1
|
Pradal I, Weckx S, De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl Environ Microbiol 2025; 91:e0221624. [PMID: 40013785 PMCID: PMC11921326 DOI: 10.1128/aem.02216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
The production of fruity esters by sourdough lactic acid bacteria (LAB) and yeasts has not been explored in detail. Moreover, the biosynthesis of esters by LAB species under conditions similar to those occurring during sourdough production is still questionable. Concerning yeasts, a genome mining of 75 genomes revealed a strain dependency of the presence of seven specific ester biosynthesis genes. Accordingly, PCR assays to detect these acetate (ATF1 and ATF2) and ethyl ester (EHT1 and EEB1) biosynthesis genes were developed and used to screen 91 strains of yeast species. Concerning LAB, a genome mining of 401 genomes revealed a species dependency of the presence of three esterase-encoding genes (estA, estB, and estC). A phenotypic analysis carried out with a selection of 10 strains of the LAB species Companilactobacillus crustorum, Companilactobacillus nantensis, Companilactobacillus paralimentarius, Fructilactobacillus sanfranciscensis, Lactiplantibacillus xiangfangensis, Levilactobacillus zymae, and Limosilactobacillus fermentum in a wheat sourdough simulation medium (WSSM) supplemented with ester precursor molecules ([higher] alcohols and fatty acids) revealed that their ester biosynthesis capacity was limited by the precursor concentrations. Ethyl acetate and ethyl lactate were produced by all strains, except for those of Frul. sanfranciscensis. These results suggested that one of the esterase-encoding genes considered could be implicated in the ethyl acetate and/or ethyl lactate biosynthesis. Overall, the ester biosynthesis capacity by LAB is of great interest in view of fruity flavor formation during sourdough and sourdough bread productions. IMPORTANCE The present study gave insights into the production of esters, which impart fruity flavors to fermented foods, by not only sourdough yeasts but also lactic acid bacteria. It showed that some lactic acid bacteria species can synthesize the esters ethyl acetate (sweet notes) and ethyl lactate (creamy notes) under specific conditions. The information gathered during the present study will enable sourdough bakers and companies from the bakery sector to get more information on how to produce sourdoughs that can add fruity notes to the final products after a rational screening and selection of potential starter culture strains.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Li J, Li L, Yu P, Zhang B, Zhao L, Zhao Z, Liu K, Kang K. Effects of Loquat Juice Addition on Sensory Characteristics and Volatile Organic Compounds of Loquat Beer. Molecules 2024; 29:3737. [PMID: 39202817 PMCID: PMC11357548 DOI: 10.3390/molecules29163737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Beer, as an ancient and widely consumed alcoholic beverage, holds a rich cultural heritage and history. In recent years, fruit beer has gained significant attention as a distinct beer type produced by incorporating fruit juice into traditional beer ingredients. This study employed headspace solid-phase microextraction-gas chromatography-mass spectrometry techniques, redundancy analysis, and orthogonal projections to latent structures discriminant analysis to analyze the sensory evaluation, physicochemical properties, organic acids, and volatile organic compounds (VOCs) of loquat beer with different proportions of loquat juice. The results shown that the addition of an appropriate amount of loquat juice (40%) enhanced the overall sensory quality of the beer; as the proportion of loquat juice increased, the contents of malic acid and tartaric acid significantly increased (p < 0.05). A total of 100 VOCs were identified, among which 23 key VOCs (VIP > 1, p < 0.05) represented the most important characteristic flavor components in loquat beer based on their odor activity value (OAV). This study holds significant importance for the value-added processing and economic development of loquat.
Collapse
Affiliation(s)
- Junjie Li
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
- Key Laboratory for Plateau Characteristic Functional Food Research of Universities in Yunnan Province, Zhaotong, 657000, China
| | - Lang Li
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
- Key Laboratory for Plateau Characteristic Functional Food Research of Universities in Yunnan Province, Zhaotong, 657000, China
| | - Pinglian Yu
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
- Key Laboratory for Plateau Characteristic Functional Food Research of Universities in Yunnan Province, Zhaotong, 657000, China
| | - Banglei Zhang
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
- Key Laboratory for Plateau Characteristic Functional Food Research of Universities in Yunnan Province, Zhaotong, 657000, China
| | - Lina Zhao
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
| | - Zhongxia Zhao
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
| | - Kunyi Liu
- School of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin 644100, China
| | - Kaijie Kang
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China; (J.L.); (Z.Z.)
| |
Collapse
|
3
|
Li L, Yuan C, Zhang L, Chu R, Yu Q, Cai J, Yang T, Zhang M. The impact of simultaneous inoculation with Torulaspora delbrueckii and Hanseniaspora uvarum combined with Saccharomyces cerevisiae on chemical and sensory quality of Sauvignon blanc wines. Front Microbiol 2024; 15:1413650. [PMID: 39113838 PMCID: PMC11303216 DOI: 10.3389/fmicb.2024.1413650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Non-Saccharomyces yeasts have great potential in improving wine quality, showing personality characteristics, and highlighting the terroir of wine. In this study, we evaluated the impact of simultaneous inoculation with the non-Saccharomyces yeasts Torulaspora delbrueckii or (and) Hanseniaspora uvarum in combination with Saccharomyces cerevisiae (EC1118 or VL3) on the aromatic compounds and sensory quality of Sauvignon blanc wines. The growth of yeast groups in the alcoholic fermentation process was tracked using fluorescence in situ hybridization. The presence of non-Saccharomyces yeast notably impacted the distribution of S. cerevisiae and was related to the species of yeast. The co-fermentation of H. uvarum and S. cerevisiae improved the content of total esters, especially acetate esters. Simultaneous inoculation of T. delbrueckii or (and) H. uvarum significantly increased the content of total terpenes, especially linalool. Similar results were found for some higher alcohols and organic acids. Sensory evaluation showed that the wines mixed fermentation with H. uvarum had significantly tropical fruit aroma characteristics. Citrus and mineral notes, typical aroma characteristics of Sauvignon blanc wine, were enhanced by mixed fermentation strategies with T. delbrueckii or (and) H. uvarum and different S. cerevisiae. Hence, co-fermentation by T. delbrueckii or H. uvarum combined with S. cerevisiae could significantly improve the sensory quality of Sauvignon blanc wine.
Collapse
Affiliation(s)
- Linbo Li
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Chenyang Yuan
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruichao Chu
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Qingquan Yu
- Cofco Great Wall Sanggan Winery (Huailai) Co., Ltd., Huailai, China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, Qujing, China
| | - Tianyou Yang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
4
|
Zhang B, Zhang C, Li J, Zhou P, Lan Y, Duan C, Yan G. A comparative study to investigate the individual contribution of metabolic and physical interaction on volatiles formation in the mixed fermentation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Microbiol 2024; 119:104460. [PMID: 38225043 DOI: 10.1016/j.fm.2023.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
It is well-known that the co-inoculation of Saccharomyces cerevisiae and non-Saccharomyces strains can modulate and improve the aromatic quality of wine through their multi-level interactions. However, the individual contribution of metabolic interaction (MI) and physical interaction (PI) on wine volatiles remains poorly understood. In this work, we utilized a double-compartment bioreactor to examine the aromatic effect of MI and PI by comparing the volatiles production in Torulaspora delbrueckii and Saccharomyces cerevisiae single fermentations to their mixed fermentations with or without physical separation. Results showed that the PI between T. delbrueckii and S. cerevisiae increased the production of most aroma compounds, especially for acetate esters and volatile fatty acids. In comparison, the MI only promoted a few volatile compounds, including ethyl decanoate, isoamyl acetate, and isobutanol. Noticeably, the MI significantly decreased the levels of ethyl dodecanoate, 2-phenylethyl alcohol, and decanoic acid, which exhibited opposite profiles in PI. Our results indicated that the PI was mainly responsible for the improved volatiles in T. delbrueckii/S. cerevisiae mixed fermentation, while the MI can be targeted to modulate the specific aroma compounds. A thorough understanding of the PI and MI aromatic effect will empower winemakers to accurately and directionally control the volatile profile of the wine, promoting the application of multi-starters to produce diverse styles of wines.
Collapse
Affiliation(s)
- Boqin Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Cuiying Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai, 264000, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai, 264000, China
| | - Yibin Lan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Changqing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Guoliang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
5
|
Balmaseda A, Rozès N, Bordons A, Reguant C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb Biotechnol 2024; 17:e14302. [PMID: 37387409 PMCID: PMC10832531 DOI: 10.1111/1751-7915.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| |
Collapse
|
6
|
Wang L, Yin H, Shao X, Zhang Z, Zhong X, Wei R, Ding Y, Wang H, Li H. Improving the aging aroma profiles of Italian Riesling and Petit Verdot Wines: Impact of spontaneous and inoculated fermentation processes. Food Chem X 2023; 20:100978. [PMID: 37954144 PMCID: PMC10633531 DOI: 10.1016/j.fochx.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
The study employed gas chromatography-ion mobility spectrometry to differentiate between wines undergoing spontaneous fermentation and inoculated fermentation, with aging periods of 3, 9, and 15 months. The results indicate that throughout the three aging periods, there was a notable increase in the levels of ethyl hexanoate (Monomer, M), 2-methyl butanal, ethyl octanoate (M), ethyl octanoate (Dimer, D), propyl acetate, and 3-methylbutanal in the spontaneous Italian Riesling wine (RS). Furthermore, the compounds isoamyl acetate (M), ethyl formate (D), 4-methyl-2-pentanone (M), and ethyl formate (M) demonstrated the highest concentrations at 15 months in RS, accordingly, these compounds displayed a consistent upward trend throughout the aging period. A total of 14 volatile compounds exhibited an upward trend from 3 to 15 months in the spontaneous fermentation of Petit Verdot Wine (VS). Subsequently, these compounds attained their maximum levels. Spontaneous fermentation effectively enhances the aromatic characteristics of wines, consequently improving their capacity for aging.
Collapse
Affiliation(s)
- Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Haining Yin
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xuedong Shao
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Zhengwen Zhang
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Xiaomin Zhong
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Ruteng Wei
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yinting Ding
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| |
Collapse
|
7
|
Álvarez-Barragán J, Mallard J, Ballester J, David V, Vichy S, Tourdot-Maréchal R, Alexandre H, Roullier-Gall C. Influence of spontaneous, "pied de cuve" and commercial dry yeast fermentation strategies on wine molecular composition and sensory properties. Food Res Int 2023; 174:113648. [PMID: 37981362 DOI: 10.1016/j.foodres.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
While most producers in recent decades have relied on commercial yeasts (ADY) as their primary choice given their reliability and reproducibility, the fear of standardising the taste and properties of wine has led to the employment of alternative strategies that involve autochthonous yeasts such as pied de cuve (PdC) and spontaneous fermentation (SF). However, the impact of different fermentation strategies on wine has been a subject of debate and speculation. Consequently, this study describes, for the first time, the differences between the three kinds of fermentation at the metabolomic, chemical, and sensory levels in two wines: Chardonnay and Pinot Noir. The results showed how the yeast chosen significantly impacted the molecular composition of the wines, as revealed by metabolomic analysis that identified biomarkers with varying chemical compositions according to the fermentation modality. Notably, higher numbers of lipid markers were found for SF and PdC than ADY, which contained more peptides. Key molecules from the metabolic amino acid pathway, which are addressed in this article, showed evidence of such variations. In addition, the analysis of volatile aromatic compounds revealed an increase in groups of compounds specific to each fermentation. The sensorial analysis of Chardonnay wine showed a more qualitative sensory outcome (Higher fruit intensity) for ADY and SF compared to PdC. Our finding challenges the common speculation among wine producers that autochthonous yeast fermentations may offer greater complexity and uniqueness in comparison to commercial yeast fermentations.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Jérôme Mallard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Vanessa David
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Stephania Vichy
- LiBiFOOD Research Group, Nutrition and Food Science Department-XaRTA-INSA, University of Barcelona, Food and Nutrition Torribera Campus, Avenida Prat de la Riba, 171. Edificio Gaudí, 08921 Santa Coloma de Gramenet, España
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France.
| | - Chloé Roullier-Gall
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| |
Collapse
|
8
|
Sampaolesi S, Pérez-Través L, Pérez D, Roldán López D, Briand LE, Pérez-Torrado R, Querol A. Identification and assessment of non-conventional yeasts in mixed fermentations for brewing bioflavored beer. Int J Food Microbiol 2023; 399:110254. [PMID: 37244227 DOI: 10.1016/j.ijfoodmicro.2023.110254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The increasing demand for more flavored and complex beers encourages the investigation of novel and non-conventional yeasts with the ability to provide a combination of bioflavoring and low ethanol yields. The present study identified 22 yeasts isolated from different brewing sources, including the fermentation by-products known as yeast sludges, and characterized a selection of strains to find the more suitable for the aforementioned aims. HPLC and GC-FID analysis of its brewing products were performed. The most promising results were obtained with the non-conventional yeasts Pichia kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122. The former, isolated from a Belgian wheat beer sludge, was capable of growing in wort (17.0°Bx., 20 °C) with very low ethanol yields (1.19 % v/v). Besides, upon mixed fermentations with Saccharomyces cerevisiae, was suitable to produce volatile compounds such as ethyl acetate, 2-phenyl ethanol and isoamyl alcohol, with characteristic fruity notes. M. guilliermondii MUS122, isolated from a golden ale beer sludge, partially attenuated the wort with low production of ethanol and biomass. In addition, provided some fruity and floral nuances to the aroma profile of mixed fermentations with brewer's yeast. The results suggest that these strains favor the development of more fruity-flowery aroma profiles in beers. Furthermore, they are suitable for use in mixed fermentations with Saccharomyces brewer's strains, although the ethanol level did not decrease significantly.
Collapse
Affiliation(s)
- Sofía Sampaolesi
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco", CINDECA-CONICET, CICpBA, UNLP, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina
| | - Laura Pérez-Través
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Dolores Pérez
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Lallemand Bio SL, Carrer de Galileu 303-305, 08028 Barcelona, Spain
| | - David Roldán López
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Laura E Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco", CINDECA-CONICET, CICpBA, UNLP, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina.
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action. Foods 2023; 12:foods12061246. [PMID: 36981176 PMCID: PMC10048078 DOI: 10.3390/foods12061246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Due to the high sugar content of Mopan persimmon, which has an annual output of more than 0.5 million tons in China, it can be processed to make fruit wine. In this study, a strain of yeast screened from different persimmon samples was used for persimmon wine fermentation. The optimal conditions of persimmon wine fermentation were determined through single-factor experiments as follows: Yeast addition of 0.08 g/kg; a fermentation temperature of 28 °C; sucrose addition of 18%; and pectinase addition of 0.01%. Under these conditions, the alcohol content of persimmon wine reached 12.9%. The addition of pectinase during persimmon wine fermentation was found to decompose pectin at high speed, reduce the viscosity of the fermentation liquid, increase the dissolved oxygen content in the fermentation liquid, promote the growth and reproduction of yeast, and effectively convert the sugars into alcohol. After fermentation, alcohol, residual sugars, and total phenolic content with or without pectinase treatment were 12.9 and 4.4%, 2.2 and 13.4 g/L, and 738.7 and 302 µg/mL, respectively. Scanning electron microscopy (SEM) results showed that compared with the mash without pectinase treatment, the mash with pectinase had a larger network structure and more pores and yeasts.
Collapse
|
10
|
Improving the Aromatic Profiles of Catarratto Wines: Impact of Metschnikowia pulcherrima and Glutathione-Rich Inactivated Yeasts. Antioxidants (Basel) 2023; 12:antiox12020439. [PMID: 36829997 PMCID: PMC9952006 DOI: 10.3390/antiox12020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Catarratto is one of the most widely cultivated grape varieties in Sicily. It is an indigenous non-aromatic white grape variety. Despite its widespread use in winemaking, knowledge of the aroma and chemical and microbiological properties of Catarratto wines is quite limited. The influence of Metschnikowia pulcherrima combined with Saccharomyces cerevisiae on the aromatic expression of Catarratto wines was investigated with and without the addition of glutathione-rich inactivated yeast. The substance is a natural specific inactivated yeast with a guaranteed glutathione level used to limit oxidative processes. The aromatic profiles of the final wines were determined through analysis of the volatile organic compounds using a solid-phase microextraction technique that identified 26 aromatic compounds. The addition of M. pulcherrima in combination with the natural antioxidant undoubtedly increased the aromatic complexity of the wines. Dodecanal was exclusively detected in the wines processed with glutathione-rich inactivated yeasts. Furthermore, the presence of this natural antioxidant increased the concentration of six esters above the perception threshold. Sensory analysis was also performed with a panel of trained judges who confirmed the aromatic differences among the wines. These results suggest the suitability of glutathione-rich inactivated yeasts for determining the oxidative stability of Catarratto wines, thus preserving its aromatic compounds and colour.
Collapse
|
11
|
Characterization of Nero Antico di Pretalucente Wine and Grape Fungal Microbiota: An Expression of Abruzzo Region Cultivar Heritage. FERMENTATION 2023. [DOI: 10.3390/fermentation9020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to characterize the ampelographic and genetic profiles of Vitis vinifera L. cv. Nero Antico di Pretalucente and to describe the grape-borne fungal communities. The oenological characteristics and the aroma profile of wine obtained by spontaneous fermentation were also investigated. Microsatellite profiles and ampelographic traits indicated that this cultivar presented a unique profile, and therefore it can be considered a cultivar in its own right and autochthonous of Gessopalena village. Next-generation sequencing analysis revealed that Aureobasidium spp. was the main genus detected on grapes. At the species level, Aureobasidium pullulans was the main species, followed by Alternaria alternata. Wines were characterized by a final ethanol content of 12.75% (v/v), a pH of 3.4, a volatile acidity lower than 0.6 g/L, a content of glycerol of 8.56 g/L, and a concentration of polyphenols and anthocyanins of 977 GAE/L and 266 mg/L, respectively. The intensity and tonality of the wine as well as the active odor compounds found were described. The results obtained could improve the knowledge concerning the agronomic traits and the wine obtained from this ancient and autochthonous grapevine variety cultivated in a foothill area, in order to offer consumers a wine with unique traits.
Collapse
|
12
|
Qin L, Huang M, Ma Y, Zhang D, Cui Y, Kang W. Effects of two Saccharomyces cerevisiae strains on physicochemical and oenological properties of Aranèle white wine. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuumL.). Food Res Int 2023; 163:112194. [PMID: 36596132 DOI: 10.1016/j.foodres.2022.112194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.
Collapse
|
14
|
Analysis of Volatile Aroma Compounds and Sensory Characteristics Contributing to Regional Style of Red Wines from Hexi Corridor Based on Sixteen Grape Varieties/Clones. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hexi Corridor is an excellent region for high-quality wines in China, but the characteristic and style of red wine from this region is unclear. To elucidate the regional style of red wines from Hexi Corridor, the aroma properties of red wines made from 16 different varieties/clones of grapes were comprehensively analyzed using HS-SPME-GC-MS, sensory evaluation, odor activity value method, and partial least squares regression analyses. We identified 52 aroma compounds and found that floral and black berry provided a good reference for shaping red wine style and selecting related varieties in Hexi Corridor region. Ethyl caproate, (Z)-3-hexen-1-ol, ethyl 9-decenoate, and hexyl alcohol, which were the characteristic aroma substances of Hexi Corridor red wines, had positive effects on the floral aroma of Merlot, Cabernet Sauvignon, Pinot Noir, and Malbec wines. Hexyl alcohol and (Z)-3-hexen-1-ol also contributed to the black berry and spice aromas, while isobutyl acetate opposed the expression of these aromas of Malbec and Cabernet Franc wines. These results showed that the sensory characteristics of floral and black berry are of vital significance in shaping the red wine style of Hexi Corridor, among which ethyl caproate, (Z)-3-hexen-1-ol, ethyl 9-decenoate, and hexyl alcohol are important contributors.
Collapse
|
15
|
Impact of Two Commercial S. cerevisiae Strains on the Aroma Profiles of Different Regional Musts. BEVERAGES 2022. [DOI: 10.3390/beverages8040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present research is aimed at investigating the potential of two commercial Saccharomyces cerevisiae strains (EC1118 and AWRI796) to generate wine-specific volatile molecule fingerprinting in relation to the initial must applied. To eliminate the effects of all the process variables and obtain more reliable results, comparative fermentations on interlaboratory scale of five different regional red grape musts were carried out by five different research units (RUs). For this purpose, the two S. cerevisiae strains were inoculated separately at the same level and under the same operating conditions. The wines were analyzed by means of SPME-GC/MS. Quali-quantitative multivariate approaches (two-way joining, MANOVA and PCA) were used to explain the contribution of strain, must, and their interaction to the final wine volatile fingerprinting. Our results showed that the five wines analyzed for volatile compounds, although characterized by a specific aromatic profile, were mainly affected by the grape used, in interaction with the inoculated Saccharomyces strain. In particular, the AWRI796 strain generally exerted a greater influence on the aromatic component resulting in a higher level of alcohols and esters. This study highlighted that the variable strain could have a different weight, with some musts experiencing a different trend depending on the strain (i.e., Negroamaro or Magliocco musts).
Collapse
|
16
|
Li J, Hong M, Qi B. Impact of Torulaspora delbrueckii During Fermentation on Aromatic Profile of Vidal Blanc Icewine. Front Microbiol 2022; 13:860128. [PMID: 35747371 PMCID: PMC9209767 DOI: 10.3389/fmicb.2022.860128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeasts usually have a positive effect on improving the diversity of wine aroma and increasing the differentiation of wine products. Among these non-Saccharomyces yeast species, Torulaspora delbrueckii is often studied and used in winemaking in recent years, but its application in icewine has not been reported yet. In this study, indigenous T. delbrueckii strains (TD1 and TD2) and Saccharomyces cerevisiae strains (commercial yeast SC1 and indigenous icewine yeast SC2) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae (SC1 and SC2) fermentations were used as the control; TD1, TD2, and SC2 strains used were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to investigate the effect of T. delbrueckii on the aroma complexity of icewine, which is of great significance to the application of T. delbrueckii in icewine production. The results showed that T. delbrueckii was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fermentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower acetic acid and ethanol, and higher glycerol. The inoculation of T. delbrueckii greatly impacted the levels of several important volatile compounds, and more 2-phenylethyl alcohol, isoamyl acetate, linalool, D-limonene, p-cymene and cineole were produced, and the fruity, flowery, and sweet characteristic was intensified. Moreover, the relevance of strain-specificity within T. delbrueckii to aroma compound differences was shown. To our knowledge, this study is the first to investigate the application of T. delbrueckii in Vidal blanc icewine fermentation, and volatile aroma compounds in the icewine fermented by T. delbrueckii and S. cerevisiae.
Collapse
|
17
|
Wang C, Liang S, Yang J, Wu C, Qiu S. The impact of indigenous Saccharomyces cerevisiae and Schizosaccharomyces japonicus on typicality of crystal grape (Niagara) wine. Food Res Int 2022; 159:111580. [DOI: 10.1016/j.foodres.2022.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
|
18
|
Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L.). Food Res Int 2022; 155:111128. [DOI: 10.1016/j.foodres.2022.111128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/20/2023]
|
19
|
Pre-Fermentative Cold Maceration and Native Non-Saccharomyces Yeasts as a Tool to Enhance Aroma and Sensory Attributes of Chardonnay Wine. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The oenological potential of native strains of Metschnikowia pulcherrima B-5 and Candida famata WB-1, isolated from blackberries, was investigated in pure and sequential fermentation of Chardonnay grape with commercial Saccharomyces cerevisiae QA23. The effect of pre-fermentative cold maceration was also analysed. The fermentations were performed in the pilot-scale trials and the profile of volatile compounds and their sensory characteristics were determined. The application of C. famata WB-1 and M. pulcherrima B-5 reduced the volatile acidity and increased total polyphenols of the wines, compared to the control samples. Higher alcohols and esters were dominant, while fatty acids and aldehydes and ketones were also detected. Esters had the greatest contribution to sensory characteristics, especially the development of floral and fruity aromas. Most esters were present in lower concentrations in sequential fermentations compared to the pure fermentations with M. pulcherrima B-5 or C. famata WB-1. Pre-fermentative maceration positively affected both the aroma and the sensory profile. The best sensory score was determined for wines produced using C. famata WB-1 in the fermentations without pre-fermentative maceration, and the sequential fermentation of M. pulcherrima B-5 with maceration. Native strains of M. pulcherrima B-5 and C. famata WB-1 have shown great potential for the enhancement of the aromatic and sensory profile of Chardonnay wine.
Collapse
|
20
|
Welke JE, Nicolli KP, Hernandes KC, Biasoto ACT, Zini CA. Adaptation of an olfactometric system in a GC-FID in combination with GCxGC/MS to evaluate odor-active compounds of wine. Food Chem 2022; 370:131004. [PMID: 34525425 DOI: 10.1016/j.foodchem.2021.131004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
A step-by-step approach to easily adapt and use a GC-FID as an olfactometer, as well as a detailed description of acquisition and interpretation of olfactometric data by the OSME (from the Greek word for odor, ὀσμή) method. A Merlot wine was used to exemplifly this strategy and its volatiles were characterized, rendering 43 volatiles in 1D-GC/MS and 142 in GCxGC/MS. GC-O showed the presence of 24 odor-active compounds and GCxGC/MS indicated aditional 14 odor-active compounds, which were found as coelutions. Six compounds (isoamyl acetate, ethyl octanoate, ethyl decanoate, 3-methylthio-1-propanol, carvone, benzyl alcohol and nonanoic acid) were described in 1D-GC-O analyses as having distinct odors by the same and by different assessors. This fact indicated the presence of coeluting bands, which were resolved by GCxGC/MS. The adapted GC-O in combination with the use of GCxGC/MS may be a tool to more accurate investigation of the odor-active compounds of wine.
Collapse
Affiliation(s)
- Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Karine Primieri Nicolli
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Aline Camarão Telles Biasoto
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, BR 428, km 152, CEP: 56302-970 Petrolina, PE, Brazil
| | - Claudia Alcaraz Zini
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Zhou Z, Zhang R, Hu S, Ma Y, Du K, Sun M, Zhang H, Jiang X, Tu H, Chen P. Internal transcribed spacer sequencing and metatranscriptomics analysis reveal the fungal community composition, diversity related environment variables and roles during serofluid dish fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Wang S, Lu Y, Fu X, Wang M, Wang W, Wang J, Wang H, Liu Y. Sequential Fermentation with
Torulapora delbrueckii
and selected Saccharomyces cerevisiae for aroma enhancement of Longyan dry white Wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suwen Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Yao Lu
- College of Food science and nutritional engineering China Agricultural University Beijing 100083 China
| | - Xiaofang Fu
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Meiqi Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Wenxiu Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Jie Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Huanxiang Wang
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Yaqiong Liu
- Hebei Agricultural University Baoding Hebei 071001 China
| |
Collapse
|
23
|
Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. Int J Food Microbiol 2022; 365:109554. [DOI: 10.1016/j.ijfoodmicro.2022.109554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
|
24
|
Evaluation of Autochthonous Non-Saccharomyces Yeasts by Sequential Fermentation for Wine Differentiation in Galicia (NW Spain). FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-Saccharomyces yeasts constitute a useful tool in winemaking because they secrete hydrolytic enzymes and produce metabolites that enhance wine quality; in addition, their ability to reduce alcohol content and/or to increase acidity can help to mitigate the effects of climatic change on wines. The purpose of this study was to evaluate the oenological traits of non-Saccharomyces yeast strains autochthonous from Galicia (NW Spain). To do that, we carried out sequential fermentation using 13 different species from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (Evega) and Saccharomyces cerevisiae EC1118. The fermentation kinetics and yeast implantation were monitored using conventional methods and genetic techniques, respectively. The basic chemical parameters of wine were determined using the OIV official methodology, and the fermentative aroma compounds were determined by GC–FID. The results evidenced the limited fermentative power of these yeasts and the differences in their survival after the addition of S. cerevisiae to complete fermentation. Some strains reduced the alcohol and/or increased the total acidity of the wine. The positive effect on sensory wine properties as well as the production of desirable volatile compounds were confirmed for Metschnikowia spp. (Mf278 and Mp176), Lachancea thermotolerans Lt93, and Pichia kluyveri Pkl88. These strains could be used for wine diversification in Galicia.
Collapse
|
25
|
Alfonzo A, Prestianni R, Gaglio R, Matraxia M, Maggio A, Naselli V, Craparo V, Badalamenti N, Bruno M, Vagnoli P, Settanni L, Moschetti G, Francesca N. Effects of different yeast strains, nutrients and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines. Int J Food Microbiol 2021; 360:109325. [PMID: 34281717 DOI: 10.1016/j.ijfoodmicro.2021.109325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
Catarratto is one of the most common non-aromatic white grape varieties cultivated in Sicily (Southern Italy). In order to improve the aromatic expression of Catarratto wines a trial was undertaken to investigate the effect of yeast strain, nutrition and reduced glutathione. Variables included two Saccharomyces cerevisiae strains, an oenological strain (GR1) and one isolated from honey by-products (SPF52), three different nutrition regimes (Stimula Sauvignon Blanc™ (SS), Stimula Chardonnay™ (SC) and classic nutrition practice), and a specific inactivated yeast rich in reduced glutathione to prevent oxidative processes [Glutastar™ (GIY)] ensuing in ten treatments (T1-T10). Microbiological and chemical parameters demonstrated the aptitude of strain SPF52 to successfully conduct alcoholic fermentation. During fermentation, the Saccharomyces yeast populations ranged from 7 to 8 logarithmic CFU/mL. All wines had a final ethanol content ranging between 12.91 and 13.85% (v/v). The dominance of the two starter strains over native yeast populations was higher than 97% as estimated by interdelta analysis. The addition of nutrients SS or SC increased the aromatic complexity of the wines as reflected by volatile organic compounds (VOCs) composition and sensory profiles. In particular, 32 VOCs were identified; alcohols (62.46-81.1%), thiols (0.27-0.87%), ethers (0.09-0.16%), aldehydes (0-1.21%), ketones (0-2.28%), carboxylic acids (4.21-12.32%), esters (0-10.85%), lactones (0.9-1.49%) and other compounds (0.77-6.9%). Sensory analysis demonstrated a significant impact on wine aroma in relation to yeast starter strain used, the type of nutrition (SS, SC or classic nutrition) and the presence/absence of GIY. The wines produced with GR1 yeast strain and SS (T2), SPF52 with SC (T9) both in presence of GIY showed higher overall quality. Trials T2 and T9 showed the highest scores for 13 and 18 attributes, respectively. The different nutrition, addition of GIY and the yeast starter strains diversified and enhanced sensory expression of Catarratto wines.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Michele Matraxia
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, building 17, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Valentina Craparo
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, building 17, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, building 17, Italy
| | - Paola Vagnoli
- Lallemand Italia, Via Rossini 14/B, 37060, Castel D'Azzano, VR, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.
| |
Collapse
|
26
|
A Statistical Workflow to Evaluate the Modulation of Wine Metabolome and Its Contribution to the Sensory Attributes. FERMENTATION 2021. [DOI: 10.3390/fermentation7020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A data-processing and statistical analysis workflow was proposed to evaluate the metabolic changes and its contribution to the sensory characteristics of different wines. This workflow was applied to rosé wines from different fermentation strategies. The metabolome was acquired by means of two high-throughput techniques: gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) for volatile and non-volatile metabolites, respectively, in an untargeted approach, while the sensory evaluation of the wines was performed by a trained panel. Wine volatile and non-volatile metabolites modulation was independently evaluated by means of partial least squares discriminant analysis (PLS-DA), obtaining potential markers of the fermentation strategies. Then, the complete metabolome was integrated by means of sparse generalised canonical correlation analysis discriminant analysis (sGCC-DA). This integrative approach revealed a high link between the volatile and non-volatile data, and additional potential metabolite markers of the fermentation strategies were found. Subsequently, the evaluation of the contribution of metabolome to the sensory characteristics of wines was carried out. First, the all-relevant metabolites affected by the different fermentation processes were selected using PLS-DA and random forest (RF). Each set of volatile and non-volatile metabolites selected was then related to the sensory attributes of the wines by means of partial least squares regression (PLSR). Finally, the relationships among the three datasets were complementary evaluated using regularised generalised canonical correlation analysis (RGCCA), revealing new correlations among metabolites and sensory data.
Collapse
|
27
|
Muñoz-Redondo JM, Puertas B, Cantos-Villar E, Jiménez-Hierro MJ, Carbú M, Garrido C, Ruiz-Moreno MJ, Moreno-Rojas JM. Impact of Sequential Inoculation with the Non- Saccharomyces T. delbrueckii and M. pulcherrima Combined with Saccharomyces cerevisiae Strains on Chemicals and Sensory Profile of Rosé Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1598-1609. [PMID: 33507745 DOI: 10.1021/acs.jafc.0c06970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlled inoculations of non-Saccharomyces yeasts are becoming increasingly used to produce high-quality wines due to their enological potential. In this study, we evaluated the impact of sequential inoculation with the commercial non-Saccharomyces yeasts (Torulaspora delbrueckii and Metschnikowia pulcherrima) in combination with Saccharomyces cerevisiae on the chemical and sensory profile of rosé wines. Sequential inoculation with T. delbrueckii produced wines with an overall reduction in esters, mainly explained by the lower concentrations of ethyl esters of medium-chain fatty acids and isoamyl acetate. The lower ester concentrations of these wines were related to a reduction in fruity descriptors. An increase was observed, however, in other minor esters such as cinnamates and ethyl esters of branched acids. Zinc, ethyl isobutyrate, and ethyl dihydrocinnamate were selected as potential markers for this fermentation strategy. Sequential inoculation with M. pulcherrima resulted in rosé wines with an enhanced ester profile, reduced acetaldehyde, and increased anthocyans and tannins. Compared to the control wines fermented with S. cerevisiae, the changes observed in these wines were far subtler, especially for the volatile profile, sensory characteristics, and color parameters, with isobutyl hexanoate and isoamyl butyrate being selected as potential markers.
Collapse
Affiliation(s)
- José Manuel Muñoz-Redondo
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| | - Belén Puertas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - Emma Cantos-Villar
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - María Jesús Jiménez-Hierro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - María Carbú
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Heald Public, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Spain
| | - Carlos Garrido
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Heald Public, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Spain
| | - María José Ruiz-Moreno
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| |
Collapse
|
28
|
Marín-San Román S, Rubio-Bretón P, Pérez-Álvarez EP, Garde-Cerdán T. Advancement in analytical techniques for the extraction of grape and wine volatile compounds. Food Res Int 2020; 137:109712. [PMID: 33233285 DOI: 10.1016/j.foodres.2020.109712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
The grape and wine aroma is one of the most determining factors of quality, therefore the study of their volatile composition is a very important topic in vitiviniculture. The range of concentrations in which many of these compounds are found is quite low, in concentrations of ng/L; due to this, a sample preparation stage is necessary before doing the chromatographic analysis of the volatile compounds. In this review, the main analytical techniques used for the extraction of volatile compounds in grapes and wines are studied. The techniques presented are liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and thin film solid phase microextraction (TF-SPME). For each of these techniques, a description was made, and the different characteristics were numbered, as well as their main advantages and disadvantages. Furthermore, from the second technique, a comparison is made with the previous techniques, explaining the reasons why new techniques have emerged. Throughout the review it is possible to see the different techniques that have been emerging in the past years as an improvement of the classical techniques.
Collapse
Affiliation(s)
- Sandra Marín-San Román
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain; Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, Km. 6., 26007 Logroño, Spain.
| |
Collapse
|
29
|
Castrillo D, Rabuñal E, Neira N, Blanco P. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines. FEMS Yeast Res 2020; 19:5581503. [PMID: 31584676 DOI: 10.1093/femsyr/foz065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022] Open
Abstract
The effects of climate change on wine include high-alcohol content, low acidity and aroma imbalance. The potential of several non-Saccharomyces wine yeasts to mitigate these effects was evaluated by sequential fermentation of Treixadura grape must. Fermentations with only Saccharomyces cerevisiae ScXG3 and a spontaneous process were used as control assays. All yeast strains were obtained from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (EVEGA), Galicia, Spain. Fermentation kinetics as well as yeast dynamics and implantation ability varied depending on inoculated yeasts. In addition, the results showed significant differences in the chemical composition of wine. Starmerella bacillaris 474 reduced the alcohol content (1.1% vol) and increased the total acidity (1.2 g L-1) and glycerol of wines. Fermentation with Lachancea thermotolerans Lt93 and Torulaspora delbrueckii Td315 also decreased the alcohol content, although to a lesser extent (0.3% and 0.7% vol, respectively); however, their effect on wine acidity was less significant. The wines also differed in their concentration of volatile compounds and sensory characteristics. Thus, wines made with Metschnikowia fructicola Mf278 and S. cerevisiae ScXG3 had higher content of esters, acetates and some acids than other wines, and were most appreciated by tasters due to their fruity character and overall impression.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Eva Rabuñal
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Noemi Neira
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| |
Collapse
|
30
|
Improved flavor profiles of red pitaya ( Hylocereus lemairei) wine by controlling the inoculations of Saccharomyces bayanus and Metschnikowia agaves and the fermentation temperature. Journal of Food Science and Technology 2020; 57:4469-4480. [PMID: 33087960 DOI: 10.1007/s13197-020-04484-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023]
Abstract
The effects of the inoculation method of Saccharomyces bayanus BV818 and non-Saccharomyces yeast Metschnikowia agaves P3-3 and the fermentation temperature on the volatile profiles of red pitaya wine were investigated in the present study. Although the growth of P3-3 was inhibited by BV818 in the mixed inoculations, simultaneous and sequential inoculations promoted the production of seven volatiles, including higher alcohols (propan-1-ol, 3-methyl-1-butanol and phenethyl alcohol), esters (ethyl decanoate and diethyl succinate), acid (2-ethylhexanoic acid), and ketone (acetoin). Sequential inoculation produced the largest total content of volatile compounds and exhibited the best in the global aroma. The red pitaya wine produced in different inoculations can be separated by its main volatile components. Furthermore, the highest total content was yielded at 25 °C for alcohols and at 21 °C for esters and acids. Within an experimental range of 17 °C to 29 °C, the contents of benzaldehyde and acetoin decreased with the increase in temperature, whereas the change in 4-ethyl-2-methoxyphenol content was the opposite. The similarly high total contents of volatiles and global aroma score were yielded via sequential inoculation at 21 °C and 25 °C. Therefore, the desired red pitaya wine can be effectively produced by modulating the inoculation method and fermentation temperature.
Collapse
|
31
|
Effects of spontaneous fermentation on Karalahna and Cabernet Sauvignon young red wines: volatile compounds, sensory profiles and identification of autochthonous yeasts. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03395-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Minnaar PP, du Plessis HW, Jolly NP, van der Rijst M, du Toit M. Non- Saccharomyces yeast and lactic acid bacteria in Co-inoculated fermentations with two Saccharomyces cerevisiae yeast strains: A strategy to improve the phenolic content of Syrah wine. FOOD CHEMISTRY-X 2019; 4:100070. [PMID: 31656955 PMCID: PMC6806450 DOI: 10.1016/j.fochx.2019.100070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Syrah must was co-inoculated with mixed cultures of Saccharomyces + O. oeni/Lb. plantarum and Saccharomyces + non-Saccharomyces + O. oeni/Lb. plantarum to evaluate the effect on phenolics and sensory attributes. Reference wines were produced by S. cerevisiae. Malvidin-3-O-glucoside, flavan-3-ols, flavonols and phenolic acids were quantified using a RP-HPLC technique. Physicochemical characteristics and sensory attributes were measured. Total acidity and alcohol in mixed co-inoculations were different from reference wines. The concentration of l-malic acid was 7-times less in mixed co-inoculations. Mixed co-inoculations had ca. 1.3-times more malvidin-3-O-glucoside and phenolic acids than reference wines. Flavan-3-ols and flavonols were not different between mixed co-inoculations and reference wines. Acidity and astringency were least in mixed co-inoculations. Mouthfeel and bitterness least in S. cerevisiae wines. Tasters preferred mixed co-inoculated wines. Mixed co-inoculation is a strategy to contemplate for Syrah vinification but the modalities of inoculation need further investigation. Success depends on a suitable combination of yeast/bacteria and consideration of strain variation.
Collapse
Affiliation(s)
- P P Minnaar
- Agricultural Research Council, Private Bag X5026, Stellenbosch 7600, South Africa
| | - H W du Plessis
- Agricultural Research Council, Private Bag X5026, Stellenbosch 7600, South Africa
| | - N P Jolly
- Agricultural Research Council, Private Bag X5026, Stellenbosch 7600, South Africa
| | - M van der Rijst
- Agricultural Research Council, Biometry, Private Bag X5026, Stellenbosch 7600, South Africa
| | - M du Toit
- Institute for Wine Biotechnology & Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
33
|
Pacheco MHS, Kuriya SP, Capobiango CSC, Pimentel TC, Cruz AG, Esmerino EA, Freitas MQ. Exploration of gender differences in bottled mineral water consumption: A projective study of consumer's perception in Brazil. J SENS STUD 2018. [DOI: 10.1111/joss.12434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Marcelo H. S. Pacheco
- Faculdade de Veterinária, Universidade Federal Fluminense; Niterói Rio de Janeiro Brazil
| | - Shigeno P. Kuriya
- Instituto Federal de Educação do Rio de Janeiro, Rio de Janeiro; Rio de Janeiro Brazil
| | | | | | - Adriano Gomes Cruz
- Instituto Federal de Educação do Rio de Janeiro, Rio de Janeiro; Rio de Janeiro Brazil
| | - Erick A. Esmerino
- Faculdade de Veterinária, Universidade Federal Fluminense; Niterói Rio de Janeiro Brazil
| | - Mônica Q. Freitas
- Faculdade de Veterinária, Universidade Federal Fluminense; Niterói Rio de Janeiro Brazil
| |
Collapse
|