1
|
Du J, Lu Z, Cheng K, Li C, Wu H, Xu B, Qian JY. Relationship between starch granule-associated proteins and in vitro digestibility of buckwheat starches: From the perspective of gelatinization degree. Food Chem 2025; 473:143115. [PMID: 39892339 DOI: 10.1016/j.foodchem.2025.143115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
To elucidate the impacts of starch granule-associated proteins (SGAPs) from buckwheat starch (BS) on structural changes and digestibility during hydrothermal treatment, BS before and after partial extraction of SGAPs were heated at 25, 65, 95 °C to achieve different degree of gelatinization (DG). Divide the effects into three categories: (1) native granule state: partial extraction of SGAPs enlarged the pores in starches, increased the effective surface area for amylases bind with substrates, thus accelerated the digestion rate; (2) partial gelatinized state: partial extraction of SGAPs led to an augmentation in starch digestion rate due to higher DG and increased content of leached starch; (3) fully gelatinized state: the digestion process of starch with partially extracted SGAPs was faster at the later phase, primarily attributed to the lower integrity of residual granular fragments/ghosts. This finding demonstrated that the presence of SGAPs slowed down digestion progress of BS across various gelatinization states.
Collapse
Affiliation(s)
- Jin Du
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhen Lu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Kai Cheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Changfeng Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hao Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Cao H, Wang X, Zhang Y, Song H, Liu C, Huang K, Lu J, Grimi N, Guan X. Enhancing the texture and modulating digestive behavior of gluten-free quinoa sponge cakes via microwave-assisted alkaline amino acid treatment. Food Chem 2025; 470:142699. [PMID: 39742602 DOI: 10.1016/j.foodchem.2024.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
This study investigated the effects of microwave treatment combined with lysine and arginine on gluten-free quinoa sponge cakes. The results indicated that the addition of these amino acids during microwave treatment significantly increased the cakes' specific volume by 49 %. X-ray diffraction analysis revealed that cake crystallinity reached 56.23 % and 49.17 % when lysine and arginine were used, respectively. Fourier Transform Infrared spectroscopy showed confirmed the absence of new functional groups or chemical bonds under different treatments, but the absorbance ratio at 1047 cm-1 to 1022 cm-1 was higher in microwave-treated cakes with lysine compared to traditionally steamed cakes. Simulated digestion experiments demonstrated that microwave-treated cakes, especially with added amino acids, exhibited higher protein digestibility but lower starch digestibility. Confocal Laser Scanning Microscopy observations further showed that proteins formed a denser network structure around starch granules during in vitro digestion, suggesting improved protein functionality and structure in microwave-treated quinoa sponge cakes.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Caiyun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jun Lu
- Auckland Bioengineering Institute, the University of Auckland, Auckland 1142, New Zealand
| | - Nabil Grimi
- Sorbonne Universités, Laboratoire de Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, France
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
3
|
Zhou X, Chen Y, Feng P, Shen J, Fan X, Chen Y, Yu W. Fine structure of starch biomacromolecules and digestibility: The regulative role of amylose and amylopectin in the digestive hydrolysis of starch in rice. Carbohydr Polym 2025; 350:123040. [PMID: 39647944 DOI: 10.1016/j.carbpol.2024.123040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024]
Abstract
The digestibility of starch in staple foods has rarely been examined at the bio-macromolecular level. This study addresses this by investigating the fine structures of amylose and amylopectin to understand their roles in starch digestibility in cooked white rice. Using the static INFOGEST protocol and oral processing by human volunteers, we assessed the starch digestion characteristics of 13 rice varieties, with amylose and amylopectin chain length distribution being analyzed using size-exclusion chromatography and high-performance anion exchange chromatography, respectively. Kinetic modelling revealed that chewed white rice follows a typical parallel digestion pattern, with rapidly (SF) and slowly digestible starch (SS) being digested simultaneously at distinctly different rates. Amylose content (AC) and amylose weight were significantly and positively correlated with the digestion rate and extent of SS, whereas the digestion rate and extent of SF were closely linked to amylopectin, particularly its short and intermediate chains (degree of polymerization 13-36). Compared to low-amylose rice (AC < 25 %), high-amylose rice exhibited significantly higher SS but with a lower digestion rate, attributed to its higher AC with shorter chains and fewer short to intermediate Ap branches. These findings provide insights into starch structure-digestibility relationships, aiding the development of rice varieties with slower digestion rates.
Collapse
Affiliation(s)
- Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China
| | - Yitao Chen
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou City, China
| | - Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China
| | - Jinqi Shen
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yuan Chen
- Jiangnan Tao of Rice Jiangsu Technology Co., Ltd, Yixing 214203, Jiangsu, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China.
| |
Collapse
|
4
|
Huang R, Huang K, Song H, Li S, Guan X. Evaluation of extruded quinoa flour on dough rheology and white salted noodles quality. J Food Sci 2025; 90:e17646. [PMID: 39898977 DOI: 10.1111/1750-3841.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
White salted noodles are popular staples in Asia, but the ones with limited nutrient composition and high glycemic value still present significant concerns. This study investigated the potential of incorporating extruded quinoa flour (EQF) into wheat flour to enhance nutrient quality and reduce the starch digestibility of composite noodles. Moreover, the effect of EQF addition on the rheological properties of wheat dough and the cooking properties of composite noodles was also studied. The results showed that increasing the proportion of EQF in the composite flour led to a decrease in pasting viscosities and an increase in pasting temperatures, indicating that EQF inhibits starch gelatinization and retrogradation. The incorporation of EQF increased water absorption and softening degree while decreasing dough development time and viscoelasticity. The cooked noodles exhibited a significant reduction in water absorption, hardness, chewiness, and springiness, while an increase in cooking loss following EQF addition. Notably, noodles supplemented with EQF exhibited reduced overall starch digestibility with an increased digestion rate. Collectively, our results showed that substituting 10-20% EQF for wheat flour in noodles effectively lowered total starch digestibility and avoided high cooking loss. This study will have implications for the industrial application of quinoa as a staple food.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2025; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
6
|
Zhu J, Gilbert RG. Starch molecular structure and diabetes. Carbohydr Polym 2024; 344:122525. [PMID: 39218548 DOI: 10.1016/j.carbpol.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Feng P, Zhou X, Yu W. Study of starch molecular structure-property relations provides new insight into slowly digested rice development. Food Res Int 2024; 194:114887. [PMID: 39232521 DOI: 10.1016/j.foodres.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.
Collapse
Affiliation(s)
- Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|
8
|
Zhu J, Liu Q, Gilbert RG. The effects of chain-length distributions on starch-related properties in waxy rices. Carbohydr Polym 2024; 339:122264. [PMID: 38823928 DOI: 10.1016/j.carbpol.2024.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Xing B, Zou L, Liu J, Liang Y, Wang N, Zhang Z, Qiao J, Ren G, Zhang L, Qin P. The importance of starch chain-length distribution for in vitro digestion of ungelatinized and retrograded foxtail millet starch. Food Res Int 2024; 189:114563. [PMID: 38876595 DOI: 10.1016/j.foodres.2024.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
10
|
Qi K, Cao S, Li C. Possible interaction between pectin and gluten alters the starch digestibility and texture of wheat bread. Int J Biol Macromol 2024; 269:131907. [PMID: 38677676 DOI: 10.1016/j.ijbiomac.2024.131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
This study incorporated citrus pectin in wheat bread, aiming to develop breads with both desirable texture and slow starch digestibility. Results showed that starch digestibility in wheat bread decreased over the addition of pectin, and the maximum starch digested amount decreased by 6.6 % after the addition of 12 % pectin (wheat flour weight basis). The addition of pectin transferred part of the rapidly digestible starch into slowly digestible starch, and reduced the binding rate constant between slowly digestible starch and digestive enzymes, resulting in overall reduced starch digestibility. Furthermore, the addition of 4 % pectin contributed to the development of wheat bread with softer texture and increased specific volume. Mechanistically, the lowered starch digestibility of wheat bread after the pectin addition was due to (1) residual outermost swollen layer of starch granules, (2) protein and pectin interactions, and (3) increased short-range ordering of starch. This study, therefore, suggests that the addition of an appropriate amount of citrus pectin has the potential to develop bread with both a low glycemic index and desirable texture.
Collapse
Affiliation(s)
- Kaixin Qi
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Senbin Cao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
11
|
Li C, Shao S, Yi X, Cao S, Yu W, Zhang B, Liu H, Gilbert RG. Influence of Storage Temperature on Starch Retrogradation and Digestion of Chinese Steamed Bread. Foods 2024; 13:517. [PMID: 38397494 PMCID: PMC10888248 DOI: 10.3390/foods13040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Chinese steamed bread (CSB), which is widely consumed in East Asia, usually undergoes storage before consumption, but it is unclear how different storage temperatures affect CSB starch retrogradation and digestion properties, which are important for consumers. CSB was stored for 2 days at 25 °C, 4 °C, -18 °C, 4 °C/25 °C temperature cycling (i.e., 24 h at 4 °C, followed by 24 h at 25 °C) and -18 °C/ 25 °C temperature cycling. The results revealed for the first time that more orderly starch double helices are formed when CSB was stored at 4 °C or 4 °C/25 °C. Storage under -18 °C produced lower amounts of, but more heterogenous, starch double helices, with fewer B-type, but more V-type, crystallites. Compared to other storage temperatures, more long-range intermolecular interactions formed between the starch and protein at 4 °C or 4 °C/25 °C. CSB samples showed the slowest starch digestibility when stored at 4 °C. The impact of storage temperature on the starch retrogradation properties and digestibility of CSB also depended on the wheat variety, attributed to differences in the starch molecular structure. These results have significance and practical applications to help the CSB food industry to control starch retrogradation and digestibility. For example, CSB could be stored at 4 °C for 2 days in order to reduce its starch digestibility.
Collapse
Affiliation(s)
- Cheng Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Shuaibo Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Senbin Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou 510632, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Robert G. Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Wang Y, Saulnier L, Ral JP, Falourd X, Kansou K. Determining whether granule structural or surface features govern the wheat starch digestion, a kinetic analysis. Carbohydr Polym 2023; 315:120966. [PMID: 37230611 DOI: 10.1016/j.carbpol.2023.120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Deciphering the determinants of starch digestion from multiple interrelated properties is a challenge that can benefit from multifactorial data analysis. The present study investigated the digestion kinetic parameters (rate, final extent) of size-fractions from four commercial wheat starches with different amylose contents. Each size-fraction was isolated and characterized comprehensively using a large range of analytic techniques (FACE, XRD, CP-MAS NMR, time-domain NMR, DSC…). A statistical clustering analysis applied on the results revealed that the mobility of water and starch protons measured by time-domain NMR was consistently related to the macromolecular composition of the glucan chains and to the ultrastructure of the granule. The final extent of starch digestion was determined by the granule structural features. The digestion rate coefficient dependencies, on the other hand, changed significantly with the range of granule size, i.e. the accessible surface for initial binding of α-amylase. The study particularly showed the molecular order and the chains mobility predominantly limiting or accelerating the digestion rate depending on the accessible surface. This result confirmed the need to differentiate between the surface and the inner-granule related mechanisms in starch digestion studies.
Collapse
Affiliation(s)
- Yuzi Wang
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| | - Luc Saulnier
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia.
| | - Xavier Falourd
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France.
| | - Kamal Kansou
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| |
Collapse
|
13
|
Huang HH, Liao HJ. Digestion kinetics and molecular structural evolution during in vitro digestion of green banana (cv. Giant Cavendish) starch nanoparticles. Food Res Int 2023; 170:113016. [PMID: 37316082 DOI: 10.1016/j.foodres.2023.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Knowledge of digestion mechanism of starch nanoparticles are crucial for their utilization and potential applications. In this study, molecular structural evolution and digestion kinetics of starch nanoparticles from green banana (GBSNPs) during digestion (0-180 min) was investigated. Distinctive topographic changes of the GBSNPs during digestion with decreased particle size and increased surface roughness were detected. The GBSNPs showed markedly decreased average molecular weight and polydispersity in the initial digestion phase (0-20 min), and these two structural characteristics remained nearly unchanged thereafter. The GBSNPs exhibited a B-type polymorph throughout digestion, while their crystallinity decreased with increasing digestion duration. The infrared spectra revealed that the initial digestion phase led to the increased absorbance ratios 1047/1022 and 1047/1035 cm-1, reflecting the markedly increased short-range molecular order that was substantiated by the blue-shifting of COH-bending band. Logarithm of slope analysis of digestogram revealed that the GBSNPs were digested by a two-phase process that reflected the surface barrier effect exerted by the increased short-range order. The short-range molecular order strengthening induced from the initial digestion phase was responsible for the increased enzymatic resistance. The results can help to elucidate the gastrointestinal fate of starch nanoparticles for their potential applications as health-promoting ingredients.
Collapse
Affiliation(s)
- Hsin-Hui Huang
- Department of Food Science, National Chiayi University, No. 300 Syuefu Road, Chiayi City 600355, Taiwan, ROC
| | - Hung-Ju Liao
- Department of Food Science, National Chiayi University, No. 300 Syuefu Road, Chiayi City 600355, Taiwan, ROC.
| |
Collapse
|
14
|
Lin J, Li C. Influence of instant rice characteristics and processing conditions on starch digestibility-A review. J Food Sci 2023. [PMID: 37326341 DOI: 10.1111/1750-3841.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Instant rice is increasingly popular around the world due to its convenience, but it commonly has a high glycemic index, and a frequent consumption might contribute to the occurrence of many chronic diseases. In this review, the main factors determining starch digestibility of instant rice were comprehensively evaluated, aiming to help the rice industry develop instant rice with slow starch digestibility. Starch digestibility in instant rice can be reduced by manipulating its intrinsic and extrinsic nutrients. Processing conditions, including pre-gelatinization, storage, and reheating are also important for the starch digestibility of instant rice. Individual differences in terms of glycemic response to the same carbohydrate-based diet should be considered when knowledge is transformed from in vitro method to human conditions. This review contains important information that has the potential to reduce the starch digestibility of instant rice and improve public health.
Collapse
Affiliation(s)
- Jiakang Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Li C. Structural basis for rice starch multi-digestible fractions revealed by consecutive reaction kinetics model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4203-4210. [PMID: 36641546 DOI: 10.1002/jsfa.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch-based foods (e.g. rice) usually contain multiple starch fractions with distinct digestion rate constants, although their nature is currently unknown. The present study applied the recently developed consecutive reaction kinetics model to fit the in vitro digestion curves for starch fractions deconvoluted from the overall digestograms to differentiate their binding and catalysis rates to starch digestive enzymes. The fitting parameters were then correlated with starch molecular structures obtained from published data to understand starch structural features determining the binding and catalytic rate constants. RESULTS Binding and catalysis rates for the rapidly (RDF) and slowly digestible starch fraction (SDF) were controlled by distinct starch structural features. Typically, (i) the binding rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, whereas it was positively correlated with the relative length of amylopectin intermediate chains; (ii) the catalysis rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, relative length of amylose intermediate chains and amount of amylopectin long chains, whereas it was positively correlated with starch molecular size as well as relative length of amylopectin intermediate chains; (iii) and the catalysis rate constant for SDF was negatively correlated with the amount of amylopectin long chains, whereas it was positively correlated with starch molecular size. CONCLUSION These results provide a better understanding of the nature of different starch digestible fractions and the development of foods such as rice with slow starch digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Hu N, Zhao C, Li S, Qi W, Zhu J, Zheng M, Cao Y, Zhang H, Xu X, Liu J. Postharvest ripening of newly harvested corn: Structural, rheological, and digestive characteristics of starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Li C, Li S. A procedure for determining the number and pattern of digestible starch fractions in multiphasic food digestograms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1651-1659. [PMID: 36326592 DOI: 10.1002/jsfa.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
19
|
Shao S, Li E, Yu S, Yi X, Zhang X, Yang C, Gilbert RG, Li C. Subtle differences in starch fine molecular structure are associated with large differences in texture and digestibility of Chinese steamed bread. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Shao S, Yi X, Li C. Main factors affecting the starch digestibility in Chinese steamed bread. Food Chem 2022; 393:133448. [PMID: 35751217 DOI: 10.1016/j.foodchem.2022.133448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Chinese steamed bread (CSB) is one of the staple foods in China, although it has a high glycemic index (GI) value. Development of CSB with a slower starch digestibility is thus of great importance for the improvement of human health. Many factors are related to the starch digestibility in CSB. Most currently available strategies are focusing on the incorporation of other whole flours with high dietary fiber or polyphenols to reduce the starch digestibility. Although successful in reducing starch digestibility, the incorporation of these flours also deteriorated textural attributes and sensory characteristics of CSB. Much more strategies have been applied for the reduction of starch digestibility in breads, which should be further explored to confirm if they are applicable for CSB. This review contains important information, that could potentially turn CSB into a much healthier food product with slower starch digestibility.
Collapse
Affiliation(s)
- Shuaibo Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
21
|
Huang R, Huang K, Guan X, Zhang J, Zhang P. Incorporation of defatted quinoa flour affects in vitro starch digestion, cooking and rheological properties of wheat noodles. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Pautong PA, Añonuevo JJ, de Guzman MK, Sumayao R, Henry CJ, Sreenivasulu N. Evaluation of in vitro digestion methods and starch structure components as determinants for predicting the glycemic index of rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Addition of amino acids modulates the in vitro digestibility of corn starch. Carbohydr Polym 2022; 293:119745. [DOI: 10.1016/j.carbpol.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
24
|
Effect of enzymatic hydrolysis on digestibility and morpho-structural properties of hydrothermally pre-treated red rice starch. Int J Biol Macromol 2022; 222:65-76. [PMID: 36108753 DOI: 10.1016/j.ijbiomac.2022.09.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
The objective of this work was to evaluate the effects of enzymatic hydrolysis on digestibility and morphological and structural properties of hydrothermally pre-treated (HPT) red rice starch. The pre-treatments were performed in autoclave and cooking for the modification of rice grains and native starch. In vitro starch digestibility was performed consecutively and semi-simultaneously using α-amylase and amyloglucosidase. A first-order mathematical model was used to adjust the hydrolysis kinetic data, which made it possible to calculate the surface area, hydrolysis index, and glycemic index of the starch. Scanning electron microscopy images (SEM), Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) were also performed to investigate the characteristics of the post-hydrolysis starch samples. The autoclaved starch HSS-A3, which was subjected to 121 °C/1.08 bar for 10 min, showed the highest in vitro digestibility values (80.08 %). Both starch samples showed increase of particle size and enzymatic digestibility after HPT. FTIR spectra of the starch samples showed that there was no appearance of new functional groups. However, XRD evidenced that HPT changed the intensity of the peaks and the type of crystallinity was changed for autoclaved starch (A3) from type A to Vh, with crystallinity ranging from 21.71 % to 26.42 %. The semi-simultaneous approach showed more advantages due to the highest in vitro digestibility as well as reducing the processing time and use of reagents.
Collapse
|
25
|
|
26
|
Zhang J, Li C, Wang G, Cao J, Yang X, Liu X, Sun L. α-Amylase inhibition of a certain dietary polyphenol is predominantly affected by the concentration of α-1, 4-glucosidic bonds in starchy and artificial substrates. Food Res Int 2022; 157:111210. [DOI: 10.1016/j.foodres.2022.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
27
|
Combined effects of starch fine molecular structures and water content on starch digestibility of cooked white rice. Int J Biol Macromol 2022; 215:192-202. [PMID: 35728634 DOI: 10.1016/j.ijbiomac.2022.06.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023]
Abstract
Although the starch digestibility of cooked white rice has been investigated with regard to its relation to starch structure, it is not yet clear how starch molecular structure and water content affect its digestion rate. To investigate this, the in vitro starch digestibility and molecular structure of 10 rice varieties with a range of rice-to-water cooking ratios were investigated. As expected, starch digestibility varied with different conditions. Typically, a higher amylose content resulted in a lower maximum digestion extent for a given water content. Having relatively more and longer amylopectin intermediate chains caused a slower starch digestion rate, but only with rice-to-water ratios between 1:1 and 1:1.2. These results could prove useful to find combinations of starch fine molecular structures and water contents to produce cooked rice with low glycemic index.
Collapse
|
28
|
Li D, Yao X, Yang Y, Cao G, Yi G. In vitro digestibility and fermentability profiles of wheat starch modified by chlorogenic acid. Int J Biol Macromol 2022; 215:92-101. [PMID: 35718148 DOI: 10.1016/j.ijbiomac.2022.06.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
This study was designed to investigate the effect of chlorogenic acid (CA) on starch digestibility and fermentability in vitro. Compared with wheat starch (WS), WS-CA complexes exhibited a looser porous gel matrix, and higher solubility and swelling power with the addition of different proportion of CA. The WS-CA complexes significantly reduced the digestive rate of the gelatinized WS, and increased the proportion of resistant starch (RS) ranging from 31.70 % to 69.63 % much higher than that in the gelatinized WS (26.34 %). The residual WS-CA complexes after 24 h of fermentation with human feces induced the production of short-chain fatty acid, as well as the proliferation of gut microbiota such as genera Megamonas and Parabacteroides positively associated with the improvement of human health. The results suggest that complex of starch and CA could be a promising method for developing starchy foods with lower starch hydrolysis and promoting the growth of probiotics.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yongli Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
29
|
Zhao Y, Henry RJ, Gilbert RG. Testing the Linearity Assumption for Starch Structure-Property Relationships in Rices. Front Nutr 2022; 9:916751. [PMID: 35677552 PMCID: PMC9168890 DOI: 10.3389/fnut.2022.916751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Many properties of starch-containing foods are significantly statistically correlated with various structural parameters. The significance of a correlation is judged by the p-value, and this evaluation is based on the assumption of linear relationships between structural parameters and properties. We here examined the linearity assumption to see if it can be used to predict properties at conditions that are not close to those under which they were measured. For this we used both common domesticated rices (DRs) and Australian wild rices (AWRs), the latter having significantly different structural parameters and properties compared to DRs. The results showed that (1) the properties were controlled by more than just the amylopectin or amylose chain-length distributions or amylose content, other structural features also being important, (2) the linear model can predict the enthalpy ΔHg of both AWRs and DRs from the structural parameters to some extent but is often not accurate; it can predict the ΔHg of indica rices with acceptable accuracy from the chain length distribution and the amount of longer amylose chains (degree of polymerization > 500), and (3) the linear model can predict the stickiness of both AWRs and DRs to acceptable accuracy in terms of the amount of longer amylose chains. Thus, the commonly used linearity assumption for structure-property correlations needs to be regarded circumspectly if also used for quantitative prediction.
Collapse
Affiliation(s)
- Yingting Zhao
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G. Gilbert
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
31
|
Nguyen TTL, Flanagan BM, Tao K, Ni D, Gidley MJ, Fox GP, Gilbert RG. Effect of processing on the solubility and molecular size of oat β-glucan and consequences for starch digestibility of oat-fortified noodles. Food Chem 2022; 372:131291. [PMID: 34638062 DOI: 10.1016/j.foodchem.2021.131291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 11/04/2022]
Abstract
White wheat salted noodles containing oats have a slower digestion rate those without oats, with potential health benefits. Oat β-glucan may play an important role in this. Effects of sheeting and shearing during noodle-making and subsequent cooking on β-glucan concentration, solubility, molecular size and starch digestibility were investigated. The levels of β-glucan were reduced by 16% after cooking, due to the loss of β-glucan into the cooking water. Both the noodle-making process and cooking increased the solubility of β-glucan but did not change its average molecular size. Digestion profiles show that β-glucan in wholemeal oat flour did not change starch digestion rates compared with isolated starch, but reduced the starch digestion rate of oat-fortified wheat noodles compared to the control (wheat noodles). Confocal laser scanning microscopy suggests that interaction between β-glucan and protein contributes to the starch-protein matrix and changes noodle microstructure, and thus alters their digestibility.
Collapse
Affiliation(s)
- Thoa T L Nguyen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia; Faculty of Chemical Engineering, University of Science and Technology, The University of Danang, Danang 50000, Viet Nam
| | - Bernadine M Flanagan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Keyu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Dongdong Ni
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Michael J Gidley
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia; Department of Food Science and Technology, University of California Davis, CA 95616, USA
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia.
| |
Collapse
|
32
|
Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods 2022; 11:foods11040511. [PMID: 35205988 PMCID: PMC8871513 DOI: 10.3390/foods11040511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cooked high-amylose rices, such as Australian wild rice (AWR) varieties, have slower digestion rates, which is nutritionally advantageous, but may have inferior eating qualities. Here, a comparison is made between sensory and starch molecular fine structure properties, and volatile compounds, of polished AWR varieties and some commercial rices (CRs). Starch structural parameters for amylopectin (Ap) and amylose (Am) were obtained using fluorophore-assisted capillary electrophoresis and size-exclusion chromatography. Volatile compounds were putatively using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Sensory properties were evaluated by a trained panel. AWR had a disintegration texture similar to that of Doongara rice, while AWR had a resinous, plastic aroma different from those of commercial rice varieties. Disintegration texture was affected by the amounts of Ap short chains, resinous aroma by 2-heptenal, nonadecane, 2h-pyran, tetrahydro-2-(12-pentadecynyloxy)-, and estra-1,3,5(10)-trien-17β-ol, and plastic aroma by 2-myristynoyl pantetheine, cis-7-hexadecenoic acid, and estra-1,3,5(10)-trien-17β-ol. These findings suggest that sensory properties and starch structures of AWR varieties support their potential for commercialization.
Collapse
|
33
|
Butterworth PJ, Bajka BH, Edwards CH, Warren FJ, Ellis PR. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci Technol 2022; 120:254-264. [PMID: 35210697 PMCID: PMC8850932 DOI: 10.1016/j.tifs.2021.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.
Collapse
Key Words
- AMY1, human salivary α-amylase gene
- AMY2, human pancreatic α-amylase gene
- Alpha-amylase
- BMI, body mass index
- CE, catalytic efficiency
- CVD, cardiovascular disease
- Enzyme kinetics
- Fto, alpha-oxoglutarate-dependent dioxygenase gene
- GI, glycaemic index
- GIT, gastrointestinal tract
- GL, glycaemic load
- GLUT2, glucose transporter 2
- Gene copy number
- HI, hydrolysis index
- IC50, inhibitor concentration causing 50% inhibition
- LOS, logarithm of slope plot
- Metabolic significance
- RDS, rapidly digestible starch
- RS, resistant starch
- Resistant starch
- SCFAs, short chain fatty acids
- SDS, slowly digestible starch
- SGLT1, sodium-dependent glucose co-transporter
- Starch digestion
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Peter J. Butterworth
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Balázs H. Bajka
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Frederick J. Warren
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Peter R. Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
34
|
Huang J, Wang Z, Fan L, Ma S. A review of wheat starch analyses: Methods, techniques, structure and function. Int J Biol Macromol 2022; 203:130-142. [PMID: 35093434 DOI: 10.1016/j.ijbiomac.2022.01.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Wheat starch has received much attention as an important source of dietary energy for humans, an interesting carbohydrate and a polymeric material. The understanding of the structure and function of wheat starch has always been accompanied by newer technological tools. On the one hand, the general knowledge of wheat starch is constantly being enriched. On the other hand, an increasing number of studies are trying to add new insights to what is already known from two frontier perspectives, namely, wheat starch supramolecular structures and wheat starch fine structures (CLDs). This review describes the structure and function of wheat starch from the perspective of wheat starch analysis techniques (instruments).
Collapse
Affiliation(s)
- Jihong Huang
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ling Fan
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
35
|
Govindaraju I, Zhuo GY, Chakraborty I, Melanthota SK, Mal SS, Sarmah B, Baruah VJ, Mahato KK, Mazumder N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Hu S, Deng H, Liu R, Yu W. Molecular brewing: The molecular structural effects of starch adjuncts on barley malt brewing performances. Int J Biol Macromol 2021; 193:661-671. [PMID: 34717974 DOI: 10.1016/j.ijbiomac.2021.10.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
In this study, the effects of starch adjuncts with different fine molecular structures obtained by size-exclusion chromatography on the mashing and fermentation efficiencies of barley malts were investigated. Following fermentation, violate compounds of freshly-fermented beer samples were determined by headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis (HS-SMPE-GC-MS). High performance liquid chromatography results showed that depending on their molecular structures, starch adjuncts addition significantly increased wort maltose and maltotriose content, whereas reducing the glucose content and thus both the ratios of glucose and maltotriose to that of the maltose. The whole fermentation by dry beer yeast was finished within the first 48 h and reached to equilibrium for the rest 72 h, represented by the stable soluble protein content. Results also showed that the addition of starch adjuncts resulted into increased alcohol content, which was mainly attributed to the altered glucose/maltose ratio. The HS-SPME-GC-MS results showed that whether or not with starch adjuncts addition, the composition of violate compounds were not significantly influenced, their content, on the contrary, were altered, represented by different peak heights. This study provides important information concerning the molecular effects of starch adjuncts on brewing performances of barley malts, and also provides a new pathway for choosing suitable types of adjuncts for making beer with better quality.
Collapse
Affiliation(s)
- Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Hutai Deng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Renhan Liu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| |
Collapse
|
37
|
Li C, Ji Y, Li E. Understanding the Influences of Rice Starch Fine Structure and Protein Content on Cooked Rice Texture. STARCH-STARKE 2021. [DOI: 10.1002/star.202100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Yi Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| |
Collapse
|
38
|
Shen Y, Wu D, Fogliano V, Pellegrini N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct 2021; 12:11547-11556. [PMID: 34708854 DOI: 10.1039/d1fo03039f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amount and distribution of rice endosperm lipids can influence starch digestibility and nutritional properties of white rice. However, this aspect has been poorly investigated thus far. We investigated the digestion properties of five rice varieties and common rice having different lipid contents (8.1-24.2 g kg-1) showing that the lipid content is positively correlated with the resistant starch content and negatively correlated with digestion extent (C∞) and estimated glycemic index (eGI). After non-starch lipid (NSL) removal from selected high-lipid mutants (ALK3 and RS4), C∞ was significantly enhanced compared to native samples when digested by α-amylase, while this phenomenon was not observed in low-lipid rice (GZ93). When pancreatin was used, starch digestion was only delayed; triglycerides were gradually hydrolyzed by pancreatic lipase and the lipids-starch complex became no longer resistant to hydrolysis by α-amylase. These results indicated that rice endosperm lipids inhibited starch digestion, by transforming part of the starch into a slowly digestible starch fraction. High-lipid mutants also had a higher total amount of, and more bioaccessible, γ-oryzanol than low-lipid varieties. This study indicates that high-lipid white rice has great potential in designing functional rice-based foods, combining a relatively lower eGI and a high γ-oryzanol content.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, PR China
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy.
| |
Collapse
|
39
|
In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021; 20:5965-5991. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Starch is the most abundant glycemic carbohydrate in the human diet. Consumption of starch-rich food products that elicit high glycemic responses has been linked to the occurrence of noncommunicable diseases such as cardiovascular disease and diabetes mellitus type II. Understanding the structural features that govern starch digestibility is a prerequisite for developing strategies to mitigate any negative health implications it may have. Here, we review the aspects of the fine molecular structure that in native, gelatinized, and gelled/retrograded starch directly impact its digestibility and thus human health. We next provide an informed guidance for lowering its digestibility by using specific enzymes tailoring its molecular and three-dimensional supramolecular structure. We finally discuss in vivo studies of the glycemic responses to enzymatically modified starches and relevant food applications. Overall, structure-digestibility relationships provide opportunities for targeted modification of starch during food production and improving the nutritional profile of starchy foods.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Zhou X, Yu W, Li C. Protein content correlates with the in vitro starch digestibility of raw barley flour. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Wang X, Lao X, Bao Y, Guan X, Li C. Effect of whole quinoa flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106840] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chem 2021; 368:130806. [PMID: 34399184 DOI: 10.1016/j.foodchem.2021.130806] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/15/2023]
Abstract
The objective of this study was to compare the in vitro digestibility of different buckwheat and wheat starch cultivars and establish the relationship between digestibility and structure of buckwheat starch. Structure of starches were analyzed with size exclusion chromatography and fluorophore-assisted capillary electrophoresis. Results showed that the amylose content of Tartary buckwheat starch (TBS) and common buckwheat starch (CBS) was 3-4% lower than that of wheat starch. However, no significant difference in the digestibility was found between them. The fast digestion rate coefficient of TBS was negatively correlated with the amount of long amylopectin chains (24 < DP ≤ 36), and the total digested starch percentage of CBS was negatively correlated with the amount of medium-long amylopectin chains (13 < DP ≤ 24). This suggests that the digestibility of fully gelatinized starch had no association with the botanical sources but may be more influenced by starch structure.
Collapse
|
44
|
Yu W, Zhou X, Li C. Application of first-order kinetics modeling to reveal the nature of starch digestion characteristics. Food Funct 2021; 12:6652-6663. [PMID: 34114587 DOI: 10.1039/d1fo00450f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mathematical modeling of in vitro starch digestograms is essential to understand starch structure-digestibility relationships as it covers all detailed information of the starch digestograms with only a few kinetics-based parameters. However, many assumptions exist for these mathematical models, which are frequently overlooked by researchers and lead to inappropriate or even wrong interpretations of the fitted parameters. This review presents a critical evaluation of four mostly applied empirical first-order kinetics models including single first-order kinetics (SK), logarithm of slope (LOS) transformed kinetics, parallel first-order kinetics (PK) and the combination of parallel and sequential (CPS) kinetics models. For homogeneous food systems, the SK model is perfectly suitable, whereas the LOS, PK and CPS models were suitably developed for food systems containing multiple digestible fractions. For the digestion of starch containing multiple digestible fractions, the LOS model assumed a sequential digestion pattern, whereas the PK model assumed a parallel pattern. In the current review, there is also emphasis on the recently developed CPS model, which is able to differentiate the sequential and parallel digestion patterns for different starch digestible fractions existing in food systems. Understanding these assumptions enables a better selection of an appropriate mathematical model for improving the understanding of in vitro starch digestion characteristics. This review meets the growing interest of the food industry in terms of developing a new generation of foods with slower starch digestibility.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China
| | | | | |
Collapse
|
45
|
Effects of Different Processing Methods and Internal Components on Physicochemical Properties and Glycemic Index of Adzuki Bean Powder. Foods 2021; 10:foods10081685. [PMID: 34441463 PMCID: PMC8391287 DOI: 10.3390/foods10081685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The estimated glycemic index (eGI) value of adzuki bean powder prepared by steamed cooking (SC), extruded cooking (EC) and roller cooking (RC) was studied comparatively. Results showed that RC had the highest eGI, with 80.1, and both EC and SC resulted in a lower eGI value of 70.0 and 49.7, respectively. Compared with the EC and RC methods, the SC method provided a more intact physical barrier for starch digestion, resulting in a less destroyed cell structure. As the essential components that form the cell wall, the study further investigated the effects of protein and fiber on physicochemical properties, in vitro starch digestibility and the eGI of adzuki bean powder processed with the SC method. Viscozyme and Protamax were used to obtain the deprotein and defiber samples. Results showed that the SC treatment with Viscozyme and Protamax, respectively, had significant effects on in vitro starch digestibility. The eGI of different samples were given as follows: steamed cooking adzuki bean powder (49.7) < deproteined adzuki bean powder (60.5) < defibered adzuki bean powder (83.1), which indicates that fiber may have a greater influence on the eGI than protein.
Collapse
|
46
|
Kim HR, Hong JS, Choi SJ, Moon TW. Modeling of in vitro digestion behavior of corn starches of different digestibility using modified log of slope (LOS) method. Food Res Int 2021; 146:110436. [PMID: 34119249 DOI: 10.1016/j.foodres.2021.110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023]
Abstract
This study aimed to further improve the previously described first-order equation representing in vitro digestion of starch by extensively explaining modified log of slope (LOS) plot method. Hydrolysis curves of various starches were analyzed using original and/or modified LOS plot methods. Some starches showed significant differences in the results from the two methods; specifically, the modified method better described the digestive behavior of starch with various digestion properties, supported by higher determination coefficient values and better estimation of the digestibility data over digestive phase. The digestion parameters obtained from the modified method provided multiple types of information, including amount and digestion rate of each starch fraction (rapidly digestible, slowly digestible, and resistant starch), supporting the concept of digestible fraction classification. Therefore, the modified LOS plot method described here can be applied as an effective tool for analyzing and describing the multi-scale in vitro digestion behavior of starch.
Collapse
Affiliation(s)
- Ha Ram Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Group of Food Processing, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jung Sun Hong
- Research Group of Food Processing, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Tae Wha Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
47
|
Ma Z, Guan X, Gong B, Li C. Chemical components and chain-length distributions affecting quinoa starch digestibility and gel viscoelasticity after germination treatment. Food Funct 2021; 12:4060-4071. [PMID: 33977982 DOI: 10.1039/d1fo00202c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A germination treatment was explored in this study as a green strategy to reduce the in vitro starch digestibility of cooked quinoa. The alterations of chemical compositions, starch chain-length distributions (CLDs) and rheological characteristics of quinoa flours after the germination treatment were characterized. Results showed that a significant alteration of amylose CLDs and the starch digestibility was observed for cooked quinoa flours after different germination times. By fitting starch digestograms to the logarithm of slop (LOS) plot and the combination of parallel and sequential kinetics model (CPS), two starch digestible fractions with distinct rate constants were identified. Pearson correlation analysis further found that the observed starch digestive characteristics could be largely explained by the alterations of amylose CLDs caused by the germination treatment. More specifically, the rapidly digestible starch fraction mainly consisted of amorphous amylopectin molecules and amylose intermolecular crystallites. On the other hand, the slowly digestible starch fraction was largely formed by intramolecular interactions among amylose short chains (degree of polymerization (DP) < 500). These results suggest that germination may be a promising way to develop cereal products with slower starch digestibility.
Collapse
Affiliation(s)
- Zhimin Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. and National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China and Shanghai Engineering Research Center for Food Rapid Detection, Shanghai 200093, P.R. China
| | - Bo Gong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
48
|
Bai Y, Atluri S, Zhang Z, Gidley MJ, Li E, Gilbert RG. Structural reasons for inhibitory effects of pectin on α-amylase enzyme activity and in-vitro digestibility of starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Zhu J, Zhang CQ, Xu J, Gilbert RG, Liu Q. Identification of Structure-Controlling Rice Biosynthesis Enzymes. Biomacromolecules 2021; 22:2148-2159. [PMID: 33914519 DOI: 10.1021/acs.biomac.1c00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The main enzymes controlling the chain-length distributions (CLDs) of starches are starch synthases (SSs), starch branching enzymes (SBEs), and debranching enzymes (DBEs), which have various isoforms, denoted as SSI, SSII-1, etc. Different isozymes dominate the CLD in different ranges of degrees of polymerization (DPs). Models have been developed for the CLDs in terms of the activities of isoforms of these enzymes, in terms of two parameters: βi, which is the ratio of the activity of SBE to that of SS in set i, and hi, which is the relative activity of SS in that set. These provide good fits to data but without specifying which isozymes are in set i. Here, CLDs for amylopectin and amylose synthesis in rice endosperm are explored. Molecular weight distributions of the different chains formed in 87 rice varieties were obtained using size-exclusion chromatography following enzymatic debranching (converting a complex branched macromolecule to linear polymers), and fitted by the biosynthesis-based models. The mutants of each isoform among tested rice varieties were identified by amino-acid mutations in coding sequences based on the extraction and analysis of whole gene sequences. The significant differences between mutant groups of different isoforms indicate that SSI, SSII-3, SSIII-1, SSIII-2, and SBEI as well as GBSSI (an isozyme of granule-bound starch synthase) belong to the enzymes sets that control amylose biosynthesis. Further, GBSSI is in the enzyme sets that control amylopectin chains. This enables specification of all isozymes and the DP range, which they dominate, over the entire DP range. As the CLD controls many functional properties of rice, this can help breeders target and develop improved rice species.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 9 100081, China
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
50
|
Abstract
Food digestion may be regarded as a physiological interface between food and health. During digestion, the food matrix is broken down and the component nutrients and bioactive compounds are absorbed through a synergy of mechanical, chemical, and biochemical processes. The food matrix modulates the extent and kinetics to which nutrients and bioactive compounds make themselves available for absorption, hence regulating their concentration profile in the blood and their utilization in peripheral tissues. In this review, we discuss the structural and compositional aspects of food that modulate macronutrient digestibility in each step of digestion. We also discuss in silico modeling approaches to describe the effect of the food matrix on macronutrient digestion. The detailed knowledge of how the food matrix is digested can provide a mechanistic basis to elucidate the complex effect of food on human health and design food with improved functionality.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| | - Anja E M Janssen
- Food Processing Engineering Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|