1
|
Wulf J, Lewit N, Akter S, K Bwambok D, Anum D, Alonge T, Kuedukey C, Bolton B, Dassow B, Halim MA, O Fakayode S. Evaluating binding and interaction of selected pesticides with serum albumin proteins by Raman, 1H NMR, mass spectrometry and molecular dynamics simulation. J Biomol Struct Dyn 2025; 43:2571-2584. [PMID: 38197596 DOI: 10.1080/07391102.2024.2302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Addressing the acute pesticide poisoning and toxicity to humans, is a global challenge of top priority. Serum albumin is the most abundant plasma protein, capable of binding with herbicide and pesticide residues. This study reports multifaceted approaches for in-depth and robust investigation of the molecular interactions of selected pesticides, including propanil (PPL), bromoxynil (BXL), metolachlor (MLR) and glyphosate (GPE) with bovine serum albumin (BSA) proteins using experimental (Raman and FTIR spectroscopy, native mass spectrometry and high field 1H NMR), molecular dynamics (MD) simulation and principal component analysis (PCA). The binding of pesticides with BSA resulted in BSA amide I and amide II Raman spectral shifts. PCA of Raman spectra of serum-pesticide complexes showed the grouping of pesticides on the score plot based on the similarities and differences in pesticides' chemical structures. Native mass spectrometry results revealed strong adduct formation of the pesticides with the protein. The observed changes in chemical shifts, peak broadening or peak disappearance of characteristic proton signals of the pesticides, indicated altered chemical environments due to binding BSA-pesticides interactions. The results of MD simulation conducted for over 500 ns revealed strong pesticides interaction with LEU197, LEU218, LEU237, TRP213, SER286 and ILE289 residues to the site I of BSA. Free energy landscapes provided insights into the conformational changes in BSA on the binding of pesticides. Overall, the experimental and computational results are in consonant and indicate the binding of pesticides into the site I and site II (sub-domain IIA) of the BSA via hydrogen bonding, non-covalent and hydrophobic interactions.
Collapse
Affiliation(s)
- Josefa Wulf
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Noam Lewit
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Shaila Akter
- Division of Quantum Chemistry, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - David K Bwambok
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Davis Anum
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Temitope Alonge
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | | | - Brinkley Bolton
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| | - Bailey Dassow
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Sayo O Fakayode
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| |
Collapse
|
2
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
3
|
Tabatabaei MS, Ahmed M. Enzyme-Linked Immunosorbent Assay (ELISA). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2508:115-134. [PMID: 35737237 DOI: 10.1007/978-1-0716-2376-3_10] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is one of the most specific and straightforward assays for detecting biomolecules in research and clinics. With advances in analytical methods, ELISA assay has been constantly optimized to improve its sensitivity, and different types of ELISA are now available to detect various biomarkers. This chapter provides an overall summary of the basic principle of ELISA, discusses different components of ELISA assay, and clearly outline protocols for different types of ELISA assays, including direct, indirect, sandwich, competitive, and nanoparticle-based ELISA.
Collapse
Affiliation(s)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada. .,Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
4
|
Hu H, Xia J, Ding N, Xiong Y, Xing K, Fang B, Huo X, Lai W. A novel method based on Ag-Au nanorings with tunable plasmonic properties for the sensitive detection of amantadine. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128498. [PMID: 35278944 DOI: 10.1016/j.jhazmat.2022.128498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
To prevent the toxic effect of amantadine (AMD) on humans, a sensitive and direct detection method is required. The conventional enzyme-linked immunosorbent assay (ELISA) usually shows a monochromatic gradient color variation with the concentration of the target; hence, it is not a sensitive method for naked-eye detection. In this work, Ag-Au nanorings with highly tunable plasmon properties were synthesized as colorimetric nanosensors. The growth of Ag on the hollow nanorings led to rich color variations. Ag-Au nanorings were integrated into ELISA for the sensitive detection of AMD with the naked eye. The proposed method showed high sensitivity for the qualitative and quantitative detection of AMD, the visible cut-off value (0.2 ng mL-1) and limit of detection (0.071 ng mL-1) were 10-fold and 4.7-fold lower, respectively, than those of conventional ELISA. This method showed a linear range of 0.08-2 ng mL-1 and 4-12 ng mL-1. The detection results of this method on 100 samples (food samples and municipal water) agreed well with those of liquid chromatography-tandem mass spectrometry. The proposed plasmonic ELISA has high sensitivity, easy operation, and naked-eye readout.
Collapse
Affiliation(s)
- Hong Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Xia
- Jiangxi Institute of Veterinary Drug and Feedstuff Control, Nanchang, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361116, China; State Key Lab Pig Genet Improvement & Prod Techno, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xi Huo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Li G, Li H, Zhai J, Guo J, Li Q, Wang CF, Chen S. Microfluidic fluorescent platform for rapid and visual detection of veterinary drugs. RSC Adv 2022; 12:8485-8491. [PMID: 35424796 PMCID: PMC8984828 DOI: 10.1039/d2ra00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
The overuse of veterinary drugs and veterinary drug residues is increasingly becoming an obstacle to sustainable development worldwide. It is therefore imperative to establish a quantitative, sensitive and efficient method for the detection of veterinary drugs. Herein, we developed a visual microfluidic detection platform for rapid and sensitive detection of veterinary drugs using CdTe quantum dots (QDs) with three different ligands as the sensing units. Green-emissive 3-mercaptopropionic acid (MPA)-CdTe QDs, yellow-emissive thioglycolic acid (TGA)-CdTe QDs and orange-emissive N-acetyl-l-cysteine (NAC)-CdTe QDs were synthesized by a sulfhydryl aqueous phase method. These CdTe QDs show selective rapid fluorescence response to pefloxacin (PEF), malachite green (MG), and 1-aminohydantoin hydrochloride (AHD). With the concentration of veterinary drugs increasing, the CdTe QDs reveals a fluorescence color variation from bright to dark until quenched and the response degree of CdTe QDs with different ligands to veterinary drugs is different. Specifically, the limits of detection (LODs) of MPA-CdTe, TGA-CdTe and NAC-CdTe QDs probes for PEF were 7.57 μM, 1.75 μM and 2.90 μM, respectively, and the response was complete in a few seconds, realizing the sensitive and rapid detection of PEF. The three kinds of CdTe QDs could also be used in the detection of other veterinary drugs such as MG and AHD. Finally, a microfluidic detection platform was constructed for visual sensing and rapid detection towards veterinary drugs. The sensor platform holds the advantages of simple operation, low cost, rapid sensing and good sensitivity, and is potentially useful for visual quantitative detection of veterinary drug residues in aquatic products and the environment.
Collapse
Affiliation(s)
- Ge Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Jiang Zhai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Jiazhuang Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University Nanjing 210009 China +86-25-83172258
| |
Collapse
|
6
|
Huo X, Wang S, Lai K, Peng J. Sensitive CG-ICA based on heterologous coating antigen and mAb prepared with carbons-linker immunogen. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1987393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xi Huo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Suhua Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Keyang Lai
- School of Food Science, Nanchang University, Nanchang, People’s Republic of China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- School of Food Science, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
7
|
Liu L, Gao Y, Liu J, Li Y, Yin Z, Zhang Y, Pi F, Sun X. Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:206-214. [PMID: 33129206 DOI: 10.1007/s00128-020-03035-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
For the immense requirement on agriculture and animal husbandry, application of pesticides and veterinary drugs had become a normal state in the farming and ranching areas. However, to intently pursue the yields, large quantities of residues of pesticides and veterinary drugs have caused serious harm to both the environment and the food industry. To control and solve such an issue, a variety of novel techniques were developed in recent years. In this review, the development and features about point-of-care-testing (POCT) detection on the residues of pesticides and veterinary drugs, such as, electrochemistry (EC), enzyme-linked immunosorbent assay (ELISA) and nano-techniques, were systematically introduced. For each topic, we first interpreted the strategies and detailed account of such technical contributions on detection and assessment of the residues. Finally, the advantages and perspectives about mentioned techniques for ultrasensitive assessment and sensing on pesticides and veterinary drugs were summarized.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yueying Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ziye Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
8
|
Melekhin AO, Isachenko AI, Apyari VV, Volkov PA, Dmitrienko SG, Torocheshnikova II, Zolotov YA. Effect of amines on formation of gold/polyurethane foam nanocomposites and its sensing opportunities. Talanta 2021; 226:122151. [PMID: 33676700 DOI: 10.1016/j.talanta.2021.122151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
Effect of amines on formation of gold nanoparticles (AuNPs)/polymer nanocomposites has been observed and studied. Nanocomposites based on polyurethane foam and AuNPs were synthesized by interaction between the polymer modified with sodium borohydride and aqueous solution of tetrachloroauric acid. It has been shown that some amines cause a remarkable decrease of the surface plasmon resonance band of AuNPs in the nanocomposite material. Both aliphatic and aromatic amines as well as amines containing several amino groups were studied. A possible mechanism of the effect is discussed. It is probably based on stabilization of AuNPs with an amine that entails a decrease in the degree of their adsorption on PUF and appearance of the stabilized AuNPs in solution. The decrease of the nanocomposite surface plasmon resonance band is proportional to the concentration of amine in the solution. Based on this effect, a method for the determination of cetylamine, β-naphthylamine and neomycin in water and medical formulations using a monitor calibrator as a portable household tool is proposed. Under the selected conditions, the detection limits for amines were in the range of 0.7-1.5 μM, the determination ranges were approximately an order of magnitude. The observed color change of the nanocomposite samples also provides a good basis for semiquantitative determinations.
Collapse
Affiliation(s)
- A O Melekhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - A I Isachenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - V V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia.
| | - P A Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals of National Research Center "Kurchatov Institute", Bogorodsky Val St., 3, 107076, Moscow, Russia
| | - S G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - I I Torocheshnikova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia
| | - Yu A Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991, Moscow, Russia; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospect, 31, 119991, Moscow, Russia
| |
Collapse
|
9
|
Fang B, Xu S, Huang Y, Su F, Huang Z, Fang H, Peng J, Xiong Y, Lai W. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chem 2020; 329:127160. [DOI: 10.1016/j.foodchem.2020.127160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
|
10
|
Zhou X, Pu H, Sun DW. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Crit Rev Food Sci Nutr 2020; 61:2277-2296. [PMID: 32897734 DOI: 10.1080/10408398.2020.1809343] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The frequent occurrence of food safety incidents has given rise to unprecedented concern about food contamination issues for both consumers and the industry. Various contaminations in food pose serious threats to food safety and human health. Many detection methods were studied to address the challenge. Recently, biosensors relying on deoxyribonucleic acid (DNA)-functionalized nanoparticles have been developed as an efficient and effective detection method. In the current review, the strategies for DNA assembly metal and metal oxide nanoparticles are elaborated, recent applications of the sensors based on DNA-functionalized nanoparticles in food contaminant detection are discussed. Pathogenic bacteria, heavy metal ions, mycotoxins, antibiotics, and pesticides are covered as food contaminants. Additionally, limitations and future trends of functionalized nanoparticles-based technology are also presented. The current review indicates that DNA-functionalized metal and metal oxide nanoparticles are a novel nanomaterial with unique biological and physical properties for developing electrochemical, fluorescent, colourimetric and surface-enhanced Raman spectroscopy (SERS) sensors, etc. Compared with conventional detection techniques, DNA-functionalized metal and metal oxide nanoparticles have considerable advantages with high accuracy, high specificity, micro-intelligence, and low cost. Nevertheless, the stability of these sensors and the limitations of real-time detection are still under discussion. Therefore, more tolerant, portable, and rapid DNA sensors should be developed to better the real-time monitoring of harmful contaminants.
Collapse
Affiliation(s)
- Xiyi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
11
|
Sun X, Zhao Y, Cui X, Liu R, Yu M, Fei Q, Liu Q, Feng G, Shan H, Huan Y. Colorimetric sensing of iodide ions based on unmodified gold nanoparticles and the distinctive antiaggregation-to-aggregation process. LUMINESCENCE 2020; 35:1036-1042. [PMID: 32515169 DOI: 10.1002/bio.3813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
A highly sensitive and selective colorimetric analysis method based on unmodified gold nanoparticles (AuNPs) to detect iodide ions (I- ) in solution in the presence of hexadecyl trimethyl ammonium bromide (CTAB) and mercury ions (Hg2+ ) has been successfully developed. Hg2+ could form a gold amalgam with AuNPs to protect AuNPs from CTAB-induced aggregation caused by the electrostatic attraction between CTAB and citrate ion-covered AuNPs. When a mixture of Hg2+ and I- was added to the solution of AuNPs, the formation of the HgI2 complex destroyed the protection of Hg2+ for AuNPs, which led to the aggregation of AuNPs accompanied with the change in colour of the solution from red to grey black and decrease in the absorbance of AuNPs at 520 nm. There was a good linear relationship between A520nm and I- concentration from 0 to 800 nM with a low limit of detection (LOD) of 4.2 nM. Furthermore, this simple and reliable colorimetric sensor has been applied successfully to the detection of I- in practical samples.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Yuqi Zhao
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Ruxin Liu
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Miao Yu
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Qingwen Liu
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Hongyan Shan
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| |
Collapse
|
12
|
He Y, Ren Y, Guo B, Yang Y, Ji Y, Zhang D, Wang J, Wang Y, Wang H. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem 2020; 310:125942. [DOI: 10.1016/j.foodchem.2019.125942] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
|
13
|
Using hapten cross-reactivity to screen heterologous competitive antigens for improving the sensitivity of ELISA. Food Chem 2020; 303:125379. [DOI: 10.1016/j.foodchem.2019.125379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/13/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
|
14
|
Fluorometric determination of the CCAAT/enhancer binding protein alpha by using gold nanoparticles and a labeled protein-binding DNA. Mikrochim Acta 2019; 187:22. [PMID: 31807960 DOI: 10.1007/s00604-019-4025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
A method is described for the determination of the CCAAT/enhancer binding protein alpha (C/EBPα) which is a regulator in adipocyte differentiation. The method is based on quenching of the red fluorescence (with excitation/emission maxima at 548/562 nm) of Cy3-labeled DNA if it becomes adsorbed on positively charged gold nanoparticles (AuNPs). Fluorescently labeled dsDNA that can bind C/EBPα is introduced as a fluorescent probes. The dsDNA is electrostatically adsorbed on the positively charged AuNPs to quench their fluorescence. In the presence of C/EBPα, it will bind dsDNA which then diffuses away. The fluorescence of the AuNPs becomes restored. The fluorescent signal increases linearly in the 0.05 to 600 ng·mL-1 μM C/EBPα concentration range, and the detection limit is 29 pg·mL-1. The method is specific and was applied to analyze cell lysates and in-situ. Graphical abstractSchematic representation of a fluorometric method for determination of the CCAAT/enhancer binding protein alpha (C/EBPα). Fluorescently labeled dsDNA that can bind C/EBPα is introduced as a fluorescent probes. The dsDNA is electrostatically adsorbed on the positively charged AuNPs to quench their fluorescence. In the presence of C/EBPα, it will bind dsDNA which then diffuses away. The fluorescence of the AuNPs becomes restored.
Collapse
|
15
|
A polyamidoamine-mediated competitive colorimetric assay based on gold nanoparticles for determining acid values in edible sunflower seed, corn and extra virgin olive oils. Food Chem 2019; 285:450-457. [DOI: 10.1016/j.foodchem.2019.01.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
|
16
|
Wang C, Xing K, Zhang G, Yuan M, Xu S, Liu D, Chen W, Peng J, Hu S, Lai WH. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chem 2019; 281:91-96. [DOI: 10.1016/j.foodchem.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
|
17
|
Man Y, Ren J, Li B, Jin X, Pan L. A simple, highly sensitive colorimetric immunosensor for the detection of alternariol monomethyl ether in fruit by non-aggregated gold nanoparticles. Anal Bioanal Chem 2018; 410:7511-7521. [DOI: 10.1007/s00216-018-1369-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023]
|