1
|
Zhou P, Zhang R, Gao Y, Guan J, Chen Z, Zhang Y, Li Y, Zhu G, Wang W, Zhou L, Li J, Wang J, Fang Z. Comparison of the effects of three different fungal laccases on the quality of rye bread. Food Chem 2025; 482:144035. [PMID: 40179564 DOI: 10.1016/j.foodchem.2025.144035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Rye bread is recognized for its high nutritional value but faces challenges such as sticky dough and an inelastic texture. Laccase, a green biological enzyme, can modify the key components of wheat and gluten-free flour products, showing promise in improving their quality. However, the use of fungal laccase on rye bread has not yet been explored, and the potential effects of different sources of fungal laccase on improving rye bread quality remain unexamined. This study comprehensively analyzed the effects of three fungal laccases on rye bread using multidimensional evaluation methods. The results indicated that each laccase had distinct effects on dough properties, with the acid laccase rLacA showing the most significant impact. This research confirmed the role of fungal laccase in enhancing the quality of rye bread and effectively evaluated the mechanisms of different fungal laccases. Additionally, it provided a foundation for developing new combinations to improve rye bakery products.
Collapse
Affiliation(s)
- Peng Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Ran Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Yuan Gao
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Jiaxin Guan
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Zifan Chen
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Ying Li
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Guilan Zhu
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China
| | - Lulu Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China
| | - Jun Li
- Great-Lab Biotechnology (Shenzhen) Co., Ltd, PR China
| | - Jingjing Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230061, Anhui, PR China; School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China.
| | - Zemin Fang
- School of Life Science, Anhui University, Jiulong Road 111, Hefei 230601, Anhui, PR China.
| |
Collapse
|
2
|
Gu J, Pan MH, Chiou YS, Wei S, Ding B. Enhanced stability of Pickering emulsions through co-stabilization with nanoliposomes and thermally denatured ovalbumin. Int J Biol Macromol 2024; 278:134561. [PMID: 39127283 DOI: 10.1016/j.ijbiomac.2024.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Pickering emulsions were co-stabilized by nanoliposome (NL) and thermally denatured ovalbumin (DOVA) based on the induction of OVA with strong particle characteristics through thermal denaturation. DOVA-NL particles were spherical and their sizes were mainly distributed between 50 and 100 nm. The surface tension and interfacial tension of DOVA-NL were significantly reduced, and the surface hydrophobicity, amphiphilicity and free -SH content of DOVA were enhanced after complexation with NL. The content of α-helix and β-sheet in DOVA decreased, whereas the content of β-turn and random coil increased after complexation with NL. Hydrophobic interactions, hydrogen bonding and electrostatic forces played a vital role in the interactions between NL and DOVA, leading to conformational changes in DOVA. The number of binding sites between NL and DOVA was more than one, and the interaction between NL and DOVA was exothermic and spontaneous. The emulsification index showed that DOVA-NL-stabilized Pickering emulsions (DNPE) were significantly more stable than DOVA-stabilized emulsions. DOVA-NL particles adsorbed at the oil-water interface and the droplet size of DNPE was smaller than that of DOVA-stabilized emulsions. This study suggests that it may be an effective strategy to improve the stability of Pickering emulsions through co-stabilization with NL and DOVA.
Collapse
Affiliation(s)
- Jinhui Gu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
3
|
Abker AM, Xia Z, Hu G, Fu X, Zhang Y, Jin Y, Ma M, Fu X. Using salted egg white in steamed bread: Impact on functional and structural characteristics. Food Chem 2024; 454:139609. [PMID: 38795615 DOI: 10.1016/j.foodchem.2024.139609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.
Collapse
Affiliation(s)
- Adil M Abker
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiaowen Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Geng S, Wang Y, Liu B. Fabrication, characterization and application of Pickering emulsion gels stabilized by defatted grape seed powder. Food Chem X 2024; 22:101476. [PMID: 38813458 PMCID: PMC11134537 DOI: 10.1016/j.fochx.2024.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The feasibility of defatted grape seed powder (DGSP) stabilizing Pickering emulsion gels as butter substitute was investigated. The Pickering emulsion gel was constructed using DGSP through high-speed homogenization, and the effects of particle concentration (c) and oil-phase (Medium chain triglyceride) volume fraction (φ) on its structure and properties were investigated. Its application as a butter substitute was also evaluated. The results showed that DGSP had various particle shapes, a wide particle size distribution (3-130 μm), and a three-phase contact angle of 128.9 ± 2.3°. The O/W Pickering emulsion gels with φ ≥ 60% could be obtained at c ≥ 2%. The droplet diameter was negatively correlated with c and positively correlated with φ, while the gel strength was positively related to c and φ. The resulting emulsion gel demonstrated solid-like viscoelastic behavior and pseudoplasticity, and had the potential to serve as a butter substitute. The results can promote the application of grape seeds in food.
Collapse
Affiliation(s)
- Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuxiang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
5
|
Mengozzi A, Chiavaro E, Barbanti D, Bot F. Heat-Induced Gelation of Chickpea and Faba Bean Flour Ingredients. Gels 2024; 10:309. [PMID: 38786226 PMCID: PMC11121298 DOI: 10.3390/gels10050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to investigate the gelling behavior of faba bean (FB) and chickpea (CP) flour between 10 and 20% (w/w) concentration at pH 3.0, 5.0, and 7.0. Both sources formed at pH 3.0 and 5.0 self-standing gels with 12% (w/w) of flour, while 16% (w/w) of flour was required to obtain a gel at pH 7.0. During gelling between 40 and 70 °C, a sharp increase of the elastic modulus G' was observed in both flours, mainly due to water absorption and swelling of the starch, one of the major constituents in the ingredients. Increasing the temperature at 95 °C, G' increased due to the denaturation of globulins and therefore the exposure of their internal part, which allowed more hydrophobic interactions and the formation of the gel. After cooling, both FB and CP gels displayed a solid-like behavior (tan δ ranging between 0.11 and 0.18) with G' values at pH 3.0 and 5.0 significantly (p < 0.05) higher than those at pH 7.0, due to the lower electrostatic repulsions at pHs far from the isoelectric point. The rheological properties were supported by the water binding capacity values, confirming the better gels' strength described by rheological analysis. These results will enhance our understanding of the role of legume flours in formulating innovative and sustainable food products as alternatives to animal ones.
Collapse
Affiliation(s)
| | | | | | - Francesca Bot
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.M.); (E.C.); (D.B.)
| |
Collapse
|
6
|
He Y, Wang A, Chen Z, Nie M, Xi H, Gong X, Liu L, Wang L, Sun J, Bai Y, Huang Y, Sun P, Wang F, Tong LT. Effects of egg powder on the structure of highland barley dough and the quality of highland barley bread. Int J Biol Macromol 2023; 240:124376. [PMID: 37059285 DOI: 10.1016/j.ijbiomac.2023.124376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
The influences of egg white (EW), egg yolk (EY) and whole egg (WE) on the structure of highland barley dough and the quality of highland barley bread were explored. The results showed that egg powder reduced G' and G" of highland barley dough, which led to the softer texture of dough and endowed bread with a larger specific volume. EW increased the percentage of β-sheet of highland barley dough, EY and WE promoted the transformation from random coil to β-sheet and α-helix. Meanwhile, more disulfide bonds were formed from free sulfhydryl groups in the doughs with EY and WE. These properties of highland barley dough could help highland barley bread develop a preferable appearance and textural feature. It is worth noting that highland barley bread containing EY has more flavorful substances and a better crumb structure, which were similar to that of whole wheat bread. The highland barley bread with EY received a high score according to the sensory evaluation in consumer acceptance.
Collapse
Affiliation(s)
- Yue He
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xue Gong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jing Sun
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yajuan Bai
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Peipei Sun
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
7
|
Manivel P, Marimuthu P, Yu S, Chen X. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. J Chem Inf Model 2022; 62:6133-6147. [PMID: 36398926 DOI: 10.1021/acs.jcim.2c01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.
Collapse
Affiliation(s)
- Perumal Manivel
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL─Biochemistry) and Pharmaceutical Science Laboratory (PSL─Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, TurkuFI-20520, Finland
| | - Sun Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
8
|
Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns. Foods 2022; 11:foods11233833. [PMID: 36496641 PMCID: PMC9736846 DOI: 10.3390/foods11233833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
To advance the industrialization production of steamed buns, the current study explored the freeze-stability of unfermented, pre-fermented and par-steamed frozen dough. The results showed that the steamed bun made from unfermented dough with 2.0% yeast, the pre-fermented dough with a pre-fermented time of 30 min and the par-steamed dough with a pre-steamed time of 15 min showed the best sensory properties quality upon frozen storage. The gassing power of un- and pre-fermented dough gradually decreased, and dough with longer pre-fermented time exhibited more evident loss of gassing power. Freeze-induced depolymerization of gluten protein was the least distinct in the par-steamed dough, followed by the pre- and un-fermented dough, which was probably related to the superior freeze stability of glutenin-gliadin macro-crosslinks upon the pre-steaming stage. The surface hydrophobicity of gluten proteins of frozen dough decreased during the initial storage and was enhanced subsequently, which was related with the combined effects of the unfolding and synchronous aggregation induced by freezing and steaming, respectively. Moreover, the surface hydrophobicity of gluten in par-steamed frozen dough and steamed buns was more resistant to frozen storage, which was probably attributed to the established stable structure during the pre-steaming process.
Collapse
|
9
|
Zhou B, Dai Y, Guo D, Zhang J, Liang H, Li B, Sun J, Wu J. Effect of desalted egg white and gelatin mixture system on frozen dough. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yang J, Chen L, Guo B, Zhang B, Zhang Y, Li M. Elucidation of rheological properties of frozen non-fermented dough with different thawing treatments: The view from protein structure and water mobility. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Effects of Mung Bean ( Vigna radiata) Protein Isolate on Rheological, Textural, and Structural Properties of Native Corn Starch. Polymers (Basel) 2022; 14:polym14153012. [PMID: 35893974 PMCID: PMC9331134 DOI: 10.3390/polym14153012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate (MBPI) on the rheological, textural, and structural properties of native corn starch (NCS) and their possible interactions during gelatinization. The dynamic rheological measurements showed a decrease in the storage modulus (G’) and loss modulus (G”) and an increase in the loss factor (tan δ), by adding MBPI to NCS gels. In addition, the textural properties represented a reduction in firmness after the addition of MBPI. The Scanning electron microscope (SEM) images of the freeze-dried NCS/MBPI gels confirmed that the NCS gel became softer by incorporating the MBPI. Moreover, X-ray diffraction (XRD) patterns showed a peak at 17.4°, and the relative crystallinity decreased with increasing MBPI concentrations. The turbidity determination after 120 h refrigerated storage showed that the addition of MBPI could reduce the retrogradation of NCS gels by interacting with leached amylose. Additionally, the syneresis of NCS/MBPI gels decreased at 14 days of refrigerated storage from 60.53 to 47.87%.
Collapse
|
12
|
Chen L, Zhu M, Hu X, Pan J, Zhang G. Exploring the binding mechanism of ferulic acid and ovalbumin: insights from spectroscopy, molecular docking and dynamics simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3835-3846. [PMID: 34927253 DOI: 10.1002/jsfa.11733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ferulic acid (FA), a phenolic acid widely occurring in nature, has attracted extensive attention because of its biological activity. Ovalbumin (OVA) is a commonly used carrier protein. The mechanism of FA binding with OVA was investigated by utilizing a variety of spectral analyses, accompanied by computer simulation. RESULTS It was discovered that the fluorescence quenching mechanism of OVA by FA was a static mode as a result of the formation of an FA-OVA complex, which was verified by the concentration distributions and pure spectrum of the constituents decomposed from the high overlap spectrum signals using multivariate curve resolution-alternate least squares algorithm. Hydrogen bonds and Van der Waals forces drove the formation of FA-OVA complex with a binding constant of 1.69 × 104 L mol-1 . The presence of FA induced the loose structure of OVA with an attenuation of α-helix content and improved the thermal stability of OVA. Computer docking indicated that FA interacted with the amino acid residues Arg84, Asn88, Leu101 and Ser103 of OVA through hydrogen bonds. Molecular dynamics simulation proved that the combination of FA with OVA boosted the conformational stability of OVA and hydrogen bonds brought a crucial part in stabilizing the structure of the complex. CONCLUSIONS The study may supply the theoretical basis for the design of FA transport system using OVA as carrier protein to improve the instability and low bioavailability of FA. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Wang Q, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. Mechanistic understanding of the effects of ovalbumin-nanoliposome interactions on ovalbumin emulsifying properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
YU Y, LU X, LIU B, WANG Q, SUN B, ZHAO C, GAO F. Functional and structural properties of glycosylation ovalbumin with pectin through wet-heating and ultrasound method. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
16
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chem 2021; 366:130614. [PMID: 34304137 DOI: 10.1016/j.foodchem.2021.130614] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
Understanding how starch constituent in frozen dough affected bread quality would be valuable for contributing to the frozen products with better quality. To elucidate the underlying mechanism, starch was fractionated from multiple freezing-thawing (F/T) treated dough and reconstituted with gluten. Results showed that F/T treatment destructed the molecular and supramolecular structures of starch, which were more severe as the F/T cycle increasing. These structural disorganizations made water molecules easier to permeate into the interior of starch granules and form hydrogen bonds with starch molecular chains, which elevated the peak, breakdown, setback and final viscosity of starch paste. In addition, F/T treatment resulted in decreased specific volume (from 1.54 to 0.90 × 103 m3/Kg) and increased hardness (from 42.98 to 52.31 N) for steamed bread. We propose the strengthened water absorption ability and accelerated intra- and inter-molecular rearrangement of starch molecules and weak stability of "starch-gluten matrices" would allow interpreting deteriorated bread quality.
Collapse
|
18
|
Guyomarc'h F, Arvisenet G, Bouhallab S, Canon F, Deutsch SM, Drigon V, Dupont D, Famelart MH, Garric G, Guédon E, Guyot T, Hiolle M, Jan G, Le Loir Y, Lechevalier V, Nau F, Pezennec S, Thierry A, Valence F, Gagnaire V. Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Effect extraction temperature on the emulsifying properties of gelatin from black tilapia (Oreochromis mossambicus) skin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
|
21
|
Liu X, Yang L, Zhao S, Zhang H. Characterization of the dough rheological and steamed bread fortified with extruded purple sweet potato flour. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1733600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xingli Liu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Longsong Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Shuangli Zhao
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Hua Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| |
Collapse
|
22
|
Sheng L, Tang G, Wang Q, Zou J, Ma M, Huang X. Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the Maillard reaction. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105384] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|