1
|
Li Y, Li N, Yao S, Hu H, Wan B, Wu Z, Cheng H, Li D, Liu D, Xu E. Dual effects of exogenous ferulic acid bound in rice starch as 3D printable food ink: Structural fluidity and antimicrobial activity. Int J Biol Macromol 2025; 300:140262. [PMID: 39855496 DOI: 10.1016/j.ijbiomac.2025.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA. Compared with pure starch and starch-FA mixture gel, the starch-FA composite gel possessed lower viscosity, with a dramatically reduced extrusion pressure in the 3D printing test. Furthermore, antimicrobial activity tests indicated that the starch-FA composite gel can inhibit the growth of microorganism for achieving a long storage period. Overall, we provide a biomaterial of starch-FA composite that can serve as both a 3D printing food ink and an edible, printable, active, and lightweight packaging ink.
Collapse
Affiliation(s)
- Yushi Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Na Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haohao Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Beijia Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
2
|
Liu L, Lei S, Lin X, Bodjrenou DM, Zhang Y, Zheng B, Zeng H. Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats. Int J Biol Macromol 2025; 307:141933. [PMID: 40074132 DOI: 10.1016/j.ijbiomac.2025.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters. This study aimed to elucidate the mechanism by which LRS3 and SL modulate colonic microbiota and metabolism to mitigate hyperlipidemia in rats induced by a high-fat diet. Results showed LRS3 increased colonic microbial diversity, shifting the composition towards that of healthy rats. LRS3 intake reduced lactic acid-producing bacteria such as Allobaculum, Collinsella, and Blautia in the colon while promoting SCFAs-producing Ruminococcaceae. SL alone stimulated Lachnospiraceae growth. When both were administered, there was a significant increase in Treponema and Ruminococcaceae. The co-intervention of LRS3 and SL significantly affected lipid metabolism-related metabolites, up-regulating palmitic acid while down-regulating androsterone and phosphatidylcholine (PC) substances PC (14:0/20:4(8Z,11Z,14Z,17Z)), influencing unsaturated fatty acid biosynthesis pathways and inhibiting steroid hormone biosynthesis. Finally, via the microbial-metabolism-lipid correlation network, we identified that LRS3 and SL increased SCFAs production through Treponema and Ruminococcaceae metabolism, influencing organic acid and lipid composition in the colon. This indirectly reduced blood lipid levels in hyperlipidemic rats by modulating intestinal microecology.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Niu Y, Wang L, Gong H, Jia S, Guan Q, Li L, Cheng H. Nutrition and Gut Health: Preparation and Efficacy of Resistant Starch. Foods 2025; 14:471. [PMID: 39942065 PMCID: PMC11817130 DOI: 10.3390/foods14030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Resistant starch (RS) refers to starch varieties that resist digestion by human digestive enzymes. Owing to its distinctive physicochemical attributes and functional capabilities, RS has gained a wide range of applications as a dietary fiber and prebiotic. In terms of structure and functions, RS can be categorized into five distinct types: RS1 through RS5. These types offer dietary benefits, contributing to improved colonic health, the modulation of microbial communities, the reduction in gallstone formation, the enhancement of mineral absorption, and alterations in fat oxidation potential. From a technical standpoint, RS can be manufactured through an array of physical, enzymatic, and chemical modifications. This paper presents a comprehensive review of the existing literature, summarizing the classification, structural features, raw material origins, preparation methodologies, and functionalities of RS. Furthermore, new production technologies and applications of RS, such as 3D printing, provide valuable insights.
Collapse
Affiliation(s)
- Yulong Niu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiyi Gong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuqing Jia
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qing Guan
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Linling Li
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
| |
Collapse
|
4
|
Zhao X, Jia S, Zhao H, Liu P, Wu Z, Tao H, Yu B, Cui B. The interaction between maize resistant starch III and Bifidobacterium adolescentis during in vitro fermentation. Food Chem 2025; 463:140968. [PMID: 39265403 DOI: 10.1016/j.foodchem.2024.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
As an alternative to traditional dietary fibers with prebiotic effects, the interaction between resistant starch III (RS3) and gut microbiota is worth exploring. In this study, the effects of RS3 on the proliferation of Bifidobacterium adolescentis (B. adolescentis) and their structural changes before and after fermentation were investigated. Autoclaved-debranched resistant starch (ADRS) demonstrated the best proliferative effect for B. adolescentis and the highest roughness (Ra = 21.90 nm; Rq = 16.00 nm). The rough surface of ADRS was the key for B. adolescentis proliferation. B. adolescentis produced an extracellular amylase to assist degradation and showed the highest activity in ADRS. Fermentation disrupted short-range ordered structure and reduced R1047 cm-1/1022 cm-1 by 20.74 % and R995 cm-1/1022 cm-1 by 30.85 %. The extracellular amylase was essential substance for ADRS degradation. These findings help optimize RS3 structure and promote the proliferation of intestinal probiotics.
Collapse
Affiliation(s)
- Xinzhu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
5
|
Lv R, Chen Y, Zhou J, Jiang L, Xu E, Ling J, Tang J. Green fabrication of hierarchical pore starch with controllable pore size and shape based on different amylose-amylopectin ratios. Carbohydr Polym 2024; 346:122594. [PMID: 39245486 DOI: 10.1016/j.carbpol.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Porous starch (PS) was widely prepared for its large effective surface area, pore volume, and superior hydrophilic property, but its application is limited by enzyme and chemical use. In this study, a novel method to prepare PS with controllable hierarchical pores through ultrasound-ethanol precipitation and different amylose-amylopectin ratios is proposed. As shown in porous morphology and parameters, there were macropores, mesopores and micropores in the formed PS. Moreover, we found that the content of amylose (AM) was negatively related with the total pore volume and pore diameter in PS. The different surface tensions created through ethanol evaporation and water migration during oven drying are the main mechanisms of forming pores with controllable sizes. Based on the molecular information and the long-/short-range orders reflected by crystalline pattern, lamellas, and single-/double-helices, we conclude that AM is easier to form V-type inclusion complexes with ethanol. More single helix of V-amylose was transformed from B-type polymorph after ethanol exchange, which had significantly broadened dLozentz in PS. The TG spectra proved that the novel PS has the stable thermodynamic property. Overall, the finding of an objective regular between AM and pore sizes of PS in this study may support the other work related to PS.
Collapse
Affiliation(s)
- Ruiling Lv
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Ling Jiang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jiangang Ling
- Institute of Agricultural Products Processing, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315000, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Li Z, Zhang T, Liu Y, Huang Y, Liu J, Wang S, Sun P, Nie Y, Han Y, Li F, Xu H. A review in two classes of hypoglycemic compounds (prebiotics and flavonoids) intervening in type 2 diabetes mellitus: Unveiling their structural characteristics and gut microbiome as key mediator. FOOD BIOSCI 2024; 61:105010. [DOI: 10.1016/j.fbio.2024.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Liu J, Dhital S, Ahmed Junejo S, Fu X, Huang Q, Zhang B. Structural changes and degradation mechanism of type 3 resistant starch during in vitro fecal fermentation. Food Res Int 2024; 190:114639. [PMID: 38945585 DOI: 10.1016/j.foodres.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.
Collapse
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
8
|
Li H, Wang N, Zhang D, Wu J, Tan S, Li Y, Zhang N, Yang L, Wang X. Comparative study on the structure characterization and activity of RS5 made from Canna edulis native starch and high-amylose corn starch. Int J Biol Macromol 2024; 271:132340. [PMID: 38816293 DOI: 10.1016/j.ijbiomac.2024.132340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
In this study, the high amylose corn starch and Canna edulis native starch were compounded with lauric acid and fermented by human fecal inoculation in vitro. Changes in beneficial metabolite profile and microbiota composition were evaluated. The structural properties showed that both NS-12C and HAMS-12C formed V-shaped crystals under the same preparation method, but NS-12C had a higher composite index and resistance content than HAMS-12C. At the end of fermentation, the starch-lauric acid complexes prepared from the two types of starch significantly promoted the formation of short-chain fatty acids and the contents of acetic acid, butyric acid and valeric acid produced by NS-12C were higher than those of HAMS-12C(p>0.05). HAMS-12C and NS-12C both increased the relative abundance of Blautia. Notably, NS-12C also increased the relative abundance of beneficial bacteria Bifidobacterium and Meganomas, while HAMS-12C did not. These results suggested that this effect may be related to starch type and provide a basis for designing and producing functional foods to improve intestinal health in Canna edulis native starch.
Collapse
Affiliation(s)
- Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Shuting Tan
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
9
|
Lin Z, Wang Y, Li L, Zheng B, Hu J, Zhang Y. Comparison of anti-allergic activities of different types of lotus seed resistant starch in OVA-induced mouse model. Int J Biol Macromol 2024; 270:132389. [PMID: 38754655 DOI: 10.1016/j.ijbiomac.2024.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Currently, evidence from observational studies suggests dietary fiber intake may be associated with decreased risk of food allergy. As a type of dietary fiber, resistant starch was also widely reported to possess anti-allergic properties. However, there is a relative paucity of studies assessing the influence of resistant starch types on their anti-allergic activity and its possible underlying mechanisms. In the current study, the anti-allergic effects of RS3-type (retrograded starch), RS4-type (chemically modified starch, cross-bonded), and RS5-type (starch-palmitic acid complex) of lotus seed resistant starch were evaluated in the OVA (100 mg/kg)-induced food allergic mice model. The results showed that oral administration of RS3 or RS4 lotus seed resistant starch (0.3 g/100 g b.w.) for 25 days significantly improved adverse symptoms of food allergy such as weight loss, increases in allergy symptom score and diarrhea rate; with significant reduction of serum specific antibody IgE, TNF-α, IL-4 levels and improved Th1/Th2 balance being observed. The mechanism may involve the regulation of lotus seed resistant starch on intestinal flora and the metabolites short-chain fatty acids and bile acids. Taken together, the findings may enhance understanding towards ameliorative effects of resistant starch on food allergy, and offer valuable insights for the exploration of novel anti-allergic bioactive compounds.
Collapse
Affiliation(s)
- Zhongjing Lin
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 102448, China
| | - Lanxin Li
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China
| | - Jiamiao Hu
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Life Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | - Yi Zhang
- College of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian 350002, China.
| |
Collapse
|
10
|
Feng H, Cheng B, Lim J, Li B, Li C, Zhang X. Advancements in enhancing resistant starch type 3 (RS3) content in starchy food and its impact on gut microbiota: A review. Compr Rev Food Sci Food Saf 2024; 23:e13355. [PMID: 38685870 DOI: 10.1111/1541-4337.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Resistant starch type 3 (RS3), often found in cooked starchy food, has various health benefits due to its indigestible properties and physiological functions such as promoting the abundance of gut beneficial microbial flora and inhibiting the growth of intestinal pathogenic bacteria. However, it is challenging to develop starchy food with high RS3 content. This review aims to provide a detailed overview of current advancements to enhance RS3 content in starchy food and its effects of RS3 on gut microbiota. These approaches include breeding high-amylose cereals through gene editing techniques, processing, enzyme treatments, storage, formation of RS3 nanoparticles, and the incorporation of bioactive compounds. The mechanisms, specific conditions, advantages, and disadvantages associated with each approach and the potential effects of RS3 prepared by different methods on gut microbiota are summarized. In conclusion, this review contains important information that aims to provide guidelines for developing an efficient RS3 preparation process and promote the consumption of RS3-enriched starchy foods to improve overall health outcomes.
Collapse
Affiliation(s)
- Hongyan Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bo Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jongbin Lim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Wang N, Zhang C, Li H, Wu J, Zhang D, Li Y, Yang L, Zhang N, Wang X. Structure properties of Canna edulis RS3 (double enzyme hydrolysis) and RS4 (OS-starch and cross-linked starch): Influence on fermentation products and human gut microbiota. Int J Biol Macromol 2024; 265:130700. [PMID: 38458281 DOI: 10.1016/j.ijbiomac.2024.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
This study investigated the in vitro fermentation characteristics of different structural types of Canna edulis resistant starch (RS). RS3 was prepared through a double enzyme hydrolysis method, and RS4 (OS-starch and cross-linked starch) was prepared using octenyl succinic anhydride and sodium trimetaphosphate/sodium tripolyphosphate, respectively. The RS3 and RS4 samples were structurally analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction analysis. This was followed by in vitro fermentation experiments. The results revealed microstructure differences in the two groups of starch samples. Compared to native starch, RS3 and RS4 exhibited a lower degree of order and endothermic energy, with lower crystallinity (RS3: 29.59 ± 1.11 %; RS4 [OS-starch]: 28.01 ± 1.32 %; RS4 [cross-linked starch]: 30.44 ± 1.73 %) than that in native starch (36.29 ± 0.89 %). The RS content was higher in RS3 (63.40 ± 2.85 %) and RS4 (OS-starch: 71.21 ± 1.28 %; cross-linked starch: 74.33 ± 0.643 %) than in native starch (57.71 ± 2.95 %). RS3 and RS4 exhibited slow fermentation rates, promoting the production of short-chain fatty acids. RS3 and cross-linked starch significantly increased the production of acetate and butyrate. Moreover, RS3 significantly promoted the abundance of Lactobacillus, while OS-starch and cross-linked starch significantly enhanced the abundance of Dorea and Coprococcus, respectively. Hence, the morphological structure and RS content of the samples greatly influenced the fermentation rate. Moreover, the different varieties of RS induced specific gut microbial regulation. Hence, they show potential applications in functional foods for tailored gut microbiota management.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China; School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
12
|
Zuo R, Kong X, Wang Y, He Y, Deng S, Zhuang X, Qiu D. Isolation and characterization of natural nano starch from amaranth starch. Int J Biol Macromol 2024; 260:129525. [PMID: 38237832 DOI: 10.1016/j.ijbiomac.2024.129525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Nano starch exhibits many advantages for application in diverse fields. Amaranth starch consisted of starch particle aggregates, isolated amaranth starch, and few natural nano starch (NNS), while NNS (0.92 ± 0.12 μm) was successfully isolated for the first time. Compared with the isolated amaranth starch, NNS showed smaller particle size but larger molecular weight, suggesting that the molecules arranged densely. NNS had a weak A-type crystal structure because of its more content of short starch chains, but higher amylose content resulted in the increase of its gelatinization temperature. The special NNS, owning several different physicochemical properties from amaranth starch, can open new ways for the production and application of nano biomass materials.
Collapse
Affiliation(s)
- Raozhen Zuo
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xiangli Kong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajuan Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; Zhejiang Institute of Tianjin University, Zhejiang, Ningbo 315201, China
| | - Yan He
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xuechen Zhuang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China.
| | - Dan Qiu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; Zhejiang Institute of Tianjin University, Zhejiang, Ningbo 315201, China.
| |
Collapse
|
13
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
14
|
Maleki S, Razavi SH, Yadav H, Letizia Manca M. New horizon to the world of gut microbiome: seeds germination. Crit Rev Food Sci Nutr 2024; 65:1773-1791. [PMID: 38227048 DOI: 10.1080/10408398.2023.2300703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The second brain of humans has been known as the microbiome. The microbiome is a dynamic network composed of commensal bacteria, archaea, viruses, and fungi colonized in the human gastrointestinal tract. They play a vital role in human health by metabolizing components, maturation of the immune system, and taking part in the treatment of various diseases. Two important factors that can affect the gut microbiome's composition and/or function are the food matrix and methods of food processing. Based on scientific research, the consumption of whole grains can make positive changes in the gut microbiota. Seeds contain different microbiota-accessible substrates that can resist digestion in the upper gastrointestinal tract. Seed germination is one of the simplest and newest food processing approaches to improve seeds' bioavailability and overall nutritional value. During germination, the dormant hydrolytic seed's enzymes have been activated and then metabolize the macromolecules. The quality and quantity of bioactive compounds like prebiotics, fiber, phenolic compounds (PC), total free amino acids, and γ-aminobutyric acid (GABA) can increase even up to 4-10 folds in some cases. These components stimulate the survival and growth of healthful bacteria like probiotics and boost their activity. This effect depends on several parameters, e.g., germination environmental conditions. This review aims to provide up-to-date and latest research about promoting bioactive components during seed germination and investigating their impacts on gut microbiota to understand the possible direct and indirect effects of seed germination on the microbiome and human health.
Collapse
Affiliation(s)
- Sima Maleki
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, and Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Li S, Meng Y, Wang C, Suonan Z, Zhang X, Wu T, Dai Z, Zhang Y, Sharafeldin S, Zhang Y, Shen Q, Xue Y. Effect of structural characteristics of resistant starch prepared by various methods on microbial community and fermentative products. Int J Biol Macromol 2024; 254:127725. [PMID: 38287585 DOI: 10.1016/j.ijbiomac.2023.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.
Collapse
Affiliation(s)
- Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chao Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xinyu Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Tong Wu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Sameh Sharafeldin
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Yumei Zhang
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
16
|
Wang Q, Wu Y, Ge J, Xu X, Lei X, Wang J, Wan C, Wang P, Gao X, Gao J. Soil enzyme activities, physiological indicators, agronomic traits and yield of common buckwheat under herbicide combined with safeners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166261. [PMID: 37579798 DOI: 10.1016/j.scitotenv.2023.166261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In the pursuit of green agricultural development, alleviating the harmful effects of herbicides is critical. Herbicide safeners have been identified as an effective solution to safeguard crops without compromising the herbicidal efficacy. However, the impact of combined applications of herbicide and safeners on the physiological characteristics, growth, yield of common buckwheat, and soil enzyme activities remains unclear. Therefore, a two-year (2021 and 2022) field experiment was conducted in the Loess Plateau region of Northwest China under seven treatments: herbicide metolachlor application alone (H1); herbicide metolachlor combined with gibberellin (H1S1); herbicide metolachlor combined with brassinolide (H1S2); herbicide metolachlor combined with naian (H1S3); herbicide metolachlor combined with jiecaotong (H1S4); manual weeding (CK1) and spraying the same volume of water (CK2). The results indicated that H1S3 minimized herbicide toxicity while sustaining the herbicide control efficacy. H1S2 treatment significantly increased the chlorophyll content (SPAD value), superoxide dismutase (SOD), peroxidase (POD) activities, and decreased the malondialdehyde (MDA) content of the leaves compared to H1 treatment. Additionally, the safeners helped restore the biochemical homeostasis of the soil by preventing the inhibition of invertase and urease activities and increasing soil catalase activity. Furthermore, H1S2 promotion of dry matter accumulation, alleviation of herbicide inhibition on plant height, stem diameter, grainnumber per plant and thousand-grain weight resulted in a significant increase in grain yield (14.36 % in 2021 and 27.78 % in 2022) compared to other safener treatments. Overall, this study demonstrates that brassinolide as a safener can effectively mitigate the negative effects of herbicide on the growth and development of common buckwheat while also improving grain yield. These findings provide valuable technical guidance for sustainable and intensive production of common buckwheat in the Loess Plateau of Northwest China.
Collapse
Affiliation(s)
- Qi Wang
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Yixin Wu
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jiahao Ge
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Xiaoying Xu
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Xinhui Lei
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jiale Wang
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Chenxi Wan
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Pengke Wang
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Xiaoli Gao
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy/State Key Laboratory of Crop, China; Stress Biology for Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
17
|
Chen R, Zhang C, Xu F, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis reveals gut microbiome and functional pathway alterations in response to resistant starch. Food Funct 2023. [PMID: 37194392 DOI: 10.1039/d3fo00845b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistant starch (RS) has the ability to improve the structure of the gut microbiota, regulate glucolipid metabolism and maintain the health of the human body, and has been extensively studied by many scholars in recent years. However, previous studies have provided a wide range of results on the differences in the gut microbiota after RS intake. In this article, we performed a meta-analysis of a total of 955 samples of 248 individuals from the seven studies included to compare the gut microbiota of the baseline and the end-point of RS intake. At the end-point, RS intake was related to a lower gut microbial α-diversity and higher relative abundance of Ruminococcus, Agathobacter, Faecalibacterium and Bifidobacterium, and the functional pathways of the gut microbiota related to the carbohydrate metabolism, lipid metabolism, amino acid metabolism and genetic information processing were higher. Different types of resistant starch and different populations led to varied responses on the gut microbiome. The altered gut microbiome may contribute to improve the blood glucose level and insulin resistance, which may be a potential treatment route for diabetes, obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Ruimin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fusheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
18
|
Effect of resistant starch types as a prebiotic. Appl Microbiol Biotechnol 2023; 107:491-515. [PMID: 36512032 DOI: 10.1007/s00253-022-12325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since the role of intestinal microbiota in metabolism was understood, the importance of dietary components such as fibres and prebiotics, which affect the modulation of microbiota, has been increasing day by day. While all prebiotic components are considered dietary fibre, not every dietary fibre is considered a prebiotic. While fructooligosaccharides, galactooligosaccharides, inulin, and galactans are considered prebiotics, other fermentable carbohydrates are considered candidate prebiotic components based on in vitro and preclinical studies. Resistant starch, one of such carbohydrates, is considered a potential prebiotic component when it is made resistant to digestion naturally or chemically. In this review, both in vitro and in vivo studies in which the prebiotic capacity of type II, type III, and type IV resistant starch isolated from food and produced commercially was assessed were analyzed. According to the results of current studies, certain types of resistant starch are thought to have a high prebiotic capacity, and they may be candidate prebiotic components although positive results have not been achieved in all studies. KEY POINTS: • Resistant starch is undigested in the small intestine and is fermented in the large intestine. • Resistant starch fermentation positively affects the growth of Bifidobacterium and Lactobacillus. • Resistant starch can be considered a prebiotic ingredient.
Collapse
|
19
|
Wang C, Tian X, Zhang X, Zhang Z, Zhang X, Zeng X. Physicochemical Characterizations, Digestibility, and Lipolysis Inhibitory Effects of Highland Barley Resistant Starches Prepared by Physical and Enzymatic Methods. Molecules 2023; 28:molecules28031065. [PMID: 36770733 PMCID: PMC9920265 DOI: 10.3390/molecules28031065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the differences in the physicochemical and structural characteristics, digestibility, and lipolysis inhibitory potential in vitro of highland barley resistant starches (HBRSs) prepared by autoclaving (HBSA), microwave-assisted autoclaving (HBSM), isoamylase (HBSI) and pullulanase (HBSP) debranching modifications. Results revealed that the resistant starch content of native starch was significantly elevated after modifications. HBSA and HBSM showed distinctly higher swelling power and water-binding capacities along with lower amylose amounts and solubilities than those of HBSI and HBSP (p < 0.05). Fourier transform infrared spectroscopy and X-ray diffraction exhibited that HBSP displayed the highest degree of the ordered crystalline region and crystallinity with a mixture of CB- and V-type polymorphs. Meanwhile, HBSA and HBSM were characterized by their high degree of the amorphous region with a mixture of B- and V-type polymorphs. Physical and enzymatic modifications resulted in different functionalities of HBRSs, among which HBSP showed the lowest digestibility and HBSM exhibited the highest inhibitory activity on lipolysis due to their structure and structure-based morphology and particle size. This study provided significant insights into the development of native starch from highland barley as an alternative functional food.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.W.); (X.Z.); Tel.: +86-25-8439-6791 (X.Z.)
| | - Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.W.); (X.Z.); Tel.: +86-25-8439-6791 (X.Z.)
| |
Collapse
|
20
|
Zou X, Cai J, Xiao J, Zhang M, Jia X, Dong L, Hu K, Yi Y, Zhang R, Huang F. Purification, Characterization and Bioactivity of Different Molecular-Weight Fractions of Polysaccharide Extracted from Litchi Pulp. Foods 2023; 12:194. [PMID: 36613408 PMCID: PMC9818915 DOI: 10.3390/foods12010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Litchi polysaccharides are a kind of macromolecular polymers with various biological activities and a wide range of molecular weights. In this study, two separate fractions, with average molecular weights of 378.67 kDa (67.33%) and 16.96 kDa (6.95%), which were referred to as LP1 and LP2, respectively, were separated using an ultrafiltration membrane. Their physicochemical properties, and immunomodulatory and prebiotic activity were compared. The results revealed that LP2 contained more neutral sugar, arabinose, galactose and rhamnose, but less uronic acid, protein, mannose and glucose than LP1. Compared with LP1, LP2 possessed higher solubility and lower apparent viscosity. LP2 exhibited stronger stimulation on macrophage secretion of NO, TNF-α and IL-6, as well as better proliferation of Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus casei and Bifidobacterium adolescentis. These results suggest that an ultrafiltration membrane might be used to prepare a highly-active polysaccharide fraction from litchi pulp that may be used for food or drug development.
Collapse
Affiliation(s)
- Xiaoqin Zou
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaxin Cai
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaxi Xiao
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingwei Zhang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuchao Jia
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lihong Dong
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yang Yi
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ruifen Zhang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fei Huang
- Guangdong Key Laboratory of Agricultural Products Processing, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
CARDOSO IG, ABRANCHES MV, SILVA MCR, CUSTÓDIO FB, PEREIRA IA, FINGER RM, BARROS LBD, SANTOS BDNCD, MATA GMSC. Unripe banana biomass as a dairy fat partial replacer in vanilla homemade ice cream. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.41722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. Int J Biol Macromol 2022; 223:663-672. [PMID: 36368360 DOI: 10.1016/j.ijbiomac.2022.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Zizyphus jujube polysaccharide was extracted with hot water, ultrahigh pressure, deep eutectic solvent (DES) and ultrahigh pressure-assisted DES. Comparative analyses were conducted on the yield, physicochemical properties and prebiotic activity of four polysaccharides (JP-H, JP-U, JP-D and JP-UD). The yield of JP-UD (10.42 %) was 3.3 times that of JP-H (3.12 %), and its sugar content was the highest. JP-UD possessed the lowest Mw, while JP-H possessed the highest. Four JPs were acidic pyranose and mainly composed of galacturonic acid, arabinose and galactose. NMR results demonstrated that they contained not only similar glycosidic linkage but also the specific glycosidic linkage of →4)-α-D-Glcp-(l→ appeared in JP-U and JP-UD, the esterified units of GalA and CONH2 group appeared in JP-D and JP-UD, and the Terminal β-D-Galp and →4)-α-GalpA-(1→ appeared in JP-UD. JPs showed different proliferation effects on four lactobacillus strains, among which JP-UD exhibited the strongest prebiotic activity. Zizyphus jujube polysaccharides have great potential for application in the functional food and medical industry.
Collapse
|
23
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
24
|
Asymmetrical flow field-flow fractionation combined with liquid chromatography enables rapid, quantitative, and structurally informative detection of resistant starch. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Chavez-Esquivel G, Cervantes-Cuevas H, Vera-Ramírez MA. Effect of dual modification with citric acid combined with ultrasonication on hydrolysis kinetics, morphology and structure of corn starch dispersions. Int J Biol Macromol 2022; 222:1688-1699. [PMID: 36179871 DOI: 10.1016/j.ijbiomac.2022.09.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
Corn starch dispersions (CSD) were hydrolyzed with citric acid and compared with CSD co-treated with citric acid combined with ultrasonication for 1 to 18 days, which are designated as single modification (CSD-SM) and dual modification (CSD-DM), respectively. The logistic functions monitor the dynamics of the hydrolysis advance (%) of the CSD-SM and CSD-DM as a function of time, where the zones most vulnerable to the single-treatment and/or co-treatment of the corn starch granules (CSG) are the amorphous or disordered regions. The characterization results of CSD-DM suggest that the structural changes caused by dual modification affected the morphology, sequence, and microstructure of the CSG. The heterogeneous changes caused by the dual modification changed the configuration of the CSG, generating a kind of destemming of the amorphous lamellae (depolymerization), an increase in the percentage of relative crystallinity of the CSD-DM and an active rearrangement of the intralamellar chains that promoted the relative amount of double helix for 18 days of double modification. The synergistic effect of the dual modification for CSD by the sequential combination of a chemical treatment followed by a physical one improved the hydrolyzed advance by 12 %, the relative crystallinity by 10 %, and the promotion of double helices by 25 % during 18 days of co-treatment.
Collapse
Affiliation(s)
- G Chavez-Esquivel
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Colonia Reynosa Tamaulipas, Azcapotzalco, Ciudad de México, 02200, Mexico.
| | - H Cervantes-Cuevas
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Colonia Reynosa Tamaulipas, Azcapotzalco, Ciudad de México, 02200, Mexico
| | - M A Vera-Ramírez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Colonia Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09340, Mexico
| |
Collapse
|
26
|
Wang L, Li X, Gao F, Liu S, Wu Y, Liu Y, Zhang D. Effects of Jet Milling Pretreatment and Esterification with Octenyl Succinic Anhydride on Physicochemical Properties of Corn Starch. Foods 2022; 11:foods11182893. [PMID: 36141021 PMCID: PMC9498493 DOI: 10.3390/foods11182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: In this study, aiming at the problems of low efficiency and high energy consumption in the esterification reaction of OSA and starch, the jet milling technology was used to pretreat corn starch and starch raw materials with different pulverization strengths were obtained by controlling the speed of the classifier. (2) Methods: The starch obtained under different classification speeds was modified by esterification with OSA. Using CLSM, FTIR, XRD, NMR, FTIR, XPS, and other technologies, the modification effect was verified, and the physical and chemical properties of J-OSA-Starch such as DSC, RVA, transparency, and emulsifying properties were determined. (3) Results: Jet milling pretreatment significantly reduced the particle size of corn starch and improved the reaction efficiency and degree of substitution during esterification with OSA. After pretreatment, the corn starch granules were broken, and the relative crystallinity was significantly reduced. CLSM, FTIR, XPS, and NMR confirmed the esterification of corn starch with OSA, which increased with increasing crushing strength. The thermodynamic properties and viscosity of J-OSA-starch decreased with the increase in the classification speed. Jet milling pretreatment enhanced the clarity, emulsifying activity, and emulsifying stability of OSA-modified corn starch. (4) Conclusions: Jet milling pretreatment can effectively increase the esterification efficiency of starch and OSA. Therefore, jet milling can be used as a pretreatment to improve the esterification of starch OSA and produce modified starch for industrial applications.
Collapse
Affiliation(s)
- Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoqiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Fei Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shilin Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ying Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: ; Tel.: +86-459-681-9006
| |
Collapse
|
27
|
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Resistant starches and gut microbiota. Food Chem 2022; 387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
|
28
|
Wei Z, Ou Y, Wang J, Zheng B. Structure-digestibility relationships in the effect of fucoidan on A- and B-wheat starch. Int J Biol Macromol 2022; 215:235-242. [PMID: 35728635 DOI: 10.1016/j.ijbiomac.2022.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Fucoidans (FC) have a variety of biological activities, and it can also affect the functionality and nutritional characteristics of starch-based food products. However, there are few studies on the structural and digestive properties of starch - fucoidans blends. The effect of FC at different concentrations (0, 0.6 %, 0.8 %, 1.0 %, w/v) on the structural properties and digestibility properties of A-type wheat starch (AS) and B-type wheat starch (BS) subjected to autoclave treatment were investigated. The results show that compared with native wheat starch, AS with FC displayed higher crystallinity as well as the structural ordering, but the crystallinity and degree of order of BS with FC decreased, which was proposed due to AS interact with FC in crystalline region but BS reacts with FC in the amorphous region. With the interaction of FC with AS and BS, granules compactness of AS and BS were enhanced. The addition of FC delayed digestion in vitro of AS and BS, the rapidly digestible starch content was obviously lower than native one, and the proportion of slowly digestible starch raise markedly. This study might broaden the recognition of wheat starch with different proportion of AS and BS, and provide a theoretical basis for the potential utilization of FC in carbohydrate based food industry.
Collapse
Affiliation(s)
- Zhixi Wei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Properties of butyrylated lotus seed starch with butyryl groups at different carbon positions. Carbohydr Polym 2022; 294:119766. [DOI: 10.1016/j.carbpol.2022.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
|
30
|
Liu J, Liu F, Arıoğlu‐Tuncil S, Xie Z, Fu X, Huang Q, Zhang B. In vitro
faecal fermentation outcomes and microbiota shifts of resistant starch spherulites. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Feitong Liu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Seda Arıoğlu‐Tuncil
- Department of Nutrition and Dietetics Faculty of Health Sciences Necmettin Erbakan University Konya 42090 Turkey
| | - Zhuqing Xie
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Department of Food Science University of Copenhagen Frederiksberg DK‐1958 Denmark
| | - Xiong Fu
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Qiang Huang
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Bin Zhang
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| |
Collapse
|
31
|
Rearranged supramolecular structure of resistant starch with polymorphic microcrystals prepared in high-solid enzymatic system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Wang Z, Lin Y, Liu L, Zheng B, Zhang Y, Zeng H. Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1525-1535. [PMID: 34989559 DOI: 10.1021/acs.jafc.1c06000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim was to investigate the effect of lotus seed resistant starch (LRS) on lactic acid (LA) conversion to butyric acid (BA) fermented by rat fecal microbiota to construct an acetyl CoA pathway. According to growth curves, the microbiota compositions at 10 and 36 h were further analyzed. The microbiota in the LRS group had higher richness and diversity compared to glucose (GLU) and high amylose maize starch (HAMS). Moreover, LRS and isotope LA promoted the growth of Lactobacillus and Bifidobacterium, promoted BA production, and inhibited the growth of Escherichia-Shigella. The BUT pathway played a dominant role in three groups. At 10 h, Escherichia-Shigella and Bifidobacterium showed a negative correlation with BUT and a positive correlation with BUK, whereas Escherichia-Shigella, Allobaculum, Bifidobacterium, and Ralstonia showed a positive correlation with BUT and BUK at 36 h. [3-13C] LA was converted to [4-13C] BA by the isotope labeling technique. Finally, LRS promoted LA conversion to BA mainly by the BUT pathway in intestinal microbiota, especially including Allobaculum, Bifidobacterium, and Ralstonia.
Collapse
Affiliation(s)
- Zhiyun Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Insights into the formation and digestive properties of lotus seed starch-glycerin monostearate complexes formed by freeze-thaw pretreatment and microfluidization. Int J Biol Macromol 2022; 204:215-223. [PMID: 35104470 DOI: 10.1016/j.ijbiomac.2022.01.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
The objective of this paper was to investigate the formation and digestive properties of lotus seed starch-glycerin monostearate complexes (LSG) formed by freeze-thaw pretreatment and microfluidization. The results showed that the preparation of LSG with six freeze-thaw cycles at 60 MPa had the highest complex index (69.92%). The formation of LSG led to the conversion of the crystalline pattern of lotus seed starch from C-type to V-type and increased the proportion of the microcrystalline region. In addition, the digestive results indicated that LSG had a high resistance to digestive enzymes, which was conducive to increasing the content of resistant starch. Based on the above investigation, the formation and digestive properties showed that the appropriate number of freeze-thaw cycles of pretreatment could facilitate the complexation of starch and lipid under low-pressure microfluidization, which made for the directional regulation of helical conformation and anti-digestion.
Collapse
|
34
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Xu E, Ma S, Wu Z, Wang W, Zhang X, Tian J, Li D, Zhou J, Liu D. Bifunctional Fe 3O 4 nanoparticles as magnet and inducer in bioextruded fabrication of starch-based composite with hierarchical pore architecture. Int J Biol Macromol 2021; 190:876-886. [PMID: 34534582 DOI: 10.1016/j.ijbiomac.2021.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Starch (St) was used as green and renewable matrix (> 80%, db) for the preparation of Zn-St-MOCP/nFe3O4 composite via bioextrusion. Bifunction of Fe3O4 NPs as magnet and pore-inducer was confirmed and could be more homogeneously embedded in the St-based framework with hierarchical porous structure via SEM-EDS mapping. For the nFe3O4-induced microstructure of Zn-St-MOCP/nFe3O4 composite, submicronic pores and nanopores were observed with Fe3O4 NPs onto the inner surface of micron channels. According to the XPS, XRD, FTIR, TGA analyses, it is probably due to the coordination between Fe3+/2+ and Zn2+/hydroxy groups and the recombination of St chains in crystalline/amorphous zones interfered by Fe3O4 NPs. Saturation magnetization value was measured with an excellent separation behavior. Seven kinetic equations were conducted for the fitting of dye adsorption data. Overall, the nFe3O4-assisted bioextrusion strategy is developed for the continuous fabrication of bio-based materials with rapid magnetic separation and hierarchical-pore architecture promising in practical adsorption.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shuohan Ma
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwei Zhou
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
37
|
Li X, Lei S, Liu L, Zhang Y, Zheng B, Zeng H. Synergistic effect of lotus seed resistant starch and short-chain fatty acids on mice fecal microbiota in vitro. Int J Biol Macromol 2021; 183:2272-2281. [PMID: 34097970 DOI: 10.1016/j.ijbiomac.2021.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the synergistic effect of lotus seed resistant starch (LRS) and short-chain fatty acids (SCFAs) on mice fecal bacterial flora and the contents of SCFAs in vitro. Following 24 h of fermentation, 16S rRNA analysis revealed several differences in the fecal microbiota community structure among primal bacteria (PB), LRS and different SCFAs combined with LRS groups (SCFAs-LRS). The LRS group increased the relative abundance of Lactobacillus, Allobaculum, Clostridium, Bacteroides and Prevotella. Among the SCFAs-LRS group, AA-LRS increased the relative abundance of Prevotella, and Bacillus. PA-LRS increased abundance of Sphingomonas and the BA-LRS group significantly increased the relative abundance of Rhizobiales, Brucellaceae and Ochrobactrum. Meanwhile, propionic acid and BA productions significantly increased in the BA-LRS group. The SCFAs-LRS group elicited a beneficial effect on the fecal microbiota by increasing production of SCFAs. We highlight the fact that the combination of LRS and SCFA can increase the contents of SCFAs produced by mice fecal microbiota. In short, the combination of LRS and SCFA can influence intestinal flora by promoting the growth of beneficial bacteria and can serve as new prebiotics for promoting health and disease management.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Zhang C, Qiu M, Wang T, Luo L, Xu W, Wu J, Zhao F, Liu K, Zhang Y, Wang X. Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chem 2021; 351:129340. [PMID: 33662904 DOI: 10.1016/j.foodchem.2021.129340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Type 3 resistant starch (RS3) was developed from Canna edulis (Ce) native starch (NS) through dual enzymatic hydrolysis and recrystallization. Thereafter, the processed Ce-RS3 was subjected to systematic characterizations for its structural properties, anti-hyperlipidemic effect, and in vivo gut microbiota modulatory function. The Ce-RS3 content was increased to 49.11% after processing under optimal conditions. Compared with NS, Ce-RS3 maintained its B-type crystallization without introducing new chemical groups. Meanwhile, it displayed coarse surfaces, higher crystallinity, more ordered structures, and a higher proportion of chains with degree of polymerization (DP) 37-100. Ce-RS3 intervention significantly alleviated dyslipidemia in hyperlipidemic mice, which was associated with increased gut microbial diversity and unique microbial enrichment, potentially mediated by its fine structure. These observations are valuable for developing RS3 from C. edulis for prebiotics applications and support the potential strategy that utilizes well-designed RS to modulate specific bacterial populations to improve health.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China; College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing 100023, China
| | - Minyi Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Pharmacy Department, Peking University People's Hospital, No. 11, Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China
| | - Linglong Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Fangyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Kaiyang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing 100023, China.
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China.
| |
Collapse
|
39
|
Chang Q, Zheng B, Zhang Y, Zeng H. A comprehensive review of the factors influencing the formation of retrograded starch. Int J Biol Macromol 2021; 186:163-173. [PMID: 34246668 DOI: 10.1016/j.ijbiomac.2021.07.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
The retrogradation of starch is an inevitable change that occurs in starchy food during processing and storage, in which gelatinized starch rearranges into an ordered state. The chain length, proportion and structure of amylose and amylopectin vary in different types of starch granules, and the process is affected by the genes and growth environment of plants. The internal factors play a significant role in the formation of retrograded starch, while the external factors have a direct impact on its structural rearrangement, and the creation of suitable conditions enables food components to affect the rearrangement of starch. Interestingly, water not only directly affects the gelatinization and retrogradation of starch, but also serves as a bridge to deliver the influence of other components that influence retrogradation. Moreover, there are three mechanisms responsible for forming retrograded starch: the migration of starch molecular chains in the starch-water mixed system, the redistribution of water molecules, and the recrystallization kinetics of gelatinized starch. In this paper, the effects of internal factors (amylose, amylopectin, food ingredients) and external factors (processing conditions) on the formation of retrograded starch and the mechanism controlling these effects are reviewed.
Collapse
Affiliation(s)
- Qing Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules 2021; 11:biom11071000. [PMID: 34356624 PMCID: PMC8301955 DOI: 10.3390/biom11071000] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The brain–gut–microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.
Collapse
|
41
|
Li X, Zhang X, Yang W, Guo L, Huang L, Li X, Gao W. Preparation and characterization of native and autoclaving-cooling treated Pinellia ternate starch and its impact on gut microbiota. Int J Biol Macromol 2021; 182:1351-1361. [PMID: 34000312 DOI: 10.1016/j.ijbiomac.2021.05.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate and compare the structural and physicochemical properties of native Banxia starch (BXS) and autoclaving-cooling treated Banxia starch (CTBXS) and its related impacts on production of short chain fatty acids (SCFAs) and human gut microbiota by in vitro fecal fermentation. BXS had semicircle to spherical granules, whereas CTBXS exhibited block-shape. According to XRD and TGA, BXS had a C-type crystalline pattern, while CTBXS had a B-type crystalline pattern. CTBXS had better thermal stability than BXS. In addition, BXS exhibited significantly higher solubility and swelling power than CTBXS, and CTBXS had higher content of SDS than BXS. Moreover, BXS and CTBXS could change the composition and abundance of gut microbiota, could also promote the production of SCFAs. This study is beneficial to well understand the in vitro digestion and fecal fermentation behaviors of BXS and CTBXS, and can be developed as a potential functional food with the aim of improving colonic health.
Collapse
Affiliation(s)
- Xinyang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
42
|
Tu D, Ou Y, Zheng Y, Zhang Y, Zheng B, Zeng H. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Int J Biol Macromol 2021; 177:447-454. [PMID: 33636260 DOI: 10.1016/j.ijbiomac.2021.02.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
The effects of multiple cycles of freeze-thaw treatment, combined with pullulanase debranching, on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes were investigated. The formation and melting of ice crystals during freeze-thaw treatment disrupted the crystalline structure of the starch granules, creating pores which facilitated access of pullulanase to the interior of the granules. Pullulanase debranching increased the free amylose content of the starch, which promoted the formation of starch-lipid complexes, which, in turn, increased the proportion of resistant starch and the overall resistance of the starch to digestive enzyme action. These effects increased with the number of freeze-thaw cycles, because more cycles increased both the disruption of the granule structure and the extent of pullulanase debranching. These findings provide a basis for the preparation of functional foods with low glycemic indices, which have strong potential for management of type II diabetes.
Collapse
Affiliation(s)
- Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, Steinert RE, Swanson KS, van Sinderen D, Vulevic J, Gibson GR. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol 2021; 29:667-685. [PMID: 33551269 DOI: 10.1016/j.tim.2021.01.003] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Recent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change. In this review we examine recent, emerging, and anticipated trends in probiotic and prebiotic science, and create a vision for broad areas of developing influence in the field.
Collapse
Affiliation(s)
- Marla Cunningham
- Department of Science and Innovation, Metagenics, PO Box 675, Virginia BC, QLD, 4014, Australia.
| | - M Andrea Azcarate-Peril
- UNC Departments of Medicine and Nutrition, Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | | | - Valerie Benoit
- Bell Institute of Health and Nutrition, General Mills, Minneapolis, MN, USA
| | | | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kirsty Hunter
- Department of Sport Science, Nottingham Trent University, UK
| | - Sarmauli Manurung
- Emerging Sciences Research, Reckitt Benckiser, Nijmegen, The Netherlands
| | - David Obis
- Danone Nutricia Research, Palaiseau Cedex, France
| | | | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douwe van Sinderen
- Microbiology BioSciences Institute, University College Cork, Cork, Ireland
| | - Jelena Vulevic
- veMico Ltd, Reading, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
44
|
Zheng Y, Ou Y, Zhang C, Zhang Y, Zheng B, Zeng S, Zeng H. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. Int J Biol Macromol 2021; 175:49-57. [PMID: 33524480 DOI: 10.1016/j.ijbiomac.2021.01.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of exogenous V-type starch on the structural properties and dispersion stability of lotus seed starch after autoclave treatment, the crystal structure, molecular structure, and dispersion stability were analyzed and discussed, as well as compared with exogenous A-type and B-type starches. Analysis of structural properties indicated that the addition of different crystal nuclei led the crystallization of disordered helices to a specific direction. The B- and V-type starch addition increased the crystallinities of starch and enhanced the ordered arrangement of disordered helices, whereas A-type starch had no significant positive influence on the stability of starch system. The microstructure observation showed that A- and B-type starch addition led to a rough and porous morphology of starch particles; the presence of V-type starch retarded the agglomeration and retrogradation of starch after autoclaving. Analysis of contact angle and dispersion stability revealed that the addition of various exogenous starch increased the contact angle of starch particles in different extent, suggesting the enhancement of hydrophobicity. But B-type starch addition resulted in the poor dispersion stability compared to A-type starch, instead V-type starch addition improved the dispersion stability of starch in aqueous solution, allowing the particles to stay dispersed for 141.12 ± 6.52 min. These results provided a theoretical basis for the effects of exogenous type starch on original starch properties, and revealed the potential of V-type starch as dispersion stabilizer.
Collapse
Affiliation(s)
- Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
45
|
Ou Y, Zheng Y, Zhang Y, Zeng S, Zheng B, Zeng H. Effects of exogenous V-type complexes on the structural properties and digestibility of autoclaved lotus seed starch after retrogradation. Int J Biol Macromol 2020; 165:231-238. [DOI: 10.1016/j.ijbiomac.2020.09.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
|
46
|
Gu F, Li C, Hamaker BR, Gilbert RG, Zhang X. Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. Carbohydr Polym 2020; 243:116475. [DOI: 10.1016/j.carbpol.2020.116475] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
|
47
|
Structural characterization of a novel galactoglucan from Fortunella margarita and its molecular structural change following simulated digestion in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
48
|
Wang L, Liu S, Hou Y, Lang S, Wang C, Zhang D. Changes in particle size, structure, and physicochemical properties of potato starch after jet‐milling treatments. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lidong Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
- Daqing Center of Inspection and Testing for Agricultural Products Ministry of Agriculture Heilongjiang Bayi Agricultural University Daqing China
- Department of National Coarse Cereals Engineering Research Center Heilongjiang Bayi Agricultural University Daqing China
| | - Shilin Liu
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
| | - Yue Hou
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
| | - Shuangjing Lang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology Heilongjiang Bayi Agricultural University Daqing China
| | - Changyuan Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
- Heilongjiang Province Key Laboratory of Grain by‐Products Heilongjiang Bayi Agricultural University Daqing China
| | - Dongjie Zhang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing China
- Daqing Center of Inspection and Testing for Agricultural Products Ministry of Agriculture Heilongjiang Bayi Agricultural University Daqing China
- Department of National Coarse Cereals Engineering Research Center Heilongjiang Bayi Agricultural University Daqing China
| |
Collapse
|
49
|
Zheng Y, Ou Y, Zhang Y, Zheng B, Zeng H, Zeng S. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization. Int J Biol Macromol 2020; 156:196-203. [DOI: 10.1016/j.ijbiomac.2020.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022]
|
50
|
Qin W, Wen C, Zhang J, Dzah CS, Zhang H, He Y, Duan Y. Structural characterization and physicochemical properties of arrowhead resistant starch prepared by different methods. Int J Biol Macromol 2020; 157:96-105. [DOI: 10.1016/j.ijbiomac.2020.04.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|