1
|
Feng Y, Li R, Zhang H, Wang J. Investigation of self-assembly mechanism of gluten protein amyloid fibrils and molecular characterization of structure units. Food Chem 2025; 479:143637. [PMID: 40081065 DOI: 10.1016/j.foodchem.2025.143637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
The mechanism of peptides self-assembly into gluten amyloid fibrils was explored through bond-breaking experiments and molecular dynamics (MD) simulations, verified through fibrillation experiments using synthetic peptides. The disruption of hydrogen bonds reduced thioflavin T fluorescence intensity and average particle size of gluten amyloid fibrils by 24 % and 81 %, respectively, causing a breakdown of internal structure. Disruption of electrostatic and hydrophobic forces induced further aggregation of fibrils. MD simulation revealed that peptides transitioned from a dispersed state to aggregation, followed by changes in secondary structure, culminating in the formation of stacked β-sheets structure units. Hydrogen bonding emerged as the primary driver of self-assembly with contributions from hydrophobic and electrostatic interactions. The synthetic single or hybrid peptide systems selected by MD formed ribbon- or fiber-like amyloid fibrils with inter-strand distance of 4.7 Å and respective inter-sheet distances of 10.2 Å and 10.8 Å, suggesting that the structure and morphology of eventual amyloid fibrils were affected by the peptide sequence and cross β-sheet structure units.
Collapse
Affiliation(s)
- Yulin Feng
- School of Food and Health, Beijing Technology & Business University (BTBU), National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
| | - Ren Li
- School of Food and Health, Beijing Technology & Business University (BTBU), National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China.
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China.
| |
Collapse
|
2
|
Ma Z, Yu J, Chen X, Cao J, Zhu Y, Liu G, Li G, Xu F, Hu Q, Zhang H, Wei H. Differences in starch and protein composition, morphological and structure, and their impacts on eating quality of soft japonica rice under different light and nitrogen fertilizer conditions in southern China. Food Chem 2025; 474:143204. [PMID: 39921972 DOI: 10.1016/j.foodchem.2025.143204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
This study explores the differences in starch and protein composition, morphological and structure, and their impacts on soft japonica rice eating quality under different light and nitrogen fertilizer conditions. Results showed that decreased light and applied panicle fertilize resulted in a decreased in total starch, accompanied by an increased in long-chain amylopectin, protein, particularly glutelin, and β-sheet, with these effects being more pronounced when panicle fertilizer was applied under 50 % light. RVA, LF-NMR and Rheometer date showed that aforementioned changes in starch and protein were detrimental to water migration and starch gelatinization during rice cooking, resulting in a high-strength rice gel network. Ultimately, cooked rice exhibited poor taste. In conclusion, decreased light and applied panicle fertilize both degrade rice eating quality, and the combined effect of these two factors further diminishes cooked rice taste. Furthermore, 50 % light had a greater impact on starch, protein and eating quality than panicle fertilize.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Ma Z, Chen X, Cao J, Yu J, Zhu Y, Li G, Xu F, Hu Q, Zhang H, Liu G, Wei H. Analysis of the effects of light and panicle fertilizer on rice eating quality based on morphological structural changes in starch and protein during cooking. Int J Biol Macromol 2025; 305:141121. [PMID: 39961564 DOI: 10.1016/j.ijbiomac.2025.141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Light and panicle fertilizer are crucial environmental factors that influence rice eating quality. Currently, there is a lack of systematic research on how light and panicle fertilizer alter the morphological structures of starch and protein during cooking, subsequently affecting rice taste. To address this gap, field experiments were conducted under varying conditions of light (100 % light, L1; 50 % light, L2) and panicle fertilizer (no panicle fertilizer, N1; 81 kg/ha of panicle fertilizer, N2), followed by cooking after harvest. The results showed that, compared to L1N1, the water migration (low T2), starch and protein structural disruption (slow decline in 1047/1022 cm-1) were limited in L1N2, L2N1, and L2N2 during the cooking, making rice hard to cook. Eventually, compared to L1N1, L1N2, L2N1 and L2N2 exhibited lower peak viscosity but higher strength gel networks (higher G' and G''), leading to a decline in rice eating quality. In summary, reduced light intensity and applied panicle fertilizer restricted the disruption of starch and protein structures during rice cooking, which hindered rice cooking processes, ultimately leading to a decrease in rice eating quality. Furthermore, it is noteworthy that the combination of reduced light and applied panicle fertilizer further exacerbated the decline in rice eating quality.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Yang N, Jike X, Zhang M, Jiang T, Lei H. Synthesis, characterization of thiolated hyaluronic acid and evaluation of its encapsulation effects on Limosilactobacillus reuteri HR7. Int J Biol Macromol 2025; 310:143486. [PMID: 40280531 DOI: 10.1016/j.ijbiomac.2025.143486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Hyaluronic acid (HA) was thiol-modified by adding different concentrations of L-Cysteine (1 mmol, 2 mmol, 3 mmol, 4 mmol, 5 mmol and 6 mmol) and the resulting polymers (HA-SH) were characterized. The results of FTIR, 1H NMR, XRD, SEM and DSC all confirmed the success of thiol modification, accompanied by free thiol group content of 3169.51-3913.44 μmol/g. Sulfur element was only detected in HA-SH, accounting for 1.12 %-1.23 %. The Mw and particle size were decreased after thiol modification, representing a more uniform polysaccharide conformation, which was beneficial for the encapsulation of probiotics. Rheological analysis showed that the hydrogel prepared by HA displayed viscoelastic fluid properties, while the hydrogels prepared by HA-SH exhibited solid-like gel properties, indicating enhanced gelation properties after thiol modification. Subsequently, the hydrogels were applied to probiotics encapsulation to explore the effects on gastrointestinal tolerance. A higher encapsulation efficiency was observed in HA-SH hydrogel with enhanced gastrointestinal tolerance, increasing by 38.15 % on average. These results demonstrated that thiolation was a good strategy for polysaccharide modification and hydrogel formed by HA-SH was a more promising encapsulation and delivery system for probiotics compared with HA.
Collapse
Affiliation(s)
- Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Tian Jiang
- Shanghai Helplifes Technology Co., Ltd, Shanghai 201702, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Wang J, Qiao W, Bian N, Wu Z, Zhao S. The interaction between starch and gluten and related wheat-based noodles quality, a review. Int J Biol Macromol 2025; 307:142001. [PMID: 40081702 DOI: 10.1016/j.ijbiomac.2025.142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Starch and gluten, the primary components of wheat, play critical roles in determining noodle quality through their synergistic interactions. To unveil the influence of starch-gluten protein interactions on the quality of noodles, further comprehensive exploration in this domain remains imperative. The current understanding of the interactions between gluten and starch in noodles processing was reviewed, with emphasis on water competition, space competition, and covalent and non-covalent interactions. In addition, the influencing factors that impact the starch-gluten interaction, including starch chain, starch granule size, damaged starch content, gluten subunits, processing technology, and additives were discussed. This review describes the interactions between starch and gluten and provides a reference for improving noodle quality.
Collapse
Affiliation(s)
- Jinrong Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| | - Wenjing Qiao
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ni Bian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China.
| | - Songsong Zhao
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
6
|
Zhang J, Liu Y, Wang P, Zhao Y, Zhu Y, Xiao X. The Effect of Protein-Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025; 14:778. [PMID: 40077481 PMCID: PMC11899337 DOI: 10.3390/foods14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Grains are an energy source for human beings, and the two main components-starch and protein-determine the application of grains in food. The structure and properties of starch play a decisive role in determining processing characteristics, nutritional properties, and application in grain-based foods. The interaction of proteins with starch greatly affects the structure, physicochemical, and digestive properties of the starch matrix. Scientists have tried to apply this effect to create foods tailored to specific needs. Therefore, studying the effect of protein on the structure and properties of starch in the starch-protein complexes will help in designing personalized and improved starch-based food. This paper reviews the latest research about the effects of endogenous and exogenous proteins on the structure and properties of starch, as well as factors influencing the interaction between protein and starch. This includes investigations of the chain and aggregation structure of proteins with starch, as well as assessments of impacts on thermal properties, rheology, gel texture properties, hydration properties, aging, and digestion. In addition, particular examples illustrating the effects of protein-starch interaction on starch properties in various foods are discussed, providing a reference for designing starch-protein foods that are rich in terms of nutrition and easier to process.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (Y.L.); (P.W.); (Y.Z.); (Y.Z.)
| |
Collapse
|
7
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
8
|
Zheng T, Chen H, Yu Y, Wang P, Li Y, Chen G, Si J, Yang H. Property and quality of japonica rice cake prepared with Polygonatum cyrtonema powder. Food Chem X 2024; 22:101370. [PMID: 38623510 PMCID: PMC11016865 DOI: 10.1016/j.fochx.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Rice cake is a common traditional food in China. In this study, the effect of Polygonatum cyrtonema (PC) on the qualities and characteristics of rice cake was investigated. The incorporation of PC powder in rice cakes endowed a light-yellow color and increased the water content and water absorption of products. Rheological analysis showed that the rice cake containing PC exhibited weak-gel properties. Additionally, PC (40%) inhibited the rice cake aging and lowered the hardness of rice cakes to 13.86 N after 4 h storage. In vitro starch digestion analysis showed that PC (40%) reduced the digestibility of rice cakes by decreasing the starch hydrolysis rate from 88.70 to 58.95%, displaying a low estimated glycemic index (eGI) of 52.14. The findings mentioned above indicated that the inclusion of PC powder in rice cakes enhanced their characteristics and attributes, which also provided an approach for the development of PC products.
Collapse
Affiliation(s)
- Tian Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyiao 315414, China
| | - Pan Wang
- Pan'an traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, 322300, China
| | - Yongxin Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
9
|
Mo X, Zhu H, Yi C, Deng Y, Yuan J. Rheological properties of indica rice determined by starch structure related enzymatic activities during after-ripening. Int J Biol Macromol 2024; 269:131738. [PMID: 38670177 DOI: 10.1016/j.ijbiomac.2024.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The processing quality of indica rice must undergo ripening after harvest to achieve stability and improvement. However, the mechanism underlying this process remains incompletely elucidated. Starch, the predominant component in indica rice, plays a crucial role in determining its properties. This study focused on analyzing the rheological properties and starch fine structure, as well as the related biosynthetic enzymes of indica rice during the after-ripening process. The results showed that after-ripened rice exhibited increased elastic modulus (G') and viscous modulus (G″), accompanied by a decrease in the loss tangent (Tan δ), indicating an enhancement in viscoelasticity and the gel network structure. Moreover, the proportions of amylopectin super long chains (DP 37-60) decreased, while those of medium chains (DP 13-24 and DP 25-36) or short chains (DP 6-12) of amylopectin increased. Additionally, the activities of starch branching enzyme (SBE) and starch debranching enzyme (DBE) declined over the after-ripening period. Pearson correlation analysis revealed that the rheological properties of after-ripened rice were correlated with the chain length distribution (CLD) of starch, which, in turn, was associated with its related endogenous enzymes. These findings provied new insights into understanding the quality changes of after-ripened indica rice.
Collapse
Affiliation(s)
- Xiya Mo
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China; School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Hong Zhu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Jieyao Yuan
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, PR China
| |
Collapse
|
10
|
Ma Z, Zhu Y, Wang Z, Chen X, Cao J, Liu G, Li G, Wei H, Zhang H. Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta. Int J Biol Macromol 2024; 261:129918. [PMID: 38309388 DOI: 10.1016/j.ijbiomac.2024.129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Zhijie Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Shi H, Ding C, Yuan J. Effect and Mechanism of Soluble Starch on Bovine Serum Albumin Cold-Set Gel Induced by Microbial Transglutaminase: A Significantly Improved Carrier for Active Substances. Foods 2023; 12:4313. [PMID: 38231786 DOI: 10.3390/foods12234313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G') of the gel increased significantly, along with the addition of SS, and gelation time was also shortened from 41 min (SS free) to 9 min (containing 4.0% SS); the microstructure also became more and more dense. The results from FTIR, fluorescence quenching and circular dichroism (CD) suggested that SS could bind to BSA to form their composites, and the hydrogen bond was probably the dominant force. Moreover, the ability of SS to bind the original free water in BSA gel was relatively strong, thereby indirectly increasing the concentration of BSA and improving the texture properties of the gel. The acceleration of gelling could also be attributed to the fact that SS reduced the negative charge of BSA aggregates and further promoted the rapid formation of the gel. The embedding efficiency (EE) of quercetin in BSA-SS cold-set gel increased from 68.3% (SS free) to 87.45% (containing 4.0% SS), and a controlled-released effect was detected by simulated gastrointestinal digestion tests. The work could put forward new insights into protein gelation accelerated by polysaccharide, and provide a candidate for the structural design of new products in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Haoting Shi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Changsheng Ding
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Yu X, Wang L, Zhang J, Wang Z, Wang K, Duan Y, Xiao Z, Wang P. Understanding effects of glutelin on physicochemical and structural properties of extruded starch and the underlying mechanism. Carbohydr Polym 2023; 304:120513. [PMID: 36641194 DOI: 10.1016/j.carbpol.2022.120513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
This work studied effects of different amounts of rice glutelin (RG) on physicochemical and structural properties of extruded rice starch (ERS) and explored the underlying mechanism of interaction between rice starch and RG upon extrusion processing. The results showed that the addition of RG altered the pasting properties, improved the viscoelastic, and increased the water mobility of ERS. The weight loss of ERS decreased from 71.40 % to 62.61 %, while the degradation temperature increased from 290.48 °C to 296.25 °C as the RG content increased from 0 % to 12 %. The complex index of extruded starch-glutelin complexes significantly elevated from 10.40 % to 35.81 % when RG content increased from 6 % to 12 %. Fourier-transform infrared spectra confirmed that RG interacted with starch via Maillard reactions, and the binding strength between RG and starch was enhanced at a higher RG content. Furthermore, results of rheological property and chemical interactions demonstrated that hydrogen bonding, hydrophobic, and electrostatic interaction were formed between RG and starch during extrusion. In summary, the obtained results of this study can further enrich the theory of starch-protein interactions and show the possibility of RG applied in the extruded starchy foods.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lishuang Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junjie Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Zhenguo Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Kexin Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
13
|
Shao Y, Jiao R, Wu Y, Xu F, Li Y, Jiang Q, Zhang L, Mao L. Physicochemical and functional properties of the protein-starch interaction in Chinese yam. Food Sci Nutr 2023; 11:1499-1506. [PMID: 36911839 PMCID: PMC10003003 DOI: 10.1002/fsn3.3189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Protein-starch interaction has an important impact on the properties of starchy foods rich in protein, but the contribution of the interaction to Chinese yam still remains unclear. This study aimed to characterize the physicochemical and functional properties related to the possible interaction between starch and protein in Chinese yam. Differential scanning calorimetry and rapid viscosity analyzer results revealed that the gelatinization temperature increased in protein and starch cross-linked powder, while the peak viscosity and the setback viscosity decreased. The swelling power and solubility at 80°C and 95°C decreased with increasing protein ratio in the powder. In vitro starch digestibility test indicated that a high protein ratio could rapidly reduce digestible starch, but increase both slowly digestible starch and resistant starch. Protein could act as the physical barrier toward starch against heating and digestion to exert the influence on starch properties. Fourier transform infrared spectroscopy test revealed the interaction between protein and starch. These results revealed the role of protein-starch interaction and provided beneficial information for the utilization of Chinese yam.
Collapse
Affiliation(s)
- Yelin Shao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Ruize Jiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Yingyin Wu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Fangcheng Xu
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Yan Li
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Qiaojun Jiang
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare IndustryWenzhouChina
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
- Ningbo Research InstituteZhejiang UniversityNingboChina
| |
Collapse
|
14
|
Wang LS, Duan YM, Tong LF, Yu XS, Saleh ASM, Xiao ZG, Wang P. Effect of extrusion parameters on the interaction between rice starch and glutelin in the preparation of reconstituted rice. Int J Biol Macromol 2023; 225:277-285. [PMID: 36402395 DOI: 10.1016/j.ijbiomac.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Reconstituted rice produced by extrusion has been attracted attention due to nutritional fortification and convenient production. Nevertheless, how to achieve desirable qualities and physicochemical properties of reconstituted rice nearly to natural rice by regulating extrusion process parameters is difficult. Herein, rice starch/glutelin mixture as raw material of reconstituted rice was extruded at varying extrusion conditions. Specific mechanical energy (SME) and sectional expansion index (SEI) dropped with rise in density (R2 = 0.9117 and 0.8207). Solubility was enhanced with increase in product temperature (R2 = 0.9085), color darkened and shifted to reddish and yellowish as extrusion temperature increased (R2 = 0.8577). These trends were well fitted by sigmoid models. Furthermore, SME enhanced hydrophobic and electrostatic interactions between rice starch and glutelin and caused the reduction in crystallinity and thermal stability, promoting the formation of a bi-continuous matrix of protein aggregates with rice starch. The obtained results can be applied to guide the production of reconstituted rice with desirable qualities.
Collapse
Affiliation(s)
- Li-Shuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yu-Min Duan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Li-Feng Tong
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Xiao-Shuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Egypt
| | - Zhi-Gang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| | - Peng Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
15
|
Katherine Sofia TO, Sotelo-Díaz LI, Caez-Ramírez GR. Mechanical and rheological categorization of food patterns suitable for older adults with swallowing limitation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2140811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luz Indira Sotelo-Díaz
- Research group in food and process management and service, EICEA, Universidad de La Sabana, Chia, Colombia
| | - Gabriela R Caez-Ramírez
- Research Group in Procesos Agroindustriales, Engineering Faculty, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
16
|
Effect of Maltodextrin on the Physicochemical Properties and Cooking Performance of Sweet Potato Starch Noodles. Foods 2022; 11:foods11244082. [PMID: 36553824 PMCID: PMC9778636 DOI: 10.3390/foods11244082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Maltodextrin (MD), the hydrolyzed starch product, is a promising alternative ingredient to improve the quality of starch-based foods. The effects of MD on the physicochemical, microstructural, and cooking properties of sweet potato starch (SPS) noodles, as well as the mechanism of SPS-MD interactions, are discussed. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results indicated that MD at a suitable concentration can improve the ordered structure of SPS-MD gels. The cooking loss showed lower values of 1.47−2.16% at 0.5−2.0 wt% MD. For the texture properties, an increase in hardness and chewiness occurred at first with the addition of MD, followed by a decreasing trend, showing a maximum value at 2.0 wt% of MD. The pasting and thermal results verified the increased stability of the starch granules with MD < 3 wt%. Additionally, SPS formed a solid-like gel with MD, and the main interaction forces between SPS and MD were hydrogen bonding. The scanning electron microscopy results revealed that the higher concentrations of MD (>3 wt%) loosened the gel structure and markedly increased the pore size. These results help us to better understand the interaction mechanism of the SPS-MD complex and facilitate the development of SPS-based gel products.
Collapse
|
17
|
Dong H, Li Y, Jia C, Zhang B, Niu M, Zhao S, Xu Y. Mechanism behind the rheological property improvement of fava bean protein by the presence of dextran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Nie M, Piao C, Li J, He Y, Xi H, Chen Z, Wang L, Liu L, Huang Y, Wang F, Tong L. Effects of Different Extraction Methods on the Gelatinization and Retrogradation Properties of Highland Barley Starch. Molecules 2022; 27:molecules27196524. [PMID: 36235062 PMCID: PMC9573687 DOI: 10.3390/molecules27196524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to compare the gelatinization and retrogradation properties of highland barley starch (HBS) using different extraction methods. We obtained HBS by three methods, including alkali extraction (A-HBS), ultrasound extraction (U-HBS) and enzyme extraction (E-HBS). An investigation was carried out using a rapid viscosity analyzer (RVA), texture profile analysis (TPA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectrometry (FTIR). It is shown that the different extraction methods did not change the crystalline type of HBS. E-HBS had the lowest damaged starch content and highest relative crystallinity value (p < 0.05). Meanwhile, A-HBS had the highest peak viscosity, indicating the best water absorption (p < 0.05). Moreover, E-HBS had not only higher G′ and G″ values, but also the highest gel hardness value, reflecting its strong gel structure (p < 0.05). These results confirmed that E-HBS provided better pasting stability and rheological properties, while U-HBS provides benefits of reducing starch retrogradation.
Collapse
Affiliation(s)
- Mengzi Nie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxin Li
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue He
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihan Xi
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiying Chen
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| | - Litao Tong
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| |
Collapse
|
19
|
Wang C, Chao C, Yu J, Copeland L, Huang Y, Wang S. Mechanisms Underlying the Formation of Amylose- Lauric Acid-β-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10635-10643. [PMID: 35994717 DOI: 10.1021/acs.jafc.2c04523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to reveal the mechanisms underlying the formation of ternary complexes with a model system of amylose (AM), lauric acid (LA), and β-lactoglobulin (βLG) using experimental studies and molecular dynamics (MD) simulations. Experimental analyses showed that hydrophobic interactions and hydrogen bonds contributed more than electrostatic forces to the formation of the AM-LA-βLG complex. MD simulations indicated that interactions between AM and βLG through electrostatic forces and hydrogen bonds, and to a less extent van der Waals forces, and interactions between AM and LA through van der Waals forces, were mostly responsible for complex formation. The combination of experimental results and MD simulations has provided new mechanistic insights and led us to conclude that hydrophobic interactions, van der Waals forces between AM and LA, and van der Waals forces and hydrogen bonds between AM and βLG were the main driving forces for the formation of the AM-LA-βLG complex.
Collapse
Affiliation(s)
- Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales Australia 2006
| | - Yongchun Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
20
|
Pasting Properties of Various Waxy Rice Flours: Effect of α-Amylase Activity, Protein, and Amylopectin. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1636819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Waxy rice has a long history of being cultivated and consumed in China. In this study, the effect of different factors including α-amylase activity, protein, and amylopectin structure on the pasting properties of four waxy rice varieties were investigated. Rice flours were divided into four groups (Vietnam indica (VI), Jiangxi indica (JI), Anhui japonica (AJ), and Dongbei japonica (DJ) group) and treated with AgNO3 solution, DL-dithiothreitol (DTT), or protease (n = 3). Results suggested that both α-amylase activity and protein significantly decrease the pasting viscosity of waxy rice flours. Chain length distribution of amylopectin as measured by high performance ion exchange chromatography (HPAEC-PAD) showed that starch with a higher ratio of short chain leads to a higher pasting viscosity. X-Ray diffractograms showed that the crystal type of all the four varieties of rice starches were characteristic A-type. Relative crystallinity of each rice starch was further calculated, and higher crystallization resulted in a higher viscosity. Our study would provide a fundamental knowledge of the relationship between different factors and waxy starch pasting properties, as well as be a reference for controlling the quality of waxy rice starch-based food products.
Collapse
|
21
|
Ma X, Chen X, Yi Z, Deng Z, Su W, Chen G, Ma L, Ran Y, Tong Q, Li X. Size Changeable Nanomedicines Assembled by Noncovalent Interactions of Responsive Small Molecules for Enhancing Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26431-26442. [PMID: 35647653 DOI: 10.1021/acsami.2c04698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The size of nanocarriers strongly affects their performance in biological systems, especially the capacity to overcome various barriers before delivering the payloads to destinations. However, the optimum size varies at different delivery stages in cancer therapy due to the complicated tumor microenvironment. Relatively large particles are favored for long-term circulation in vivo, while smaller particles contribute to deep penetration into tumor tissues. This dilemma in the size of particles stimulates the development of stimuli-responsive size-shrinking nanocarriers. Herein, we report a facile strategy to construct a tumor-triggered tannic acid (TA) nanoassembly with improved drug delivery efficiency. Cystamine (CA), a small molecule with a disulfide bond, is thus used to mediate TA assembling via cooperative noncovalent interactions, which endows the nanoassembly with intrinsic pH/GSH dual-responsiveness. The obtained TA nanoassemblies were systematically investigated. DOX encapsulated nanoassembly labeled TCFD NP shows high drug loading efficiency, pH/GSH-responsiveness and significant size shrinkage from 122 to 10 nm with simultaneous drug release. The in vitro and in vivo experimental results demonstrate the excellent biocompatibility, sufficient intracellular delivery, enhanced tumor retention/penetration, and superior anticancer efficacy of the small-molecule-mediated nanoassembly. This noncovalent strategy provides a simple method to fabricate a tumor-triggered size-changeable delivery platform to overcome biological barriers.
Collapse
Affiliation(s)
- Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zhiwen Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
22
|
Li Y, Peng Z, Wu D, Shu X. Improving hydrophilicity of wheat starch via sodium dodecyl sulphate treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Li
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Zhangchi Peng
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| |
Collapse
|
23
|
Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: Effect on emulsion stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Mushtaq BS, AL-Ansi W, Dhungle A, Haq FU, Mahdi AA, Walayat N, Manzoor MS, Nawaz A, Fan M, Qian H, Jinxin L, Wang L. Influence of pretreatments combined with extrusion on γ-amino butyric acid, nutritional composition and physicochemical properties of foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Su Y, Wang Y, McClements DJ, Lu C, Chang C, Li J, Gu L, Yang Y. Selective adsorption of egg white hydrolysates onto activated carbon: Establishment of physicochemical mechanisms for removing phenylalanine. Food Chem 2021; 364:130285. [PMID: 34265582 DOI: 10.1016/j.foodchem.2021.130285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Previously, it was shown that activated carbon can remove phenylalanine from egg white hydrolysates to produce a low phenylalanine peptide ingredient that can be used by individuals suffering from phenylketonuria. However, the factors impacting the selective adsorption of phenylalanine and peptides to activated carbon is not fully understood, which is holding back the optimization of this process. In this research, two activated carbons with different morphologies and electrical characteristics were used to adsorb egg white hydrolysates with different degrees of hydrolysis. The selective adsorption behavior of the different constituents within the hydrolysates was studied to identify the nature of the adsorption mechanisms involved. The results showed that aromatic amino acids and components with higher molecular weight were preferentially adsorbed. Moreover, the main driving force for adsorption was hydrophobic attraction, followed by hydrogen bonding and electrostatic interactions. These results could facilitate the preparation of medical foods for patients with phenylketonuria.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuzhen Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - David Julian McClements
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China
| | - Cheng Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
Starch-protein interplay varies the multi-scale structures of starch undergoing thermal processing. Int J Biol Macromol 2021; 175:179-187. [PMID: 33549661 DOI: 10.1016/j.ijbiomac.2021.02.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
This work concerns how starch-protein interplay affects the multi-scale structures (e.g., short- and long-range orders, nanoscale structure and morphology) of starch undergoing thermal processing (pasting) involving heating and cooling at high water content. An indica rice starch (IRS) and three proteins (whey protein isolate, WPI; soy protein isolate, SPI; casein, CS) were used. By inspecting rheological profiles of mixed systems before and after adding chemicals, IRS-WPI and IRS-CS showed mainly hydrophobic molecular interaction; and IRS-SPI exhibited hydrophobic, hydrogen bonding and electrostatic interactions. The RVA results revealed that, with starch and proteins as controls, starch-globular protein (WPI or SPI) interplay accelerated the swelling of starch granules (faster viscosity increase at initial pasting stage), and reduced the paste stability during heating (higher breakdown) and during cooling (higher setback); however, the starch-casein interactions resulted in opposed effects. Moreover, starch-protein interactions varied the multi-scale chain reassembly of starch into different structures during cooling. Observed could be fewer short- and long-range starch orders, and larger nonperiod structure (or colloidal clusters) on the nanoscale. On even larger scale to micron, IRS-globular protein molecules generated larger grids (with reduced number) in the gel network, and IRS-casein formed a more continuous gel network with less prominent tunnel-like features.
Collapse
|
29
|
Xie J, Ren Y, Xiao Y, Luo Y, Shen M. Interactions between tapioca starch and Mesona chinensis polysaccharide: Effects of urea and NaCl. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Karrar E, Mahdi AA, Sheth S, Mohamed Ahmed IA, Manzoor MF, Wei W, Wang X. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int J Biol Macromol 2020; 171:208-216. [PMID: 33310099 DOI: 10.1016/j.ijbiomac.2020.12.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the potential of maltodextrin (MD) combination with gum arabic (GA), and whey protein isolate (WPI) on the microencapsulation of gurum seeds oil by a spray-drying method. Three formulations of protein-based (PB) (WPI: MD, 2:1), carbohydrate-based (CHOB) (GA: MD, 2:1), and mixed (MIX) (WPI: GA: MD, 1:1:1) wall materials were designed. The moisture content and water activity were in the range of 1.65-3.67% and 0.17-0.31, respectively, which is suitable for long-term storage. The best results were achieved when gurum seed oil was microencapsulated with carbohydrate-based, where it had the highest microencapsulation yield (92.80%) and microencapsulation efficiency (97.38%). Carbohydrate-based showed the highest relative crystallinity (32.25%) and the temperature of the glass transition (58.20 °C). FT-IR revealed that the oil was well encapsulated in the microcapsules. SEM of microcapsules showed spherical shapes without any apparent cracking on the surfaces. During the oxidative stability study, carbohydrate-based microencapsulation was the wall material that best protected the active materials against lipid oxidation.
Collapse
Affiliation(s)
- Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Engineering, Faculty of Engineering, University of Gezira, Wad Medani, Sudan
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Isam A Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wei Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
31
|
Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. Int J Biol Macromol 2020; 164:427-433. [DOI: 10.1016/j.ijbiomac.2020.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
|
32
|
Park J, Sung JM, Choi YS, Park JD. Effect of natural fermentation on milled rice grains: Physicochemical and functional properties of rice flour. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Application of argun fruit polysaccharide in microencapsulation of Citrus aurantium L. essential oil: preparation, characterization, and evaluating the storage stability and antioxidant activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Mahdi AA, Mohammed JK, Al-Ansi W, Ghaleb AD, Al-Maqtari QA, Ma M, Ahmed MI, Wang H. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. Int J Biol Macromol 2020; 152:1125-1134. [DOI: 10.1016/j.ijbiomac.2019.10.201] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
|
35
|
Ma M, Wen Y, Qiu C, Zhan Q, Sui Z, Corke H. Milling affects rheological and gel textural properties of rice flour. Cereal Chem 2019. [DOI: 10.1002/cche.10236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengting Ma
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Yadi Wen
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Chen Qiu
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Qian Zhan
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Zhongquan Sui
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Harold Corke
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
36
|
Azizi R, Capuano E, Nasirpour A, Pellegrini N, Golmakani MT, Hosseini SMH, Farahnaky A. Varietal differences in the effect of rice ageing on starch digestion. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
The thiolated chitosan: Synthesis, gelling and antibacterial capability. Int J Biol Macromol 2019; 139:521-530. [PMID: 31377297 DOI: 10.1016/j.ijbiomac.2019.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
Abstract
Chitosan-1-(mercaptomethyl)-cyclopropane acetic acid (CS-MCA) copolymer was synthesized by amino linkage. The obtained copolymer was characterized by FTIR, 1H NMR, XRD, TGA and SEM. Porous and reticulate morphologies were found on the CS-MCA surface. The effects of pH on the rheological properties of CS-MCA were investigated. On the one hand, the apparent viscosity of CS-MCA indicated a shear-thinning behavior. The graft of MCA enhanced the moduli and the maximum elastic properties were observed at pH = 7.00. The addition of dithiothreitol reduced the viscosity and modulus of CS-MCA hydrogel, and the gelation time, temperature and frequency were obtained in dynamic oscillatory tests. The antibacterial effect of CS-MCA against E. coli was investigated for the inhibition zone and bacterial growth curve. These results showed that CS-MCA had better antibacterial ability than chitosan without modification. Therefore, the rheological behavior and functional activities can be applied for the hydrocolloid gels in food and pharmaceutical applications.
Collapse
|
38
|
Pan T, Lin L, Zhang L, Zhang C, Liu Q, Wei C. Changes in kernel properties,
in situ
gelatinization, and physicochemical properties of waxy rice with inhibition of starch branching enzyme during cooking. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Pan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Changquan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| |
Collapse
|