1
|
Zhang D, Zhong R, Liao Z, Wang X, Xiang P, Zhang A, Su N, Cao Y, Lan Y. Fabrication of interfacial crystallized oleogel emulsion for quercetin delivery with enhanced environmental stability and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2226-2235. [PMID: 39497576 DOI: 10.1002/jsfa.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Quercetin is a flavonoid compound with numerous bioactivities. However, the low solubility, easy degradation and low bioaccessibility limit its application. In this study, a novel interfacial crystallized oleogel emulsion was fabricated, where beeswax was used as the oleogelator, for quercetin encapsulation with enhanced stability and bioaccessibility. RESULTS The process of interfacial crystallization was investigated using interfacial rheology and polarized microscopy, with a positive correlation between crystal density and beeswax content in the oil phase. Emulsion stability was directly linked to beeswax concentration in the oil phase, with 100 mg g-1 showing enhanced stability under storage, UVB light exposure and ionic conditions. Beeswax addition significantly increased the quercetin loading capacity of the emulsion; particularly, at a 200 mg g-1 beeswax concentration, the loading capacity was improved by 285.55%, and the environmental stability was enhanced against UV light and Ca2+. Ultimately, in vitro simulated digestion experiment indicated improved bioaccessibility of quercetin. CONCLUSIONS This strategy significantly enriched the formulation of oleogel emulsion and its potential applications in delivering bioactive ingredients with high environmental vulnerability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dian Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, People's Republic of China
| | - Ziying Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
- Guangdong Marubi Biotechnology Co. Ltd, Guangzhou, People's Republic of China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Pengcheng Xiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ao Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Nan Su
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Fragal EH, Metilli L, Pignon F, Halila S. A scalable and eco-friendly carbohydrate-based oleogelator for vitamin E controlled delivery. RSC Adv 2025; 15:2988-2995. [PMID: 39882005 PMCID: PMC11775502 DOI: 10.1039/d4ra08087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Supramolecular oleogels, in which low-molecular weight oleogelators self-assemble into various nanostructures through non-covalent interactions, have witnessed increasing research activity in various fields of science, including food, cosmetics or remediation of marine oil spills. Herein, we report a simple scalable and environmentally friendly carbohydrate-based oleogelator, namely, the sodium salt of N,N'-dimethyl β-C glucosyl barbiturate (GlcBMe) that self-assembles through sonication to induce the gelation of polar organic solvent and later of non-polar vegetable oils by cationic exchange with quaternary ammonium surfactants. Water-soluble GlcBMe was capable of forming self-assembled fibrillar network bridging insoluble particles in the oil by sonication in the presence of a small amount of water. The rheological properties are reinforced by in situ particle bridging with quaternary ammonium surfactants as evidenced by multi-scale structural analyses. IR analysis indicated that -OH (from carbohydrates) and -C[double bond, length as m-dash]O (from barbituric ring) were involved in hydrogen bonding promoting the formation of a fibrous network. The oleogel presented a non-Newtonian system showing a shear-thinning behavior and thixotropic properties. Advantageously, these oleogels showed excellent control and slow release of the loaded-vitamin E in a pH-dependent manner.
Collapse
Affiliation(s)
- Elizângela Hafemann Fragal
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Lorenzo Metilli
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP 38000 Grenoble France
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| |
Collapse
|
3
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
4
|
Effects of polysaccharide thickening agent on the preparation of walnut oil oleogels based on methylcellulose: Characterization and delivery of curcumin. Int J Biol Macromol 2023; 232:123291. [PMID: 36652980 DOI: 10.1016/j.ijbiomac.2023.123291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/07/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Walnut oil-based oleogels were prepared by the emulsion-templated method using methylcellulose at different concentrations and viscosities as the oleogelators and polysaccharides (sodium alginate, xanthan gum and κ-carrageenan) as the thickening agents. The microscopic properties, rheological properties and oil binding capacity (OBC) of the oleogels were evaluated. The intermolecular and intramolecular hydrogen bonding of polysaccharide stabilized the network structure of the oleogel. The increasing methylcellulose concentration contributed to forming a more stable interfacial layer and providing oleogel with a compact structure. κ-Carrageenan resulted in a better OBC (97.37 %) and rheological properties of the methylcellulose-based oleogel. When served as a delivery system of curcumin, the highest encapsulation rate of curcumin (38.06 %) was achieved by the κ-carrageenan oleogel. The structure of oleogels slowed down the release rate of free fatty acids and curcumin during the early stage of in vitro digestion and the κ-carrageenan oleogel exhibited the highest inhibiting effect. This finding suggests that the polysaccharide-based walnut oil oleogels had a firmer structure and could be a promising approach to deliver curcumin.
Collapse
|
5
|
Cho K, Tarté R, Acevedo NC. Development and characterization of the freeze-thaw and oxidative stability of edible rice bran wax-gelatin biphasic gels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Guo J, Cui L, Meng Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Mosquera Narvaez LE, Ferreira LMDMC, Sanches S, Alesa Gyles D, Silva-Júnior JOC, Ribeiro Costa RM. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022; 27:molecules27092733. [PMID: 35566084 PMCID: PMC9100349 DOI: 10.3390/molecules27092733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
New strategies for the delivery of bioactives in the deeper layers of the skin have been studied in recent years, using mainly natural ingredients. Among the strategies are organogels as a promising tool to load bioactives with different physicochemical characteristics, using vegetable oils. Studies have shown satisfactory skin permeation, good physicochemical stability mainly due to its three-dimensional structure, and controlled release using vegetable oils and low-molecular-weight organogelators. Within the universe of natural ingredients, vegetable oils, especially those from the Amazon, have a series of benefits and characteristics that make them unique compared to conventional oils. Several studies have shown that the use of Amazonian oils brings a series of benefits to the skin, among which are an emollient, moisturizing, and nourishing effect. This work shows a compilation of the main Amazonian oils and their nutraceutical and physicochemical characteristics together with the minority polar components, related to health benefits, and their possible effects on the synthesis of organogels for cosmetic purposes.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | | | - Suellen Sanches
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | - Desireé Alesa Gyles
- Jamaica College of Health Sciences, School of Pharmacy, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Roseane Maria Ribeiro Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
- Correspondence: ; Tel.: +55-91-3201-7203
| |
Collapse
|
8
|
Emulsification and gelation as a tool for iron encapsulation in food-grade systems. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Scarpin MS, Kawakami CM, Rangel KC, Pereira KDC, Benevenuto CG, Gaspar LR. Effects of UV-filter Photostabilizers in the Photostability and Phototoxicity of Vitamin A Palmitate Combined with Avobenzone and Octyl Methoxycinnamate. Photochem Photobiol 2021; 97:700-709. [PMID: 33621371 DOI: 10.1111/php.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
A challenge for cosmetic and dermatologic products is to develop new high-performance and safer anti-aging products based on new compounds to enhance the stability of retinyl palmitate combined with broad-spectrum UV-filters. Consequently, the aim of this work was to evaluate the effects of three often used avobenzone photostabilizers-ethylhexyl methoxycrylene (EHMCR), tris(tetramethylhydroxypiperidinol) citrate (TTMHP) and tris-biphenyl triazine (TBPT)-on the photostability and phototoxicity of the combination of avobenzone (AVO), octyl methoxycinnamate (OMC) and retinyl palmitate (RP). The photostability studies were performed by the exposure of formulations to UVA radiation. The phototoxicity was evaluated by the 3T3 neutral red uptake phototoxic assay (OECD TG 432). The addition of EHMCR, TBPT, and TTMHP in the formulations, with/or without RP, improved the photostability of AVO and RP, but EHMCR was the most effective in stabilizing RP. In the phototoxicity assay, the combinations AVO-OMC containing or not RP showed phototoxic potential. EHMCR and TTMHP reduced the phototoxicity of the combination AVO-OMC, whereas EHMCR also decreased the phototoxicity of the combination containing RP. Therefore, EHMCR might be used to the photostabilization of formulations of AVO-OMC with/or not RP, while TTMHP can be added to this photounstable UV-filter combination.
Collapse
Affiliation(s)
- Marcela Silva Scarpin
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Martins Kawakami
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karen Cristina Rangel
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina de Castro Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Gomes Benevenuto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Rigo Gaspar
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Zhuang X, Gaudino N, Clark S, Acevedo NC. Novel lecithin-based oleogels and oleogel emulsions delay lipid oxidation and extend probiotic bacteria survival. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Guo S, Song M, Gao X, Dong L, Hou T, Lin X, Tan W, Cao Y, Rogers M, Lan Y. Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: self-assembly or self-sorting? Food Funct 2020; 11:7651-7660. [PMID: 32896846 DOI: 10.1039/d0fo00635a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceramide (CER) is a novel food-grade organogelator with beneficial health effects. Lecithin (LEC) is not an effective gelator; however, it may alter the crystal morphology of the host gelator in a multicomponent system. In this paper, LEC and CER were mixed at various molar ratios in sunflower oil leading to different gelation behaviors. It was interesting since in this multicomponent system, gels formed when there was more less-effective gelator (LEC), while gels hardly formed when there was more effective gelator (CER). This drew our attention since there might not be only one kind of assembly mode between the LEC and the CER. A comprehensive rheological investigation was conducted. It was found that at specific ratios (6L4C and 5L5C), strong gels (G' > 1.0 × 105 Pa) formed with superior oil binding capacity (up to 99.84%). Meanwhile, these gels exhibited higher tolerance level to permanent deformation than the monocomponent gel. However, weak gels were observed off the optimal ratio (8L2C, 7L3C, 4L6C and 3L7C). The crystal morphology of gels drastically changed with change in gelator proportion. Short needle-like crystals and small rosette crystals were observed in 6L4C and 5L5C, respectively, while other samples exhibited spherulite-shaped crystals (8L2C, 7L3C, 4L6C, and 3L7C), which differed from any of the monocomponent gel structures (10L0C and 0L10C). Results from differential scanning calorimetry and polarized light microscopy suggested that the macroscopic properties are determined by the morphology and distribution of crystals rather than the crystallinity of the matrix. Fourier transform infrared spectroscopy results indicated the presence of van der Waals forces and the formation of hydrogen bonding between the phosphate of the LEC and the amide group of the CER. The above results indicated that the LEC and CER co-assembled at approximately equal molar ratio, and the redundant LEC or CER at other ratios self-sorted to combine with the co-assembled fibers by lateral association, leading to potentially different underlying microstructures. These multicomponent supramolecular oleogels with high tunability may further broaden their applicability in various healthy lipid-based product formats.
Collapse
Affiliation(s)
- Shenglan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510623, P.R. China
| | - Xiaokun Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Weijie Tan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Michael Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2 W1, Canada
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
12
|
Pandolsook S, Kupongsak S. Potential use of policosanol extract from Thai bleached rice bran wax as an organogelator. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Md Abu Bakar Siddique
- Department of Agriculture and Food Science, University College Dublin (UCD) Belfield, Dublin, Ireland
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
14
|
Tian Y, Acevedo NC. Role of supramolecular policosanol oleogels in the protection of retinyl palmitate against photodegradation. RSC Adv 2020; 10:2526-2535. [PMID: 35496095 PMCID: PMC9048806 DOI: 10.1039/c9ra07820g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
Exposure of retinyl palmitate (RP) to ultraviolet radiation can lead to its photo-degradation and loss of biological activity.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Food Science and Human Nutrition
- Iowa State University
- Ames
- USA
| | - Nuria C. Acevedo
- Department of Food Science and Human Nutrition
- Iowa State University
- Ames
- USA
| |
Collapse
|