1
|
Arjomandi-Behzad L, Alinejad Z, Zandragh MR, Golmohamadi A, Vojoudi H. Facile synthesis of hollow spherical g-C 3N 4@LDH/NCQDs ternary nanostructure for multifunctional antibacterial and photodegradation activities. iScience 2023; 26:106213. [PMID: 36909669 PMCID: PMC9993033 DOI: 10.1016/j.isci.2023.106213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Heterojunction nanostructure construction and morphology engineering are considered to be effective approaches to improve photocatalytic performance. Herein, ternary hierarchical hollow structures consisting of cobalt-aluminum-layered double hydroxide (CoAl-LDH) nanoplates grown on hollow carbon nitride spheres (HCNS) and decorated with N-doped carbon quantum dots (NCQDs) were prepared using a templating method and a subsequent solvothermal process. The obtained HCNS@LDH/NCQD composites presented an improved performance in photocatalytic degradation of tetracycline and inactivation of E. coli compared with pure HCNS and LDH under visible light illumination. The enhanced photocatalytic activity of the designed photocatalyst could be attributed to the following reasons: (1) A special hollow structure provides more active sites and has multiple capabilities of light reflection by helping with a high specific surface area that improves the harvesting efficiency of solar light and (2) the strong synergistic effect among the constituents, which promotes separation and transfer of charge carriers and broadens the photo-response range.
Collapse
Affiliation(s)
| | | | | | - Amir Golmohamadi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
| | - Hossein Vojoudi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
- Corresponding author
| |
Collapse
|
2
|
Vojoudi H, Ghasemi JB, Hajihosseinloo A, Bastan B, Badiei A. One-pot synthesis of hematite-alumina hollow sphere composite by ultrasonic spray pyrolysis technique with high adsorption capacity toward PAHs. ADV POWDER TECHNOL 2021; 32:1060-1069. [DOI: 10.1016/j.apt.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Aghaei Z, Vojoudi H, Ghasemi JB, Bahar S, Ziarani GM, Badiei A. Sulfidic GO-grafted glass stir-bar as a noble metal ions adsorbent. Microchem J 2020; 157:104878. [DOI: 10.1016/j.microc.2020.104878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Abolhosseini Shahrnoy A, Mahjoub AR, Shokrollahi S, Ezzati N, Elsner K, Koch CT. Step‐by‐step synthesis of copper(I) complex supported on platinum nanoparticle‐decorated mesoporous silica hollow spheres and its remarkable catalytic performance in Sonogashira coupling reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Ali Reza Mahjoub
- Department of chemistry, Faculty of scienceTarbiat Modares University PO Box 14155‐4383 Tehran Iran
| | | | - Nasim Ezzati
- Department of chemistry, Faculty of scienceTarbiat Modares University PO Box 14155‐4383 Tehran Iran
| | - Kristiane Elsner
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS Adlershof 12489 Berlin Germany
| | - Christoph T. Koch
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS Adlershof 12489 Berlin Germany
| |
Collapse
|
5
|
Yakout AA, Shaker MA, Elwakeel KZ, Alshitari W. Response surface methodological optimization of batch Cu(II) sorption onto succinic acid functionalized SiO2 nanoparticles. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalizing nanosilica (n-SiO2) particles with suitable active organic moiety leads to the formation of surfaces with precisely controlled physical and chemical characteristics. In this work, a novel nanosorbent (31 ± 2.4 nm), namely succinic acid functionalized nanosilica (n-SiO2@SA), was synthesized via a simple protocol using microwave irradiation to remove Cu(II) ions from aqueous media. The successful functionalization of n-SiO2 was confirmed by FTIR, and the thermal stability of n-SiO2@SA was investigated by TGA study. Other techniques, including HRTEM, DLS and zeta-potential, were utilized to investigate the chemical, surface, and morphological properties of the fabricated n-SiO2@SA. The response surface methodology (RSM) combined with three-level, three-factorial Box–Behnken design (BBD) was applied to optimize the multivariable sorption system using data obtained from 17 batch runs to reach 98.9% of Cu(II) ion removal. The predicted optimal conditions were as follows: contact time = 30 min, pH = 7.1, initial Cu(II) concentration = 317.5 mg L−1, and sorbent dose = 15 mg at which the maximum sorption capacities for n-SiO2 and n-SiO2@SA were 209.3 and 386.4 mg g−1, respectively, at 25 °C, thus supporting the validity of functionalization process. Non-linear regression and linear least-squares methods confirm the suitability of Langmuir model to describe the experimental endothermic, feasible, and chemisorption data, whereas the normalized standard deviation Δq% recommends the pseudo second-order kinetic model to represent the kinetic data. Real Cu-contaminated wastewaters were used to examine n-SiO2@SA nanosorbent for removing Cu(II) ions.
Collapse
Affiliation(s)
- Amr A. Yakout
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat A. Shaker
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khalid Z. Elwakeel
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Wael Alshitari
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|