1
|
Khan IA, Anwar M, Arshad SF, Hussain A, Usman M, Ansari MN, Arshad HJ, Rukh AS, Ain QU, Khan MK. Biochemical validation for the therapeutic use of Plumeria rubra in coagulation disorders: a study combining in silico, in vitro, and in vivo approaches. PROTOPLASMA 2025:10.1007/s00709-025-02055-z. [PMID: 40257629 DOI: 10.1007/s00709-025-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
Local healers in South Asia use Plumeria rubra Linn. leaves to treat various coagulation disorders in animals and humans. This study (in silico, in vitro, and in vivo) aimed to explore the pharmacological basis for the possible thrombolytic and anticlotting properties of the leaf extract of P. rubra. Phytoconstituents of P. rubra were dock against coagulation proteins: prothrombin, thromboplastin, and fibrin using in silico approach. Phytochemical screening, HPLC, and antioxidant, anticoagulant, and thrombolytic potential were evaluated using in vitro approach. Healthy male rabbits were divided into five groups (six rabbits each). Groups 1-3 were treated with aqueous-methanolic (30:70%) extract of P. rubra at 200, 300, and 600 mg/mL respectively groups in contrast to the positive and negative control groups. Thrombolytic activity was assessed at doses of 200, 300, and 600 µg/mL in comparison with standard urokinase (600 µg/kg). Platelet adhesion was evaluated at a dose of 200, 300, and 600 µg/mL against adrenaline (2 µM) and acute oral dose toxicity was assessed using in vivo approach. In silico study resulted in an excellent binding affinity and showed significant interaction with coagulation proteins. Phytochemical analysis showed a range of phytochemical classes: alkaloids, tannins, flavonoids, glycosides, anthraquinones, and saponins. HPLC analysis confirmed the phytoconstituents plumericin, rutin, kaempferol, and isoquercetin already reported for coagulation disorders. P. rubra showed excellent antioxidant potential and was assessed using DPPH, NO, and SOD assays. The activated partial thromboplastin time (APTT), bleeding time (BT), prothrombin time (PT), and clotting time (CT) all went up with increasing doses in the aqueous-methanolic extract (p ≤ 0.05). Comparing the plant extract to urokinase, the plant extract demonstrated considerable (p ≤ 0.05) clot lysis. Additionally, it dose-dependently delayed the ADR-induced platelet adhesion dose-dependently (p ≤ 0.05). The outcome of this study justifies its therapeutic utility in coagulation disorders and can be used as an alternative medicine.
Collapse
Affiliation(s)
- Imran Ahmad Khan
- Department of Pharmacy, MNS University of Agriculture, Multan, Pakistan.
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People's Republic of China.
| | - Sarmad Frogh Arshad
- Department of Biochemistry and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Athar Hussain
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Usman
- Department of Biochemistry and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Mohammed Nadeem Ansari
- Department of Public Health and Allied Health Sciences, University of Massachusetts, Amherst, USA
| | - Hasan Junaid Arshad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Asma Shah Rukh
- Department of Pharmacy, The University of Punjab, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Pathobiology and Biomedical Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Maliha Khalid Khan
- Department of Pathobiology and Biomedical Sciences, MNS University of Agriculture, Multan, Pakistan
| |
Collapse
|
2
|
Najafi Z, Altay F, Şahin-Yeşilçubuk N. In vitro transdermal release of crocin from electrospun saffron and its comparison with in vitro digestion. Food Res Int 2025; 199:115279. [PMID: 39658144 DOI: 10.1016/j.foodres.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers. The release of SE from NFs was investigated in stimulated gastrointestinal media (SGF and SIF) using a dialysis bag, and transdermal permeation studies were performed via a membrane in a Franz diffusion cell. The wettability and swelling ratio of the NFs were determined. The Pl-Pc-SE sample, which has the lowest contact angle and the highest swelling index, resulted in the highest release of SE during digestion. The Ritger-Peppas and Higuchi models best represented the experimental release data from digestion and transdermal permeation. The release profile of SE from zein NFs in SGF was described using a non-Fickian mechanism. In contrast, the release mechanism for Pl-based NFs in SGF and all NFs during both release experiments was Fickian-controlled diffusion transport. The results indicate that NFs can be successfully used for the controlled delivery of SE and have the potential for transdermal applications as a dietary supplement.
Collapse
Affiliation(s)
- Zahra Najafi
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| | - Filiz Altay
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
| | - Neşe Şahin-Yeşilçubuk
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| |
Collapse
|
3
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
4
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Tian X, Li J, Wang K, Fei S, Zhang X, Wu C, Tan M, Su W. Microfluidic fabrication of core-shell fucoxanthin nanofibers with improved environmental stability for reducing lipid accumulation in vitro. Food Chem 2024; 442:138474. [PMID: 38245982 DOI: 10.1016/j.foodchem.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Fucoxanthin is a xanthophyll carotenoid that possesses potent antioxidant, anti-obesity, and anti-tumor properties. However, its limited solubility in water and susceptibility to degradation create challenges for its application. In this study, a microfluidic coaxial electrospinning technique was used to produce core-shell zein-gelatin nanofibers for encapsulating fucoxanthin, enhancing its bioavailability, and improving its stability. In comparison to uniaxially-loaded fucoxanthin nanofibers, the encapsulation efficiency of fucoxanthin reached 98.58 % at a core-shell flow rate ratio of 0.26:1, representing a 14.29 % improvement. The photostability of the nanofibers increased by 74.59 % after three days, UV stability increased by 38.82 % after 2 h, and temperature stability also significantly improved, demonstrating a protective effect under harsh environmental conditions (P < 0.05). Additionally, nanofibers effectively alleviated oleic acid-induced reactive oxygen species production and reduced fluorescence intensity by 54.76 %. MTT experiments indicated great biocompatibility of the nanofibers, effectively mitigating mitochondrial membrane potential polarization and lipid accumulation in HepG2 cells. Overall, the microfluidic coaxial electrospinning technique enables promising applications of fucoxanthin delivery in the food industry.
Collapse
Affiliation(s)
- Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiumin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Caiyun Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
6
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
7
|
Silva LR, Rodrigues S, Kumar N, Goel N, Singh K, Gonçalves AC. Development of phenolic acids-based system as anticancer drugs. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:255-294. [DOI: 10.1016/b978-0-443-18538-0.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Falsafi SR, Topuz F, Esfandiari Z, Can Karaca A, Jafari SM, Rostamabadi H. Recent trends in the application of protein electrospun fibers for loading food bioactive compounds. Food Chem X 2023; 20:100922. [PMID: 38144745 PMCID: PMC10740046 DOI: 10.1016/j.fochx.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
Electrospun fibers (EFs) have emerged as promising one-dimensional materials for a myriad of research/commercial applications due to their outstanding structural and physicochemical features. Polymers of either synthetic or natural precursors are applied to design EFs as carriers for bioactive compounds. For engineering food systems, it is crucial to exploit polymers characterized by non-toxicity, non-immunogenicity, biocompatibility, slow/controllable biodegradability, and structural integrity. The unique attributes of protein-based biomaterials endow a wide diversity of desirable features to EFs for meeting the requirements of advanced food/biomedical applications. In this review paper, after an overview on electrospinning, different protein materials (plant- and animal-based) as biodegradable/biocompatible building blocks for designing EFs will be highlighted. The potential application of protein-based EFs in loading bioactive compounds with the intention to inspire interests in both academia and industry will be summarized. This review concludes with a discussion of prevailing challenges in using protein EFs for the bioactive vehicle development.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
9
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Bioactive-loaded nanovesicles embedded within electrospun plant protein nanofibers; a double encapsulation technique. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
12
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
13
|
Electrospinning Composites as Carriers of Natural Pigment: Screening of Polymeric Blends. Processes (Basel) 2022. [DOI: 10.3390/pr10122737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several studies have already demonstrated that electrospinning is an excellent tool for forming nano/microfibers. However, the number of parameters affecting the formation of the structures has become a great challenge, including the polymeric solutions’ rheological properties, directly affecting the morphology of the fibers formed. The present work aimed to produce polymeric composites and determine their rheological properties, comparing them to the morphology of the fibers formed by electrospinning. Also, to evaluate their potential use as the carriers of natural pigments. To this end, a distinct combination of solutions containing Chitosan/Gelatin, Chitosan/poly(ethylene) oxide (PEO) and Zein/PEO was produced and submitted to electrospinning. The sample containing zein manufactured the structures smaller in diameter (201.3 ± 58.6 nm) among those studied. Besides, it was observed that adding PEO to the solutions impacts the increase in viscosity and shear thinning behavior, guaranteeing uniformity in the structures formed. Natural pigments were successfully incorporated into the chosen zein/PEO solution, and it was observed that adding these compounds led to changes in the rheological characteristics, as expected. Nevertheless, it was possible to produce uniform fibers with diameters ranging from 665.68 ± 249.56 to 2874.44 ± 1187.40 nm, opening the possibility of using these natural pigments in biotechnological processes.
Collapse
|
14
|
Effects of Cherry ( Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods 2022; 11:foods11223590. [PMID: 36429182 PMCID: PMC9689877 DOI: 10.3390/foods11223590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Effects of different levels (1%, 3% and 5%) of cherry powder on the physiochemical properties and antioxidant activity of Jiangsu-type sausages were investigated at 4 °C for 30 days. The results show that the sensory evaluation values and physicochemical properties of the sausages had no significant differences compared to the control group when cherry powder addition was 1%, and the alcohols, aldehydes and esters were increased after the addition of cherry powder improved the flavor of sausages. However, higher concentration of cherry powder (3% and 5%) exerted adverse influences on sensory evaluation values and physicochemical properties of sausages compared with the control. The addition of cherry powder could better inhibit lipid and protein oxidation of sausages, and the cherry powder concentration has a positive correlation with its effect on the inhibition of lipid and protein oxidation. In addition, cherry powder could effectively control TVB-N values of sausages during chilled storage. All these results indicate that 1% cherry powder could not only guarantee the physicochemical properties of sausages, but also inhibited the oxidation of sausages during chilled storage.
Collapse
|
15
|
Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Electrospinning can produce a new composite for coating sensitive bioactive compounds, such as anthocyanins, and the product obtained from this process presents characteristics that potentialize the application of natural pigments in foodstuffs. The present work aimed to develop a new nanofiber composite with incorporated anthocyanins from jussara pulp using polyethylene oxide through electrospinning. A decay in the percentage of anthocyanins during digestion was observed. However, the polymeric solution and composites produced maintained the antioxidant activity, showing their protective effect on bioactive compounds; furthermore, both nanofibers and polymer solution improved the thermal stability of the anthocyanins. Thus, the results obtained potentiate electrospinning composites in processed food products since the nanofibers presented superior thermal stability and antioxidant activity, even after the digestion process in vitro.
Collapse
|
16
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
17
|
Sözeri Atik D, Bölük E, Bildik F, Altay F, Torlak E, Kaplan AA, Kopuk B, Palabıyık İ. Particle morphology and antimicrobial properties of electrosprayed propolis. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Jiang T, Ye S, Liao W, Wu M, He J, Mateus N, Oliveira H. The botanical profile, phytochemistry, biological activities and protected-delivery systems for purple sweet potato (Ipomoea batatas (L.) Lam.): An up-to-date review. Food Res Int 2022; 161:111811. [DOI: 10.1016/j.foodres.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
19
|
Fabrication of cellulose acetate/gelatin-eugenol core–shell structured nanofiber films for active packaging materials. Colloids Surf B Biointerfaces 2022; 218:112743. [DOI: 10.1016/j.colsurfb.2022.112743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022]
|
20
|
Cardioprotective Effect of Rumex vesicarius Linn. Leaf Extract against Catecholamine-Induced Cardiotoxicity. Molecules 2022; 27:molecules27113383. [PMID: 35684321 PMCID: PMC9182117 DOI: 10.3390/molecules27113383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Rumex vesicarius (L.) is a folklore medicinal herb that has been used for centuries to cure cardiovascular diseases. The present work was carefully designed to ascertain the pharmacological basis for R. vesicarius’s therapeutic efficacy in cardiovascular diseases, as well as the underlying mechanism. In the ex vivo investigation, the aqueous-methanolic leaf extract of R. vesicarius was shown to have endothelium-dependent vasorelaxant effects in rabbit aorta tissue preparations, and its hypotensive responses were quantified by pressure and force transducers coupled to the Power Lab Data Acquisition System. Furthermore, when rabbits were subjected to adrenaline-induced myocardial infarction, R. vesicarius demonstrated cardioprotective characteristics. In contrast to the intoxicated group, the myocardial infarction model showed lower ALP, CK-MB, CRP, LDH, ALT, troponin, and AST levels (p > 0.005−0.000), as well as edema, necrosis, apoptosis, inflammatory cell enrolment, and necrosis. R. vesicarius exhibited significant antioxidant activity and delayed noradrenaline-induced platelet aggregation. Its cardioprotective, anticoagulant, and vasorelaxant properties in both investigations (in vivo and ex vivo) are mediated through partial endothelium-dependent, NO and calcium channel blockade mediated vasorelaxation. The minimizing of adrenaline, oxidative stress, and tissue damage demonstrate its therapeutic efficacy in cardiovascular diseases.
Collapse
|
21
|
Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Pharmacological Justification for the Medicinal Use of Plumeria rubra Linn. in Cardiovascular Disorders. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010251. [PMID: 35011482 PMCID: PMC8746526 DOI: 10.3390/molecules27010251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
Plumeria rubra (L.) is a traditional folkloric medicinal herb used to treat cardiovascular disorders. The present investigation was methodically planned to investigate the pharmacological foundations for the therapeutic effectiveness of P. rubra in cardiovascular illnesses and its underlying mechanisms. Ex vivo vaso-relaxant effects of crude leaf extract of P. rubra were observed in rabbit aorta ring preparations. Hypotensive effects were measured using pressure and force transducers connected to the Power Lab data acquisition system. Furthermore, P. rubra displayed cardioprotective properties in rabbits when they were exposed to adrenaline-induced myocardial infarction. In comparison to the intoxicated group, the myocardial infarction model showed decreased troponin levels, CK-MB, LDH, ALT, ALP, AST, and CRP, as well as necrosis, apoptosis, oedema, and inflammatory cell enrollment. P. rubra has revealed good antioxidant properties and prolonged the noradrenaline intoxicated platelet adhesion. Its anticoagulant, vasorelaxant, and cardioprotective effects in both in vivo and ex vivo investigations are enabled by blocking L-type calcium channels, lowering adrenaline, induced oxidative stress, and tissue tear, justifying its therapeutic utility in cardiovascular disorders.
Collapse
|
23
|
Khan IA, Hussain M, Munawar SH, Iqbal MO, Arshad S, Manzoor A, Shah MA, Abbas K, Shakeel W, Syed SK. Jasminum sambac: A Potential Candidate for Drug Development to Cure Cardiovascular Ailments. Molecules 2021; 26:5664. [PMID: 34577135 PMCID: PMC8471681 DOI: 10.3390/molecules26185664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Jasminum sambac (L.) is a South Asian folkloric medicinal plant that has traditionally been used to treat cardiovascular problems. The current investigation was meticulously organized to explore the pharmacological foundation for the medicinal uses of J. sambac pertaining to cardiovascular ailments and to investigate the core mechanisms. Mechanistic investigation revealed that crude leaf extract of J. sambac produced ex-vivo vasorelaxant effects in endotheliumintact aorta ring preparation and hypotensive effect was recorded via pressure and force transducers coupled to the Power Lab Data Acquisition System. Moreover; J. sambac showed cardioprotective effects against adrenaline -induced left ventricular hypertrophy in rabbits observed hemodynamic. CK-MB, LDH, troponin, CRP, ALT, AST, ALP levels were shown to be lower in the myocardial infarction model, as were necrosis, oedema, and inflammatory cell recruitment in comparison to control. J. sambac has shown good antioxidant potential as well as prolonged the noradrenaline induced platelet adhesion. The vasorelaxant and cardioprotective effects in both in vivo and ex vivo experiments, which are enabled by activation of muscarinic receptor and/or releasing the nitric oxide and by reducing the adrenaline, induced oxidative stress, justifying its usage in cardiovascular disorders.
Collapse
Affiliation(s)
- Imran Ahmad Khan
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahwalpur 63100, Pakistan; (M.H.); (M.O.I.)
| | - Musaddique Hussain
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahwalpur 63100, Pakistan; (M.H.); (M.O.I.)
| | - Shaukat Hussain Munawar
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Muhammad Omer Iqbal
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahwalpur 63100, Pakistan; (M.H.); (M.O.I.)
- Key Laboratories of Marine Drugs (Ministry of Education), Shandong Laboratory of Glycoscience and Glycoengineering, School of Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Shafia Arshad
- Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ashira Manzoor
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan; (A.M.); (M.A.S.); (K.A.)
| | - Mazhar Abbas Shah
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan; (A.M.); (M.A.S.); (K.A.)
| | - Khizar Abbas
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan; (A.M.); (M.A.S.); (K.A.)
| | - Waleed Shakeel
- Department of Pharmacology, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore 54770, Pakistan;
| |
Collapse
|
24
|
Ceylan Z, Kutlu N, Meral R, Ekin MM, Kose YE. Protective effect of grape seed oil-loaded nanofibers: Limitation of microbial growth and lipid oxidation in kashar cheese and fish meat samples. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anthocyanins are value-added food ingredients that have health-promoting impacts and biological functionalities. Nevertheless, there are technological barriers to their application in the food industry, mainly because of their poor stability and susceptibility to harsh environmental conditions, such as oxygen, temperature, pH, and light, which could profoundly influence the final food product′s physicochemical properties. Microencapsulation technology is extensively investigated to enhance stability, bioaccessibility, and impart controlled release properties. There are many varieties of microencapsulation methods and diverse types of wall materials. However, choosing a proper approach involves considering the processing parameters, equipment availability, and application purposes. The present review thoroughly scrutinizes anthocyanins′ chemical structure, principles, benefits, and drawbacks of different microencapsulation methods, including spray drying, freeze drying, electrospinning/electrospraying, inclusion complexes, emulsification, liposomal systems, ionic gelation, and coacervation. Furthermore, wall materials applied in different techniques plus parameters that affect the powders′ encapsulation efficiency and physicochemical properties are discussed. Future studies should focus on various processing parameters and the combination of different techniques and applications regarding microencapsulated anthocyanins in functional foods to assess their stability, efficiency, and commercialization potentials.
Collapse
|
26
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3409-3443. [PMID: 33753968 PMCID: PMC7968578 DOI: 10.1007/s10311-021-01217-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 05/18/2023]
Abstract
There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality. Here, we review technologies for extracting polyphenolic compounds from foods. Conventional techniques include percolation, decoction, heat reflux extraction, Soxhlet extraction and maceration, whereas advanced techniques are ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, high-voltage electric discharge, pulse electric field extraction and enzyme-assisted extraction. Advanced techniques are 32-36% more efficient with approximately 15 times less energy consumption and producing higher-quality extracts. Membrane separation and encapsulation appear promising to improve the sustainability of separating polyphenolic compounds. We present kinetic models and their influence on process parameters such as solvent type, solid and solvent ratio, temperature and particle size.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
28
|
Antibacterial and Antioxidant Gelatin Nanofiber Scaffold Containing Ethanol Extract of Pomegranate Peel: Design, Characterization and In Vitro Assay. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02616-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
30
|
Ramos SDP, Giaconia MA, Assis M, Jimenez PC, Mazzo TM, Longo E, De Rosso VV, Braga ARC. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021; 26:molecules26051206. [PMID: 33668167 PMCID: PMC7956372 DOI: 10.3390/molecules26051206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
Jussara pulp (Euterpe edulis Mart.) is rich in bioactive compounds known to be protective mediators against several diseases. In this context, nevertheless, anthocyanins, the most abundant natural pigment in jussara, are sensitive to temperature, pH, oxygen, and light conditions, leading to instability during food storage or digestion, and, thus jeopardizing the antioxidant proprieties retained by these flavonoids and limiting industrial application of the pulp. The production of nanostructures, from synthetic and natural polymers, containing natural matrices rich in bioactive compounds, has been widely studied, providing satisfactory results in the conservation and maintenance of the stability of these compounds. The current work aimed to compare uniaxial and coaxial electrospinning operation modes to produce core-shell jussara pulp nanofibers (NFs). Additionally, the parameters employed in the electrospinning processes were optimize using response surface methodology in an attempt to solve stability issues for the bioactive compounds. The best experimental conditions provided NFs with diameters ranging between 110.0 ± 47 and 121.1 ± 54 nm. Moreover, the coaxial setup improved jussara pulp NF formation, while further allowing greater integrity of NFs structures.
Collapse
Affiliation(s)
- Sergiana dos P. Ramos
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Michele A. Giaconia
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Marcelo Assis
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Paula C. Jimenez
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Tatiana M. Mazzo
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Elson Longo
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Veridiana V. De Rosso
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Anna R. C. Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP 09972-270, Brazil
- Correspondence: ; Tel.: +55-13-98145020
| |
Collapse
|
31
|
Rezaeinia H, Ghorani B, Emadzadeh B, Mohebbi M. Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111115. [DOI: 10.1016/j.msec.2020.111115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
|
32
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Iturri MS, Calado CMB, Prentice C. Microparticles of Eugenia stipitata pulp obtained by spray-drying guided by DSC: An analysis of bioactivity and in vitro gastrointestinal digestion. Food Chem 2020; 334:127557. [PMID: 32712488 DOI: 10.1016/j.foodchem.2020.127557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Previous studies indicate that the bioactive compounds of Eugenia stipitata pulp have antimutagenic, anticarcinogenic and antigenotoxic properties, but its use has been limited due to its high perishability. The aim of this study was to preserve bioactivity by using spray-drying microencapsulation, and is pioneering for its use of DSC to determine the best proportion of wall material (maltodextrin or gum arabic) and drying temperature (100 or 120 °C). The microparticles with maltodextrin (1:9)-100 °C had the best bioactivity conservation after in vitro gastrointestinal digestion, conserving 61% of total polyphenols, and 101%, 85% and 31% of antioxidant capacity according to the ABTS, FRAP and DPPH test methods respectively. These microparticles had a spherical morphology, presented good thermal stability and can be stored at a temperature range from 20 to 40 °C without becoming sticky. Therefore, spray-drying microencapsulation together with DSC is important for preserving a high concentration of bioactive compounds.
Collapse
Affiliation(s)
- Melchor Soria Iturri
- Graduate Program in Food Engineering and Science (PPGECA), School of Chemistry and Food, Federal University of Rio Grande (FURG), 96203-900 Rio Grande, RS, Brazil.
| | - Clara Mariana Barros Calado
- Graduate Program in Chemical Engineering (POSENQ), Technological Centre, Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Carlos Prentice
- Graduate Program in Food Engineering and Science (PPGECA), School of Chemistry and Food, Federal University of Rio Grande (FURG), 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
34
|
Gonçalves OH, Moreira TFM, de Oliveira A, Bracht L, Ineu RP, Leimann FV. Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources. Curr Pharm Des 2020; 26:3847-3861. [PMID: 32634076 DOI: 10.2174/1381612826666200707131500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
The low water solubility and low bioavailability of natural bioactive substances such as polyphenols and flavonoids, either in pure form or extracts, are a major concern in the pharmaceutical field and even on the food development sector. Although encapsulation has demonstrated success in addressing these drawbacks, it is important to evaluate the antioxidant activity of the encapsulated compounds. This article reviews the encapsulation of bioactive compounds from natural sources focusing their antioxidant activity after encapsulation. Attention is given to the methods and wall materials used, and the antioxidant activity methodologies (classical in vitro techniques such as DPPH, ORAC, FRAP and others, as well as in vivo/ex vivo tests to evaluate endogenous antioxidant enzymes or oxidative stress) applied to assess the antioxidant capacity are also comprehensively summarized.
Collapse
Affiliation(s)
- Odinei H Gonçalves
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Thaysa F M Moreira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Anielle de Oliveira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Lívia Bracht
- Departamento de Bioquimica, Universidade Estadual de Maringa, Av. Colombo, 5790, CEP 87020-270, Maringa, Parana, Brazil
| | - Rafael P Ineu
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Fernanda V Leimann
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| |
Collapse
|
35
|
Rostamabadi H, Assadpour E, Tabarestani HS, Falsafi SR, Jafari SM. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 2020; 132:109077. [DOI: 10.1016/j.foodres.2020.109077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
|
37
|
Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of processes for stabilization of the properties of bioactive compounds has been studied in recent years, and the use of nanotechnology is among the most discussed routes. The present work addressed the assembly of nanostructures using polyethylene oxide (PEO), the production of core-shell nanofibers (NFs) with bioactive compounds, and the evaluation of their microscopic and physical characteristics. Aqueous solutions of PEO were electrospun by varying different process and solution parameters (PEO and NaCl concentrations, feeding rate, the tip-to-collector distance (TCD), and applied voltage) in order to optimize production of nanostructures. The best condition obtained was evaluated to form core-shell NFs composed by jussara pulp as a source of anthocyanins. To assess the production of NFs with PEO and jussara pulp, feed solutions were prepared in acetate buffer (pH 4.5) with 6% PEO and 10% lyophilized jussara pulp, at a feeding rate of 150 μL·h−1 and TCD of 15 cm using an applied voltage of 10 kV to form core-shell NFs. The results revealed the formation of core-shell NFs with a diameter of 126.5 ± 50.0 nm. The outcomes achieved represent a crucial step in the application of anthocyanins in food systems as pigments, establishing a basis for further research on the incorporation of nanomaterials into foodstuff.
Collapse
|
38
|
Peanparkdee M, Iwamoto S. Encapsulation for Improvingin VitroGastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Methavee Peanparkdee
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
39
|
Tarone AG, Cazarin CBB, Marostica Junior MR. Anthocyanins: New techniques and challenges in microencapsulation. Food Res Int 2020; 133:109092. [PMID: 32466932 DOI: 10.1016/j.foodres.2020.109092] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Anthocyanins are a bioactive compound belonging to the flavonoid classthatis present in human nutrition through plant-based foods. Due to their antioxidant properties, several health benefits related to their consumption are reported in the literature. The stability of the color and the properties of anthocyanins is strongly affected by pH, solvent, temperature, and other environmental conditions. In addition, the insufficient residence time of anthocyanins in the upper digestive tract causes apartialabsorption, which needs to be improved. These factshave led researchers to investigate new forms of processing that provide minimal degradation. Microencapsulation is a promising possibility to stabilize anthocyanin extracts and allow their addition to food products in a more stable form. The microcapsules can still provide a prolonged gastrointestinal retention time caused by the improvement of the bioadhesive properties in the mucus covering the intestinal epithelium. Although there are efficient and emerging techniques, anthocyanins microencapsulation is still a challenge for the food industry. The purpose of this work is to provide an overview of anthocyanins structure, absorptionand protection, and to show the main conventional and emerging microencapsulation methods and their pros and cons.
Collapse
Affiliation(s)
- Adriana Gadioli Tarone
- School of Food Engineering, University of Campinas - UNICAMP, 13083-862 Campinas, SP, Brazil
| | | | | |
Collapse
|
40
|
Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E175. [PMID: 31968539 PMCID: PMC7022755 DOI: 10.3390/nano10010175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
Antioxidants can be encapsulated to enhance their solubility or bioavailability or to protect them from external factors. Electrospinning has proven to be an excellent option for applications in nanotechnology, as electrospun nanofibers can provide the necessary environment for antioxidant encapsulation. Forty-nine papers related to antioxidants loaded onto electrospun nanofibers were categorized and reviewed to identify applications and new trends. Medical and food fields were commonly proposed for the newly obtained composites. Among the polymers used as a matrix for the electrospinning process, synthetic poly (lactic acid) and polycaprolactone were the most widely used. In addition, natural compounds and extracts were identified as antioxidants that help to inhibit free radical and oxidative damage in tissues and foods. The most recurrent active compounds used were tannic acid (polyphenol), quercetin (flavonoid), curcumin (polyphenol), and vitamin B6 (pyridoxine). The incorporation of active compounds in nanofibers often improves their bioavailability, giving them increased stability, changing the mechanical properties of polymers, enhancing nanofiber biocompatibility, and offering novel properties for the required field. Although most of the polymers used were synthetic, natural polymers such as silk fibroin, chitosan, cellulose, pullulan, polyhydroxybutyrate, and zein have proven to be proper matrices for this purpose.
Collapse
Affiliation(s)
- Ariel Vilchez
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Mara Cea
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología (CBDAL), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Rodrigo Navia
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
- Centre for Biotechnology and Bioengineering (CeBiB), Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| |
Collapse
|
41
|
Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Faki R, Gursoy O, Yilmaz Y. Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibers Containing Grape Seed Extract. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractElectrospinning is a common technique used for the production of nanofibers, and it is based on the fact that the electrically charged liquid polymer is positioned in a continuous fiber form on a grounded surface. Grape seed is rich in phenolic compounds and can be used as a dietary supplement or as a natural antioxidant source in diet. In this study, grape seed extract of Burdur Dimrit variety (Vitis vinifera L.) was electrospun with gelatin, polyvinyl alcohol (PVA) and PVA/β-cyclodextrin polymers to produce nanofibers with antioxidant activity. The aim of this study was to determine the effect of the electrospinning process on the total antioxidant activity and total phenolic contents of electrospun polymers with grape seed extracts. Total antioxidant activity of samples (by ABTS and DPPH assays) and total phenolic contents (Folin–Ciocalteu method) were determined before and after the electrospinning process of polymers with grape seed extract. Electrospinning with gelatin polymer decreased the antioxidant activity (ABTS assay) of nanofibers containing grape seed extract by 65% and their total phenolic contents by 7%. However, electrospinning treatment with PVA and PVA/β-cyclodextrin had no effect on the total antioxidant activity (ABTS and DPPH) and total phenolic substance contents of grape seed extract nanofibers.
Collapse
Affiliation(s)
- Rabia Faki
- Burdur Mehmet Akif Ersoy University, Graduate School of Natural and Applied Sciences, Division of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| | - Oguz Gursoy
- Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| | - Yusuf Yilmaz
- Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| |
Collapse
|
43
|
Feng K, Li C, Wei YS, Zong MH, Wu H, Han SY. Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. J Colloid Interface Sci 2019; 552:186-195. [DOI: 10.1016/j.jcis.2019.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/13/2023]
|
44
|
Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. Int J Biol Macromol 2018; 120:2094-2105. [DOI: 10.1016/j.ijbiomac.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
|