1
|
Román-Camacho JJ, Mauricio JC, Sánchez-León I, Santos-Dueñas IM, Fuentes-Almagro CA, Amil-Ruiz F, García-Martínez T, García-García I. Implementation of a Novel Method for Processing Proteins from Acetic Acid Bacteria via Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2024; 29:2548. [PMID: 38893424 PMCID: PMC11173641 DOI: 10.3390/molecules29112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies. This methodology was tested in three studies, enabling the characterization of three submerged acetification profiles using innovative raw materials (synthetic alcohol medium, fine wine, and craft beer) while working in a semicontinuous mode. The biodiversity of existing microorganisms was clarified, and both the predominant taxa (Komagataeibacter, Acetobacter, Gluconacetobacter, and Gluconobacter) and others never detected in these media (Asaia and Bombella, among others) were identified. The key functions and adaptive metabolic strategies were determined using comparative studies, mainly those related to cellular material biosynthesis, energy-associated pathways, and cellular detoxification processes. This study provides the groundwork for a highly reliable and reproducible method for the characterization of microbial profiles in the vinegar industry.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Irene Sánchez-León
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| | - Carlos A. Fuentes-Almagro
- Proteomics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| |
Collapse
|
2
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
3
|
Panda R. Validated multiplex-competitive ELISA using gluten-incurred yogurt calibrant for the quantitation of wheat gluten in fermented dairy products. Anal Bioanal Chem 2022; 414:8047-8062. [PMID: 36117194 DOI: 10.1007/s00216-022-04338-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Currently, there are no available methods for accurate quantitation of gluten in fermented or hydrolyzed foods. In this study, gluten-incurred yogurt was used as a calibrant with a multiplex-competitive ELISA to quantitate gluten in fermented dairy products such as yogurt, kefir, and buttermilk, followed by a single-laboratory validation of the method. Four-parameter logistic calibration curves using five gluten-specific antibodies (R5, G12, 2D4, MIoBS, and Skerrit) were constructed, and averaging of the antibody responses was used as a strategy to get a single quantitative value. The lower limits of detection (LLOD) and quantitation (LLOQ) of the method were 1.9 and 5.5 µg/mL (ppm), respectively. Analysis of wheat gluten-incurred fermented dairy products (5, 8, 20, 100, and 500 µg/mL) prepared with multiple starter cultures and fermented for 24 or 48 h resulted in average gluten recoveries of 69-165%, 57-167%, and 54-148% for yogurt, kefir, and buttermilk, respectively. Only a few samples exceeded 150% recovery. The average coefficient of variation (CV) ranged from 10 to 34%, with the majority of the samples having a CV of < 30%. Experimental variations such as long-term refrigerated storage, spiking gluten after initial fermentation, using higher than recommended starter culture concentrations, or using wheat flour for contamination resulted in acceptable gluten recovery (50-150%) for the majority of the samples. Comparison of the performance of this method with a commercial competitive ELISA showed that the method has greater quantitative accuracy. This newly developed and validated method appears sufficiently sensitive and accurate to quantitate the amount of wheat gluten before fermentation, in select fermented dairy products.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA, HFS-716, 5001 Campus Drive, College Park, MD, 20740, USA.
| |
Collapse
|
4
|
Li Z, Dong L, Zhao C, Zhang F, Zhao S, Zhan J, Li J, Li L. Development of a High-Coverage Quantitative Metabolome Analysis Method Using Four-Channel Chemical Isotope Labeling LC-MS for Analyzing High-Salt Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8827-8837. [PMID: 35786923 DOI: 10.1021/acs.jafc.2c03481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metabolome analysis of high-salt fermented food can be an analytical challenge, as the salts can interfere with the sample processing and analysis. In this work, we describe a four-channel chemical isotope labeling (CIL) LC-MS approach for a comprehensive metabolome analysis of high-salt fermented food. The workflow includes metabolite extraction, chemical labeling of metabolites using dansyl chloride, dansylhydrazine, or p-dimethylaminophenacyl bromide reagents to enhance separation and ionization, LC-UV measurement of the total concentration of dansyl-labeled metabolites in each sample for sample normalization, mixing of 13C- and 12C-reagent-labeled samples, high-resolution LC-MS analysis, and data processing. Metabolome analysis of fermented foods, including fermented red pepper (FRP) sauce, soy sauce, and sufu (a fermented soybean food), showed unprecedented high metabolic coverage. Metabolome comparison of FRP, soy sauce, and sufu, as well as soy sauce and sufu, indicated great diversity of metabolite types and abundances in these foods. In addition, we analyzed two groups of samples of the same type, FRP with 10% (w/w) and 15% (w/w) salt contents, and detected large variations in multiple categories of metabolites belonging to a number of different metabolic pathways. We envisage that this CIL LC-MS approach can be generally used for metabolomic studies of high-salt fermented food. CIL LC-MS allows high-coverage identification and quantification that could not be done using other methods.
Collapse
Affiliation(s)
- Zhihua Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Ling Dong
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Chi Zhao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Fengju Zhang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Shuang Zhao
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian 361028, China
| | - Jingjing Zhan
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian 361028, China
| | - Jia Li
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian 361028, China
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
İçen S, Karakaş‐Budak B, Certel M. Effect of sourdough starter and fungal proteases on gluten content and sensory properties of tarhana. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Seda İçen
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya07070Turkey
| | - Barçın Karakaş‐Budak
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya07070Turkey
| | - Muharrem Certel
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya07070Turkey
| |
Collapse
|
6
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Juhász A, Colgrave ML, Howitt CA. Developing gluten-free cereals and the role of proteomics in product safety. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Chen H, Wang S, Fu H, Chen F, Zhang L, Lan W, Yang J, Yang X, She Y. A colorimetric sensor array for recognition of 32 Chinese traditional cereal vinegars based on "turn-off/on" fluorescence of acid-sensitive quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117683. [PMID: 31685422 DOI: 10.1016/j.saa.2019.117683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Colorimetric sensor array is a sensitive, rapid, and inexpensive detection technology which simulates human olfaction system based on various organic dyes. In this work, a sensor array based on acid-sensitive CdTe QDs coupled with chemometrics method was developed and proved to be a rapid, accurate and sensitive method for identification of 32 kinds of Chinese traditional cereal vinegars (CTCV). The specificity of identification of this method was mainly depends on the organic acids and melanoidins of CTCV. Among them, organic acids can quench the fluorescence of QDs through enhancing their electron transfer (hydrogen bond) and resonance energy transfer, and the fluorescence intensity of melanoidin was closely related to the brewing technology and aging year of CTCV. The types and aging time of 32 CTCV can be 100% identified at a dilution of 1000 by partial least squares discriminant analysis, when the latent variables were 4. And only one kind of QDs is needed instead of various organic dyes to this kind of colorimetric sensor array. Except for vinegar, this method can also be used in the identification of other food which rich in organic acid.
Collapse
Affiliation(s)
- Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Lei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| |
Collapse
|
9
|
Evaluation of N-terminal labeling mass spectrometry for characterization of partially hydrolyzed gluten proteins. J Proteomics 2020; 210:103538. [DOI: 10.1016/j.jprot.2019.103538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
|
10
|
Xia T, Zhang B, Duan W, Zhang J, Wang M. Nutrients and bioactive components from vinegar: A fermented and functional food. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103681] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Li H, Bose U, Stockwell S, Howitt CA, Colgrave M. Assessing the Utility of Multiplexed Liquid Chromatography-Mass Spectrometry for Gluten Detection in Australian Breakfast Food Products. Molecules 2019; 24:molecules24203665. [PMID: 31614625 PMCID: PMC6832297 DOI: 10.3390/molecules24203665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Coeliac disease (CD) is an autoimmune disorder triggered by the ingestion of gluten that is associated with gastrointestinal issues, including diarrhea, abdominal pain, and malabsorption. Gluten is a general name for a class of cereal storage proteins of wheat, barley, and rye that are notably resistant to gastrointestinal digestion. After ingestion, immunogenic peptides are subsequently recognized by T cells in the gastrointestinal tract. The only treatment for CD is a life-long gluten-free diet. As such, it is critical to detect gluten in diverse food types, including those where one would not expect to find gluten. The utility of liquid chromatography-mass spectrometry (LC-MS) using cereal-specific peptide markers to detect gluten in heavily processed food types was assessed. A range of breakfast products, including breakfast cereals, breakfast bars, milk-based breakfast drinks, powdered drinks, and a savory spread, were tested. No gluten was detected by LC-MS in the food products labeled gluten-free, yet enzyme-linked immunosorbent assay (ELISA) measurement revealed inconsistencies in barley-containing products. In products containing wheat, rye, barley, and oats as labeled ingredients, gluten proteins were readily detected using discovery proteomics. Panels comprising ten cereal-specific peptide markers were analyzed by targeted proteomics, providing evidence that LC-MS could detect and differentiate gluten in complex matrices, including baked goods and milk-based products.
Collapse
Affiliation(s)
- Haili Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China.
| | - Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Sally Stockwell
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
| | - Crispin A Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia.
| | - Michelle Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia QLD 4067, Australia.
- Edith Cowan University, School of Science, 270 Joondalup Dr, Joondalup WA 6027, Australia.
| |
Collapse
|
12
|
Panda R, Garber EAE. Detection and Quantitation of Gluten in Fermented-Hydrolyzed Foods by Antibody-Based Methods: Challenges, Progress, and a Potential Path Forward. Front Nutr 2019; 6:97. [PMID: 31316993 PMCID: PMC6611335 DOI: 10.3389/fnut.2019.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) affects ~1 in 141 individuals in the United States, requiring adherence to a strict gluten-free diet. The Codex Standard and the European Commission states that gluten level of gluten-free foods must not exceed 20 ppm. The FDA requires food bearing the labeling claim “gluten-free” to contain <20 ppm gluten. Accurate quantitation of gluten in fermented-hydrolyzed foods by antibody-based methods is a challenge due to the lack of appropriate reference materials and variable proteolysis. The recent uses of proteases (e.g., proline endopeptidases or PEP) to hydrolyze immunopathogenic sequences of gluten proteins further complicates the quantitation of immunopathogenic gluten. The commercially available antibody-based methods routinely used to detect and quantitate gluten are not able to distinguish between different hydrolytic patterns arising from differences in fermentation processes. This is a severe limitation that makes accurate quantitation and, ultimately, a detailed evaluation of any potential health risk associated with consuming the food difficult. Utilizing gluten-specific antibodies, a recently developed multiplex-competitive ELISA along with western blot analysis provides a potential path forward in this direction. These complimentary antibody-based technologies provide insight into the extent of proteolysis resulting from various fermentation processes and have the potential to aid in the selection of appropriate hydrolytic calibration standards, leading to accurate gluten quantitation in fermented-hydrolyzed foods.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - Eric A E Garber
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
13
|
Panda R, Garber EAE. Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Anal Bioanal Chem 2019; 411:5159-5174. [DOI: 10.1007/s00216-019-01893-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
|
14
|
Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. J Proteomics 2019; 197:23-33. [DOI: 10.1016/j.jprot.2019.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
15
|
The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis. Anal Bioanal Chem 2019; 411:4465-4480. [PMID: 30758527 DOI: 10.1007/s00216-019-01642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
The issue of undeclared allergens represents a matter of great concern, being the subject of many alert notifications by the Rapid Alert System for Food and Feed portal of the European Commission, often leading to food recalls. The availability of reliable analytical approaches able to detect and quantify hidden allergens in processed foods is increasingly requested by the food industry, food safety authorities and regulatory bodies to protect sensitive consumers' health. The present review discusses the fundamental role of incurred materials for method development and analytical performance assessment in a metrology perspective on testing for undeclared allergens in processed foodstuffs. Due to the nature of the analytes and their susceptibility to various processing effects, reliability and comparability of results have posed a great challenge. In this context, the use of incurred samples as reference materials permits simulation of the effects of food processing on target analyte structure affecting analyte extractability and detectability. Graphical abstract ᅟ.
Collapse
|
16
|
Alves TO, D’Almeida CTS, Scherf KA, Ferreira MSL. Modern Approaches in the Identification and Quantification of Immunogenic Peptides in Cereals by LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2019; 10:1470. [PMID: 31798614 PMCID: PMC6868032 DOI: 10.3389/fpls.2019.01470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 05/17/2023]
Abstract
Celiac disease (CD) is an immunogenic disorder that affects the small intestine. It is caused by the ingestion of gluten, a protein network formed by prolamins and glutelins from cereals such as wheat, barley, rye and, possibly, oats. For predisposed people, gluten presents epitopes able to stimulate T-cells causing symptoms like nausea, vomiting, diarrhea, among others unrelated to the gastrointestinal system. The only treatment for CD is to maintain a gluten-free diet, not exceeding 20 mg/kg of gluten, what is generally considered the safe amount for celiacs. Due to this context, it is very important to identify and quantify the gluten content of food products. ELISA is the most commonly used method to detect gluten traces in food. However, by detecting only prolamins, the results of ELISA tests may be underestimated. For this reason, more reliable and sensitive assays are needed to improve gluten quantification. Because of high sensitivity and the ability to detect even trace amounts of peptides in complex matrices, the most promising approaches to verify the presence of gluten peptides in food are non-immunological techniques, like liquid chromatography coupled to mass spectrometry. Different methodologies using this approach have been developed and described in the last years, ranging from non-targeted and exploratory analysis to targeted and specific methods depending on the purpose of interest. Non-targeted analyses aim to define the proteomic profile of the sample, while targeted analyses allow the search for specific peptides, making it possible to quantify them. This review aims to gather and summarize the main proteomic techniques used in the identification and quantitation of gluten peptides related to CD-activity and gluten-related allergies.
Collapse
Affiliation(s)
- Thais O. Alves
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Carolina T. S. D’Almeida
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mariana S. L. Ferreira
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
- *Correspondence: Mariana S. L. Ferreira,
| |
Collapse
|
17
|
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37:223-238. [PMID: 30521852 DOI: 10.1016/j.biotechadv.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.
Collapse
Affiliation(s)
- Zhen-Hui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Julia M Green-Johnson
- Faculty of Science, University of Ontario Institute of Technology (UOIT), Oshawa L1H 7K4, Canada
| | | | - Qiu-Ye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|