from the electrode, and allowed dsDNA to bind with a certain amount of MB. Here, a small oxidation current of Fc (IFc) and a large oxidation current of MB (IMB) were obtained. In the presence of OTA, its specific recognition with the aptamer induced the release of aptamer and hDNA from the electrode and subsequently the formation of hairpin structure for cDNA, which caused Fc close to the electrode and a weaker binding ability with MB. Then, an increased IFc and a decreased IMB were obtained. Based on this principle, OTA could be accurately quantified by measuring the ratiometric signal of IFc/IMB. Herein, the dual signal amplification strategy of the introduction of hDNA and the binding with MB after the OTA recognition was exploited to amplify the response signal. The obtained aptasensor showed a linear detection range from 10 pg mL-1 to 10 ng mL-1 and a detection limit of 3.3 pg mL-1. The aptasensor was successfully applied to determine OTA in wheat, and the results were validated through HPLC-MS. Furthermore, by changing the target aptamers, this strategy could be universally used for the determination of various mycotoxins, showing promising potential applications for mycotoxins monitoring in agricultural products and foods.
Collapse
Affiliation(s)
- Chengxi Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiuli Shen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuai Ma
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
27
|
Zhang F, Wang S, Liu J. Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Anal Chem 2019; 91:14743-14750. [PMID: 31675214 DOI: 10.1021/acs.analchem.9b04142] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using fluorescently labeled DNA oligonucleotides and nanomaterials for developing biosensors has been extensively reported for gold nanoparticles (AuNPs) and graphene oxide (GO) among others. These materials have vastly different affinities and mechanisms for interacting with DNA, and their analytical performance is likely to be different. In this work, we used several DNA sequences and, respectively, adsorbed them on AuNPs and GO to quench fluorescence. Different from previous work, we used KCN to fully dissolve the AuNPs to calculate the percentage of the desorbed DNA due to the complementary DNA (cDNA) and aptamer target. The desorbed probe DNA from the AuNPs was less than 5% for all of the targets including DNA, adenosine, Hg2+, and lysozyme, indicating a very strong DNA adsorption affinity. Desorption of DNA was achieved by adding HEPES buffer, NaCl, and As(III), but such desorption was attributed to the adsorption of these molecules or ions by the AuNPs instead of their interaction with the adsorbed DNA. For GO, more probes desorbed with addition of target analytes but so did nonspecific desorption by random DNA and proteins. In summary, AuNPs are unlikely to be a good surface for developing biosensors relying solely on the desorption of probe DNA, while for GO the main problem is nonspecific desorption.
Collapse
Affiliation(s)
- Fang Zhang
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350108 , People's Republic of China.,Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Shaoyun Wang
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350108 , People's Republic of China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
28
|
Wang P, Wang L, Ding M, Pei M, Guo W. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Analyst 2019; 144:5866-5874. [PMID: 31482879 DOI: 10.1039/c9an01288e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To enhance the sensitivity of an aptasensor, a novel strategy was designed to develop an electrochemical aptasensor based on poly(3,4-ethylenedioxy thiophene)-gold nanoflower (PEDOT-AuNF) composites supported on a three-dimensional graphene oxide sponge (GOS). GOS with a three-dimensional sponge-like porous structure, exhibiting excellent electrical conductivity and a large surface area, provided the first amplification of the electrochemical signal for ochratoxin A (OTA) detection. PEDOT-AuNFs, synthesized by an ionic liquid-assisted one-pot method, presented a peculiar hierarchical flower-like structure, a high electroactive surface area, and more binding sites for immobilizing the aptamer molecules by the Au-S bonds. When PEDOT-AuNFs were supported on the surface of GOS by the interaction of the π-π packing between PEDOT and graphene oxide, a synergistic effect was produced to provide the second amplification for the aptasensor. PEDOT-AuNFs/GOS provided an ultrasensitive detection technique by multiple signal amplification for the electrochemical sensing of OTA. Consequently, this strategy not only endowed the aptasensor with high sensitivity but also needed no complicated signal amplification. The electrochemical sensor was fabricated successfully on a glassy carbon electrode to detect OTA with a linear response in the range of 0.01-20 ng L-1 and a limit of detection of 4.9 pg L-1. Moreover, it displayed good specificity, reproducibility and stability. The utilization of the proposed aptasensor for the quantitative determination of OTA in wine indicates that it can find promising applications in detecting OTA and even other mycotoxins in foodstuffs.
Collapse
Affiliation(s)
- Pengxiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Luyan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Mei Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
29
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
30
|
Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C. Recent Developments in Detection Using Noble Metal Nanoparticles. Crit Rev Anal Chem 2019; 50:97-110. [DOI: 10.1080/10408347.2019.1576496] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Na Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
31
|
Wang Y, Ning G, Bi H, Wu Y, Liu G, Zhao Y. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|