1
|
Mohajer MH, Khademi A, Rahmani M, Monfaredi M, Hamidi A, Mirjalili MH, Ghomi H. Optimizing beet seed germination via dielectric barrier discharge plasma parameters. Heliyon 2024; 10:e40020. [PMID: 39553550 PMCID: PMC11565412 DOI: 10.1016/j.heliyon.2024.e40020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
This study explores the synergistic effects of gas composition and electric field modulation on beetroot seed germination using dielectric barrier discharge (DBD) plasma. The investigation initially focuses on the impact of air plasma exposure on germination parameters, varying both voltage and treatment duration. Subsequently, the study examines how different gas compositions (argon, nitrogen, oxygen, and carbon dioxide) affect germination outcomes under optimal air plasma conditions. Results indicate that plasma treatment significantly enhances germination rates and seedling growth relative to untreated controls. Notably, plasma exposure alters seed surface morphology and chemistry, increasing roughness, porosity, and hydrophilicity due to the formation of new polar functional groups. The highest germination rate (a 54.84 % increase) and germination index (a 40.11 % increase) were observed at the lowest voltage and shortest duration, whereas higher voltages and prolonged exposure reduced germination, likely due to oxidative stress. Among the tested gas environments, air plasma was most effective in enhancing water uptake and electrical conductivity, while oxygen plasma resulted in the highest germination index and marked improvements in root and shoot length. Conversely, carbon dioxide plasma treatment exhibited inhibitory effects on both germination and subsequent growth metrics. The results highlight the potential of DBD plasma technology to enhance agricultural productivity by optimizing seed germination and early growth. The study emphasizes the importance of precise parameter tuning, particularly gas composition and plasma exposure conditions, to maximize benefits while minimizing adverse effects, offering a refined approach to seed priming in agricultural practices.
Collapse
Affiliation(s)
| | - Ahmad Khademi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Maede Rahmani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Motahare Monfaredi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Aidin Hamidi
- Agriculture Research, Education and Extension Organization (AREEO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Birjandi Toroghi Z, Niazmand R, Moradinezhad F, Bayat H. Potential of cold plasma pretreatment for preserving biochemical attributes and ensuring the microbiological safety of saffron stigma. Food Sci Nutr 2024; 12:7417-7427. [PMID: 39479637 PMCID: PMC11521636 DOI: 10.1002/fsn3.4252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 11/02/2024] Open
Abstract
Saffron, similar to numerous other agricultural commodities, is susceptible to microbial contamination during cultivation and postharvest handling. Cold plasma treatment has emerged as an effective method for microbial inactivation while preserving food quality. The aim of this research was to preserve the color integrity and minimize the presence of microorganisms in dried saffron stigma by implementing cold plasma pre-treatment. Process parameters were optimized using the response surface method (RSM), considering the type of atmosphere (argon and air), plasma exposure time (1, 5, and 10 min), and plasma power (40, 70, and 100 W) as independent variables. The objectives were to maximize crocin content and minimize the total microbial load. The analysis of the response surface revealed that the argon atmosphere had a more significant impact on reducing microbial contamination than air, and an increase in plasma exposure time led to a decrease in microbial load. The maximum reduction in microbial load, by 0.9 logarithmic cycles compared to the control, was achieved with a 10-min treatment at 40 W power. Extended plasma exposure durations led to a minor reduction in the color, taste, aroma, and antioxidant properties of saffron stigma. Specifically, the color, taste, and aroma decreased by 0.5%, 0.5%, and 0.08%, respectively, with longer plasma exposure times. The antioxidant activity decreased by 0.64% with prolonged exposure time. However, the plasma-treated samples did not show any signs of Escherichia coli, mold, or yeast. Furthermore, our findings demonstrated that the type of atmosphere significantly influenced the reduction of infection and maintenance of saffron stigma's color quality. Cold plasma pretreatment holds promise as a viable method for preserving the physicochemical attributes of saffron while effectively reducing microbial contamination.
Collapse
Affiliation(s)
- Zohreh Birjandi Toroghi
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Razieh Niazmand
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Farid Moradinezhad
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Hassan Bayat
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of BirjandBirjandIran
| |
Collapse
|
3
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). Int J Biol Macromol 2023; 233:123557. [PMID: 36740126 DOI: 10.1016/j.ijbiomac.2023.123557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hyssopus officinalis L (Hyssop) is a good source of phenolic compounds. However, conventional methods for extraction of these compounds typically take a long time and have relatively low recovery rates. This study focused on cold atmospheric plasma (CAP) pretreatment and investigated its effects on the ultrasound-assisted extraction (UAE) of phenolic compounds from hyssop. Hyssop was treated at dielectric barrier discharge plasma with air and nitrogen gases for 5, 10, and 15 min. Optical emission spectroscopy was used to evaluate present active species in the plasma. The water contact angle changes, cell wall polysaccharides distribution, and structural variations of the treated samples were determined after treatment. Antioxidant activity and total phenolic contents (TPC) of the extracts were also evaluated. The results showed that CAP treatment reduced the contact angle making surface more hydrophilic. Compared with hyssop, overall no significant changes in the basic structure of all treated samples or the formation of new functional groups were recognized. In addition, CAP pretreatment before UAE increased the antioxidant activity of extracts according to the FRAP assay than the un-pretreated sample and conventional solvent extraction method. Also, TPC increased in samples treated with nitrogen plasma.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
4
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
5
|
Decontamination potential of date palm fruit via non-thermal plasma technique. Sci Rep 2022; 12:17323. [PMID: 36243776 PMCID: PMC9569378 DOI: 10.1038/s41598-022-22335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
The potential of the surface dielectric barrier discharge technique (SDBD) was evaluated to decontaminate the date palm fruit. Preliminary investigations emphasized that Aspergillus niger fungus was predominant in most date samples as a post-harvest infestation. The influence of SDBD techniques on the viability of A. niger isolated from date varieties was investigated and documented. Physical and chemical characterizations of treated dates were assessed, and statistical correlation coefficients were calculated and elucidated. A 4 log10 reduction of A. niger radial growth was observed at 3 min exposure/15 days of incubation. Simultaneous reductions in pH, water activity, and moisture content of treated dates were observed when compared to untreated dates. Statistical analysis showed a positive correlation between physical and chemical variables with the viability of A. niger in treated samples. Therefore, we believe that SDBD treatment will be a promising technique for decontaminating date fruits from attacked fungi, which will positively impact sustainable food security and consumer health.
Collapse
|
6
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
7
|
Kumar D, Yadav GP, Dalbhagat CG, Mishra HN. Effects of Cold Plasma on Food Poisoning Microbes and Food Contaminants including Toxins and Allergens: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Gorenand Prasad Yadav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
8
|
Namjoo M, Moradi M, Dibagar N, Niakousari M. Cold Plasma Pretreatment Prior to Ultrasound-assisted Air Drying of Cumin Seeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Darvish H, Ramezan Y, Khani MR, Kamkari A. Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron ( Crocus sativus L.). Food Sci Nutr 2022; 10:2082-2090. [PMID: 35702300 PMCID: PMC9179142 DOI: 10.1002/fsn3.2824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the microbial decontamination of saffron using the low-pressure cold plasma (LPCP) technology. Therefore, other quality characteristics of saffron that create the color, taste, and aroma have also been studied. The highest microbial log reduction was observed at 110 W for 30 min. Total viable count (TVC), coliforms, molds, and yeasts log reduction were equal to 3.52, 4.62, 2.38, and 4.12 log CFU (colony-forming units)/g, respectively. The lowest decimal reduction times (D-values) were observed at 110 W, which were 9.01, 3.29, 4.17, and 8.93 min for TVC, coliforms, molds, and yeasts. LPCP treatment caused a significant increase in the product's color parameters (L*, a*, b*, ΔE, chroma, and hue angle). The results indicated that the LPCP darkened the treated stigma's color. Also, it reduced picrocrocin, safranal, and crocin in treated samples compared to the untreated control sample (p < .05). However, after examining these metabolites and comparing them with saffron-related ISO standards, all treated and control samples were good.
Collapse
Affiliation(s)
- Haleh Darvish
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Yousef Ramezan
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research CenterTehran Medical SciencesIslamic Azad UniversityTehranIran
| | | | - Amir Kamkari
- Department of Food EngineeringFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
10
|
Sohbatzadeh F, Shakerinasab E, Hajizadeh Chenari I, Soltani H, Khajvand Salehan M, Pourbagher R, Shafei F, Ghasemi M. Influence of
PTFE
and glass dielectric barrier discharge on
Crocus sativus
L. filaments: physicochemical properties, bactericidal effects, and simulation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F. Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
- Plasma Technology Research Core, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - E. Shakerinasab
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - I. Hajizadeh Chenari
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - H. Soltani
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - M. Khajvand Salehan
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - R. Pourbagher
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - F. Shafei
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - M. Ghasemi
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
- Plasma Technology Research Core, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| |
Collapse
|
11
|
Drishya C, Yoha K, Perumal AB, Moses JA, Anandharamakrishnan C, Balasubramaniam VM. Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Drishya
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - K.S. Yoha
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Anand Babu Perumal
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Jeyan A Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology & Department of Food Agricultural and Biological Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
12
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
13
|
Noori SMA, Hashemi M, Ghasemi S. A Comprehensive Review of Minerals, Trace Elements, and Heavy Metals in Saffron. Curr Pharm Biotechnol 2022; 23:1327-1335. [PMID: 34983343 DOI: 10.2174/1389201023666220104142531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.
Collapse
Affiliation(s)
- Sayyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medicine, Jundishahpour University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajjad Ghasemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
|
15
|
Saremnezhad S, Soltani M, Faraji A, Hayaloglu AA. Chemical changes of food constituents during cold plasma processing: A review. Food Res Int 2021; 147:110552. [PMID: 34399529 DOI: 10.1016/j.foodres.2021.110552] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
There is a growing demand for the consumption of nutritious and safe food products. Cold plasma is a novel non-thermal technology that in recent years, has found numerous applications in the food industry. Study on the applications of this technology and its effects on food quality is increasing. Like any other technology, using cold plasma for the processing of foods can be associated with food quality challenges. This paper reviews the effect of cold plasma on the chemical structure of different food constituents as well as its influence on food characteristics. The emphasis is on the recent studies about the plasma mechanisms of action and chemical alterations of different food components. The studies show that the interaction of plasma-reactive species with food components depends on process conditions. Developing the functional characteristics and reducing the anti-nutritional compounds are of promising potentials of cold plasma. Finally, the research gaps, the salient drawbacks, and future prospects of this technology are highlighted.
Collapse
Affiliation(s)
- Solmaz Saremnezhad
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
16
|
New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Kashfi AS, Ramezan Y, Khani MR. Simultaneous study of the antioxidant activity, microbial decontamination and color of dried peppermint (Mentha piperita L.) using low pressure cold plasma. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Amanpour A, Vandamme J, Polat S, Kelebek H, Van Durme J, Selli S. Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Han Y, Cheng JH, Sun DW. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit Rev Food Sci Nutr 2019; 59:794-811. [DOI: 10.1080/10408398.2018.1555131] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yongxu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangzhou Higher Education Mega Centre, Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou, China
- Agriculture and Food Science Centre, Food Refrigeration and Computerized Food Technology University College Dublin National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
21
|
Misra NN, Yadav B, Roopesh MS, Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr Rev Food Sci Food Saf 2018; 18:106-120. [PMID: 33337013 DOI: 10.1111/1541-4337.12398] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Cold plasma treatment is a promising intervention in food processing to boost product safety and extend the shelf-life. The activated chemical species of cold plasma can act rapidly against micro-organisms at ambient temperatures without leaving any known chemical residues. This review presents an overview of the action of cold plasma against molds and mycotoxins, the underlying mechanisms, and applications for ensuring food safety and quality. The cold plasma species act on multiple sites of a fungal cell resulting in loss of function and structure, and ultimately cell death. Likewise, the species cause chemical breakdown of mycotoxins through various pathways resulting in degradation products that are known to be less toxic. We argue that the preliminary reports from cold plasma research point at good potential of plasma for shelf-life extension and quality retention of foods. Some of the notable food sectors which could benefit from antimycotic and antimycotoxin efficacy of cold plasma include, the fresh produce, food grains, nuts, spices, herbs, dried meat and fish industries.
Collapse
Affiliation(s)
- N N Misra
- Center for Crops Utilization Research, Iowa State Univ., Ames, IA, USA
| | - Barun Yadav
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food & Bioconvergence, Research Inst. of Agriculture & Life Science, Seoul National Univ., Seoul, 08826, South Korea.,Inst. of Green Bio Science and Technology, Seoul National Univ., Pyeongchang, 25354, South Korea
| |
Collapse
|