1
|
Jiang J, Yang J, Fan X, Zhang Y, Li M, Zhang B, Guo B, Zhong G. Regulation of ice crystal growth in frozen dough: From the effect of gluten and starch fractions interaction on water binding - A review. Food Chem 2025; 476:143509. [PMID: 39999501 DOI: 10.1016/j.foodchem.2025.143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The formation and growth of ice crystals are critical factors affecting the quality of frozen dough. Gluten and starch are the primary components of dough, and their hydration properties and effects on dough structure are crucial in determining the type of ice crystals formed. Gliadins, glutenins, A-type starch, and B-type starch are their refined components, each with distinct hydration properties and impact on dough structure. This review examines the structural properties and hydration properties of protein and starch components in frozen dough, as well as their individual and interactive influences on water absorption and the structural properties of frozen dough. Additionally, it explores changes at different structural levels during the interaction between protein and starch components in frozen dough. The review provides theoretical support for wheat breeding aimed at frozen flour products, ultimately contributing to the improvement of frozen dough quality and final product outcomes.
Collapse
Affiliation(s)
- Jikai Jiang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Jingjie Yang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiangqi Fan
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yingquan Zhang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Ming Li
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Bo Zhang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Boli Guo
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China.
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Liu Y, Qu J, Dong D, Wu Z, Ma H, Lu L, Zhang Z, Yuan C, Zhao M, Cui B. Freeze-thaw pretreatment improved the anti-digestibility and viscosity of corn starch/type-A gelatin complexes. Int J Biol Macromol 2025; 302:140648. [PMID: 39909263 DOI: 10.1016/j.ijbiomac.2025.140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Slowly digestible starches, known to confer health benefits, are often prepared via compounding with other substances. However, starch complexes often encounter problems such as low viscosity. This work aimed to develop a corn starch/type-A gelatin (CS/GA) complex that simultaneously exhibited rapidly digestible starch (RDS) reduction, and superior viscosity. The pH and drying temperature of the complexes were systematically optimized, and a novel freeze-thaw pretreatment (FTP) technique was innovatively introduced. This work investigated the effects of varying FTP cycles (ranging from 0 to 8) on the physicochemical properties of CS/GA complexes. Results showed that FTP significantly enhanced the viscosity of the complexes while effective RDS reduction. Notably, after six FTP cycles, the complexes attained optimal properties, characterized by the highest the complex index (CI), relative crystallinity (RC) and short-range molecular order, accompanied by the lowest RDS reduction of 46.24 %. The multivariate analysis revealed CI as the crucial parameter for altering the resistant starch (RS) content. Furthermore, FTP induced cracking on the surface of starch particles was observed. In conclusion, these results were of significance for developing CS-based food materials with RDS reduction, and high viscosity characteristics, such as noodles, corn porridge and sausage.
Collapse
Affiliation(s)
- Yi Liu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jihong Qu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huiyan Ma
- Zoucheng Inspection and Testing Center, Jining 273516, China
| | - Lu Lu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
3
|
Tao H, Fang XH, Fang MJ, Ding C, Cai WH, Wang HL. Cryoprotective effect of wheat starch granular surface proteins on frozen HMW and LMW glutenins: Structure, property and functionality across length scales. Food Chem 2025; 464:141681. [PMID: 39447259 DOI: 10.1016/j.foodchem.2024.141681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Although frozen dough technology has demonstrated significant benefits, the mechanisms underlying dough deterioration during freezing remain unclear. To overcome this obstacle, the effect of freezing-induced deteriorations of wheat starch granular surface proteins (SGSPs)-high/low molecular weight (HMW/LMW) glutenins complexes were analyzed from the molecular to macroscopic scales. After 7 cycles of freezing/thawing treatment, SGSPs-LMW complex showed a higher antifreeze stability than SGSPs-HMW complex. The freezable water content of SGSPs-HMW increased from 32 % to 39 %, indicating a marked migration and recrystallization of ice. In this situation, the interactions of SGSPs-HMW complex were affected and destabilized, leading to partially denatured and depolymerized molecular structures. Furthermore, the bulk protein aggregation network was also dissociated under the ice tearing and splitting, which irreversibly collapsed to small molecular protein particles. In comparison, the resistance of SGSPs-LMW complex on continued network disruption appear to be the key to maintain the quality of frozen dough.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiao-Han Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jia Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chao Ding
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
4
|
Zhou T, Zhang Y, Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of freeze-thaw cycles on the physicochemical properties and structure-function relationship of potato starch with varying granule sizes in frozen dough. Int J Biol Macromol 2024; 279:134864. [PMID: 39163969 DOI: 10.1016/j.ijbiomac.2024.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Starch, as a critical component of dough, significantly influences quality preservation during the freezing process. In particular, the fine structure of potato (B-type) starch in frozen processing is a subject of considerable interest. This study aims to investigate the intrinsic differences of B-type starch and the impact of freeze-thaw (F/T) treatment on its molecular structure and physicochemical properties. Chain length distribution and X-ray photoelectron spectroscopy were utilized to examine the structural characteristics of natural potato starch with different granule sizes. Furthermore, the fine structure, thermal properties, and rheological properties of the isolated starches after F/T treatment were analyzed. The results indicate that potato starch with smaller particle sizes exhibits higher surface CC and PO content along with a higher proportion of very short chains (DP < 6, 8.17 %) and long B chains (DP > 25, 20.68 %). The study found that after F/T treatment, the surface of small-sized starch granules was initially damaged, exhibiting threads on the surface centered on the umbilical point. Following F/T treatment, both the crystallinity (very large (VL): 24.52-18.36 %; small (S): 17.03-16.69 %) and short-range order (VL: 2.97-2.61; S: 2.71-2.35) of starch particle size decreased. Both the amylose content (20.88-14.57 %) and ΔH (10.15-8.62 J/g) of isolated starch after freeze-thaw-treated dough exhibited a decrease to varying degrees. With the exception of the fifth cycle, small-size starch particles exhibited relatively higher G' and G" values and showed significant changes as a result of F/T treatment, demonstrating high hardness and complex viscosity. Clarifying the physicochemical properties of potato starches with different granule sizes is expected to expand their applications in frozen dough.
Collapse
Affiliation(s)
- Tongtong Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yucong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Zhang Z, Liu Q, Zhang L, Liu W, Richel A, Zhao R, Hu H. Potato dietary fiber effectively inhibits structure damage and digestibility increase of potato starch gel due to freeze-thaw cycles. Int J Biol Macromol 2024; 279:135034. [PMID: 39182873 DOI: 10.1016/j.ijbiomac.2024.135034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Repeated freeze-thaw (FT) cycles damage the quality of frozen starch-based foods and accelerate the digestion rate of starch. This study investigated how potato soluble dietary fiber (PSDF) affects the physicochemical characteristics and digestibility of potato starch (PS) after repeated FT cycles. Results indicated that repeated FT cycles of potato starch resulted in the enlargement of gel pores, an increase in hardness (from 322.5 g to 579.5 g), and a decrease in gel porosity, leading to reduced water-holding capacity (from 94.2 % to 85.4 %). However, the addition of PSDF stabilized the 3D structure of the PS/PSDF gel, with minimal fluctuations in hardness (413.0-447.5 g) and water-holding capacity (94.4-93.6 %). Meanwhile, PSDF enhanced intramolecular hydrogen bonding within starch molecules and promoted molecular interactions, increasing the PS/PSDF gel's helix structure; therefore, PSDF effectively addressed the increase in rapidly digestible starch caused by repeated FT cycles. Furthermore, PSDF might attach to the surface of starch particles, so limiting starch granule expansion and decreasing the peak viscosity increase caused by repeated FT cycles. The findings suggest that PSDF could be an effective component for improving the quality of potato starch-based frozen food.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Department of Biomass and Green Technologies, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Aurore Richel
- Department of Biomass and Green Technologies, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
6
|
Mo H, Xing Y, Xu P, Wan L, Dai J, Gong A, Zhang Y, Wang X, Fu Y. Insight into the effect of potassium carbonate on the physicochemical and structural properties of starch isolated from hot-dry noodles. Int J Biol Macromol 2024; 278:135062. [PMID: 39182896 DOI: 10.1016/j.ijbiomac.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
The objective of this study was to investigate the changes in physicochemical and structural properties of starch isolated from hot-dry noodles (HDNS) treated with different contents of potassium carbonate (K2CO3). The results demonstrated that the existence of K2CO3 increased the WHC and hardness of HDNS gel with an elevated storage modulus. Meanwhile, K2CO3 promoted the gelatinization of HDNS, which displayed higher viscosity and swelling power. Moreover, the relative crystallinity of HDNS were improved. K2CO3 facilitated the transformation of HDNS from an amorphous to a more ordered and crystalline structure. Simultaneously, the microscopic characteristics exhibited that K2CO3 promoted the partial fusion of starch particles to form aggregates, and the particle size became larger. In conclusion, the physicochemical and structural properties of HDNS were improved effectively with the incorporation of K2CO3, and the research results provided new insights for the processing of high-quality hot-dry noodles.
Collapse
Affiliation(s)
- Huiling Mo
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaonan Xing
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Xu
- Wuhan Jinxiangyuan Food Co., Ltd, Wuhan 430040, China
| | - Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjun Dai
- Angel Yeast Co., Ltd, Yichang 443003, China
| | | | - Yan Zhang
- Angel Yeast Co., Ltd, Yichang 443003, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
7
|
Almeida RLJ, Santos NC, Morais JRF, de Almeida Mota MM, da Silva Eduardo R, Muniz CES, de Assis Cavalcante J, da Costa GA, de Almeida Silva R, de Oliveira BF, da Silva Negreiros JK, da Silva PB, Albuquerque JC, de Figueiredo MJ, Lima SER. Effect of freezing rates on α-amylase enzymatic susceptibility, in vitro digestibility, and technological properties of starch microparticles. Food Chem 2024; 453:139688. [PMID: 38761722 DOI: 10.1016/j.foodchem.2024.139688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The aim of this study was to evaluate the effect of freezing rates using direct (LF: Liquid nitrogen) and indirect (RF: Cryogenic refrigerator and UF: ultra-freezer) methods at temperatures of (-20, -80, and - 196 °C) on the enzymatic susceptibility with α-amylase for microparticles. In vitro digestibility parameters and technological properties were also analyzed. Lower rates resulted in larger ice crystals, damaging the starch structure. Hydrolysis was more pronounced at slower rates RF: 0.07 °C/min and UF: 0.14 °C/min, yielding maximum values of RDS: 37.63% and SDS: 59.32% for RF. Type A crystallinity remained unchanged, with only a noted increase in crystallinity of up to 6.50% for FR. Starch pastes were classified as pseudoplastic, with RF exhibiting superior textural parameters and apparent viscosity. (RF: 7.18 J g-1 and UF: 7.34 J g-1) also showed lower values of gelatinization enthalpy. Freezing techniques were viable in facilitating the diffusion of α-amylase and reducing RS by up to 81%.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | - Raphael da Silva Eduardo
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Cecilia Elisa Sousa Muniz
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | | | | | | | - Juliana Cruz Albuquerque
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Maria José de Figueiredo
- Department of Agro-industrial Management and Technology, Federal University of Paraiba, Bananeiras, PB, Brazil
| | | |
Collapse
|
8
|
Zhu N, Liu Y, Zhang X, Gao H, Zeng J, Yang J, Song J, Li X, Zhao T. Effect of enzymatic hydrolysis of arabinoxylan on the quality of frozen dough during the subfreezing process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6062-6069. [PMID: 38441143 DOI: 10.1002/jsfa.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The objective of this investigation was to examine the impact of enzymatic hydrolysis of arabinoxylan (AX) on frozen dough quality under subfreezing conditions. The dough was subjected to freezing at -40 °C for 2 h and then stored at -9, -12, and -18 °C for 15 days. The water loss, freezable water content, water migration, and microstructure of the dough were measured. RESULTS The dough containing 0.8% cellulase enzymatically hydrolyzed AX (CAX) required the shortest duration when traversing the maximum ice-crystal formation zone (6.5 min). The dough with xylanase enzymatically hydrolyzed AX (XAX) demonstrated a faster freezing rate than the dough with CAX. The inclusion of both XAX and CAX in the dough resulted in the lowest freezable water loss and reduced freezable water content and free-water content levels, whereas the inclusion of xylanase-cellulase combined with enzymatically hydrolyzed AX resulted in higher free-water content levels. The textural properties of the subfreezing temperature dough were not significantly different from the dough stored at -18 °C and sometimes even approached or surpassed the quality observed in the control group rather than the dough stored at -18 °C. In addition, the gluten network structure remains well preserved in XAX- and CAX-containing doughs with minimal starch damage. CONCLUSION The enzymatic hydrolysis of AX from wheat bran can be used as a useful additive to improve the quality of frozen dough. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nannan Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yufen Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Xing Zhang
- Henan Midoqi Food Co. LTD, Xinxiang, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | | | | | - Xinjian Li
- Henan Xishi Food Co., LTD, Xinxiang, China
| | | |
Collapse
|
9
|
Wan L, Wu X, Xu P, Xing Y, Xiao S, Fu Y, Wang X. Effects of freeze-thaw cycles on the quality of Hot-dry noodles: From the moisture, starch, and protein characteristics. Food Chem 2024; 447:138996. [PMID: 38492293 DOI: 10.1016/j.foodchem.2024.138996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Freeze-thaw cycles (FTC) could cause damage to food during storage. The effects of different FTC on Hot-dry noodles (HDN) in terms of quality, moisture, starch, and protein characteristics were studied. This study showed that FTC decreased the texture properties and water absorption of HDN. Meanwhile, cooking loss was significantly increased after FTC. The water content of HDN was decreased and water migration was increased during FTC. In addition, results showed that FTC destroyed the order structure and increased the crystallinity of starch in HDN. Under FTC, the disulfide bond of HDN was broken, the free sulfhydryl group was increased, and the electrophoretic patterns confirmed the protein depolymerization. The microstructure also showed that the gluten network became incomplete and starch was exposed outside the substrate. This study expounded the mechanism of HDN quality deterioration during FTC, which laid a foundation for the development and improvement of frozen and freeze-thaw noodles.
Collapse
Affiliation(s)
- Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiude Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Xu
- Wuhan Jinxiangyuan Food Co., Ltd., Wuhan 430040, China
| | - Yaonan Xing
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Zhang Y, Xie S, Huang W, Zhan L, Huang Y, Chen P, Xie F. Fabrication and characterization of complex coacervates utilizing gelatin and carboxymethyl starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3585-3593. [PMID: 38150581 DOI: 10.1002/jsfa.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Modified polysaccharides have greatly expanded applications in comparison with native polysaccharides due to their improved compatibility and interactions with proteins and active compounds in food-related areas. Nonetheless, there is a noticeable dearth of research concerning the utilization of carboxymethyl starch (CMS) as a microcapsule wall material in food processing, despite its common use in pharmaceutical delivery. The development of an economical and safe embedding carrier using CMS and gelatin (GE) holds immense importance within the food-processing industry. In this work, the potential of innovative coacervates formed by the combination of GE and CMS as a reliable, stable, and biodegradable embedding carrier is evaluated by turbidity measurements, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and rheological measurements. RESULTS The results indicate that GE-CMS coacervates primarily resulted from electrostatic interactions and hydrogen bonding. The optimal coacervation was observed at pH 4.6 and with a GE/CMS blend ratio of 3:1 (w/w). However, the addition of NaCl reduced coacervation and made it less sensitive to temperature changes (35-55 °C). In comparison with individual GE or CMS, the coacervates exhibited higher thermal stability, as shown by TGA. X-ray diffraction analysis shows that the GE-CMS coacervates maintained an amorphous structure. Rheological testing reveals that the GE-CMS coacervates exhibited shear-thinning behavior and gel-like properties. CONCLUSION Overall, attaining electroneutrality in the mixture boosts the formation of a denser structure and enhances rheological properties, leading to promising applications in food, biomaterials, cosmetics, and pharmaceutical products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiling Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weijuan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yingwei Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Liu W, Wang K, Zhao Y, Shen Y, Zhang C, Peng Y, Ran X, Guo H, Ding Y, Tang S. Effects of nitrogen application on physicochemical properties of rice starch under elevated temperature. Food Chem 2024; 433:137303. [PMID: 37713937 DOI: 10.1016/j.foodchem.2023.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen fertilization can mitigate the negative effects of high temperatures on rice. In this study, we simulated dynamic field temperature increases using a free-air temperature enhancement system. Changes in the physicochemical properties of starch were investigated under increasing nitrogen fertilization during the grain-filling stage. We observed that the application of nitrogen at elevated temperatures (ETN) did not change the chain length distribution compared with elevated temperatures (ET) alone; however, it did significantly increase the heights of the first and second amylose peaks. Specifically, ETN significantly decreased the height of fifth amylopectin and relative crystallinity, and the changes it introduced in the physicochemical properties of starch were greater than those of ET. Overall, these changes in starch properties may be associated with the ability of nitrogen to facilitate the maintenance of rice quality at high temperatures.
Collapse
Affiliation(s)
- Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kailu Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Liu W, Zhao R, Liu Q, Zhao R, Zhang L, Chen Z, Hu H. Assessment of freeze damage in tuber starch with electrical impedance spectroscopy and thermodynamic, rheological, spectrographic techniques. Int J Biol Macromol 2023; 253:127197. [PMID: 37797854 DOI: 10.1016/j.ijbiomac.2023.127197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
In this study, we aimed to use electrical impedance spectroscopy (EIS) to assess the freeze-damage level of starches from potato tubers treated with multiple freezing-thawing (FT) cycles. The results showed that the relationship between the physicochemical properties of starches and the impedance characteristics of starch paste is temperature-dependent. As the temperature rises to 70-90 °C, the impedance modules show a significant correlation with the amylose and mineral contents, gelatinization and pasting properties, short-range ordered structure, relative crystallinity, and damage level within the range of 10-1 MHz (p < 0.01). This could be because FT leads to a reduction in amylose and ion content. Compared to a high level of freeze-damaged starch (FDS), a low level of FDS has less amylopectin and more amylose. Additionally, the ions could be typically evenly distributed throughout the unbranched linear amylose structure in starch paste. At the peak gelatinization temperature, the starch paste made from a low level of FDS exhibits a weakened network structure, allowing more unbound water for ion movement and enhancing electric conduction. In conclusion, EIS can predict the damage level and properties of FDS, which can benefit the frozen starchy food industry.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Renjie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziqi Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
13
|
Liu M, Li J, Ma H, Qin G, Niu M, Zhang X, Zhang J, Wei Y, Han J, Liang Y, Zhang S, Yin L, Zhu H, Huang Y, Li L, Zheng X, Liu C. Structural and physicochemical characteristics of wheat starch as influenced by freeze-thawed cycles and antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves. Food Chem X 2023; 20:100927. [PMID: 38144810 PMCID: PMC10740099 DOI: 10.1016/j.fochx.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/26/2023] Open
Abstract
The effects of freeze-thawed cycles (FTs) and a new antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves (ScAFP) on the structure and physicochemical characteristics of wheat starch were studied. The mechanical breaking exerted by ice crystals on starch granules during FTs gradually deepened, sequentially squeezing the surface (2-6 FTs), amorphous region (8 FTs) and crystalline region (10 FTs) of starch granules. These changes led to reduced thermal stability, increased retrogradation tendency, and weakened gel network structure. The addition of ScAFP retarded the damage of ice crystals on starch granule structure and crystal structure during FTs, and significantly reduced the retrogradation tendency. Compared with native starch, the hardness of freeze-thawed starch without and with added ScAFP after 10 FTs decreased by 17.85% and 9.22%, respectively, indicating ScAFP improved the gel texture properties of freeze-thawed starch. This study provides new strategies for improving the quality of frozen starch-based foods.
Collapse
Affiliation(s)
- Mei Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Ma
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guolan Qin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengge Niu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangkun Wei
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiajing Han
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lulu Yin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haojia Zhu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Huang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
14
|
Zhang C, Wang SY, Wu CY, Li JJ, Zhang LZ, Wang ZJ, Liu QQ, Qian JY. Effect of melting combined with ice recrystallization on porous starch preparation: Pore-forming properties, granular morphology, functionality, and multi-scale structures. Food Res Int 2023; 174:113463. [PMID: 37986407 DOI: 10.1016/j.foodres.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 11/22/2023]
Abstract
In this work, critical melting (CM) combined with freeze-thawing treatment (FT, freezing at -20 ℃ and -80 ℃, respectively) was used to prepare porous starch. The results showed that CM combined with the slow freezing rate (-20 ℃) can prepare porous starch with characteristics of grooves and cavities, while combined with the rapid freezing rate (-80 ℃) can prepare with holes and channels, especially after repeating FT cycles. Compared with the native counterpart, the specific surface area, pore volume, and average diameter of CMFT-prepared porous starch were significantly increased to 4.07 m2/g, 7.29 cm3/g × 10-3, and 3.57 nm, respectively. CMFT significantly increased the thermal stability of starch, in which the To, Tp, and Tc significantly increased from 63.32, 69.62, and 72.90 (native) to ∼69, 72, and 76 °C, respectively. CMFT significantly increased water and oil absorption of porous starch from 91.20 % and 72.00 % (native) up to ∼163 % and 94 %, respectively. Moreover, CMFT-prepared porous starch had a more ordered double-helical structure, which showed in the significantly increased relative crystallinity, semi-crystalline lamellae structure, and the proportion of the double helix structure of starch. The synergistic effect of melting combined with ice recrystallization can be used as an effective way to prepare structure-stabilized porous starch.
Collapse
Affiliation(s)
- Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China; Postdoctoral Mobile Station of Agriculture, College of Agriculture, Yangzhou University, Wenhui Donglu 48, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Shi-Yi Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chu-Yun Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jing-Jing Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ling-Zhi Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Zhi-Juan Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Wenhui Donglu 48, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| |
Collapse
|
15
|
Tan JM, Li B, Han SY, Wu H. Use of a compound modifier to retard the quality deterioration of frozen dough and its steamed bread. Food Res Int 2023; 172:113229. [PMID: 37689962 DOI: 10.1016/j.foodres.2023.113229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
To retard the quality deterioration of the dough during frozen storage, the effects of a compound modifier (CM) comprised of sodium stearoyl lactate, VC, and β-glucanase on the properties of the frozen dough, as well as the quality of the frozen dough steamed bread were investigated. The results revealed that CM restricted the migration of water in the dough and improved its rheological properties. Furthermore, CM minimized the deterioration of specific volume and textural properties, and prevented starch retrogradation in the frozen dough steamed bread. Moreover, the addition of CM strengthened the secondary structure of gluten protein and formed a more resilient gluten network. The microstructure of the frozen dough steamed bread showed that CM reduced the damage caused by ice crystals on the gluten network. Overall, the use of CM strengthened the gluten network and effectively delayed the quality deterioration of the frozen dough, thus is potential as an improver for frozen dough.
Collapse
Affiliation(s)
- Jin-Ming Tan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
16
|
An J, Liu M, Din ZU, Xie F, Cai J. Toward function starch nanogels by self-assembly of polysaccharide and protein: From synthesis to potential for polyphenol delivery. Int J Biol Macromol 2023; 247:125697. [PMID: 37423442 DOI: 10.1016/j.ijbiomac.2023.125697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Nanogels formed by self-assembly of natural proteins and polysaccharides have attracted great interest as potential carriers of bioactive molecules. Herein, we reported that carboxymethyl starch-lysozyme nanogels (CMS-Ly NGs) were prepared using carboxymethyl starch and lysozyme by green and facile electrostatic self-assembly, and the nanogels served as epigallocatechin gallate (EGCG) delivery systems. The dimensions and structure of the prepared starch-based nanogels (i.e., CMS-Ly NGs) were characterized by dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). FT-IR and 1H NMR spectra together confirmed the formation of CMS; FT-IR spectra confirmed the formation of CMS-Ly NGs; XRD spectra confirmed the disruption of the crystal structure of lysozyme after electrostatic self-assembly with CMS, and further confirmed the formation of nanogels. TGA demonstrated the thermal stability of nanogels. More importantly, the nanogels showed a high EGCG encapsulation rate of 80.0 ± 1.4 %. The CMS-Ly NGs encapsulated with EGCG exhibited regular spherical structure and stable particle size. Under the simulated gastrointestinal environmental conditions, CMS-Ly NGs encapsulated with EGCG showed the controlled release potential, which increased its utilization. Additionally, anthocyanins can also be encapsulated in CMS-Ly NGs and showed slow-release properties during gastrointestinal digestion in the same way. Cytotoxicity assay also demonstrated good biocompatibility between CMS-Ly NGs and CMS-Ly NGs encapsulated with EGCG. The findings of this research suggested the potential application of protein and polysaccharides-based nanogels in the delivery system of bioactive compounds.
Collapse
Affiliation(s)
- Jiejie An
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mingzhu Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Fang Xie
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
17
|
Liu P, Liu Z, Ma X, Wan H, Zheng J, Luo J, Deng Q, Mao Q, Li X, Pu Z. Characterization and Differentiation of Grain Proteomes from Wild-Type Puroindoline and Variants in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1979. [PMID: 37653896 PMCID: PMC10224366 DOI: 10.3390/plants12101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Premium wheat with a high end-use quality is generally lacking in China, especially high-quality hard and soft wheat. Pina-D1 and Pinb-D1 (puroindoline genes) influence wheat grain hardness (i.e., important wheat quality-related parameter) and are among the main targets in wheat breeding programs. However, the mechanism by which puroindoline genes control grain hardness remains unclear. In this study, three hard wheat puroindoline variants (MY26, GX3, and ZM1) were compared with a soft wheat variety (CM605) containing the wild-type puroindoline genotype. Specifically, proteomic methods were used to screen for differentially abundant proteins (DAPs). In total, 6253 proteins were identified and quantified via a high-throughput tandem mass tag quantitative proteomic analysis. Of the 208 DAPs, 115, 116, and 99 proteins were differentially expressed between MY26, GX3, and ZM1 (hard wheat varieties) and CM605, respectively. The cluster analysis of protein relative abundances divided the proteins into six clusters. Of these proteins, 67 and 41 proteins were, respectively, more and less abundant in CM605 than in MY26, GX3, and ZM1. Enrichment analyses detected six GO terms, five KEGG pathways, and five IPR terms that were shared by all three comparisons. Furthermore, 12 proteins associated with these terms or pathways were found to be differentially expressed in each comparison. These proteins, which included cysteine proteinase inhibitors, invertases, low-molecular-weight glutenin subunits, and alpha amylase inhibitors, may be involved in the regulation of grain hardness. The candidate genes identified in this study may be relevant for future analyses of the regulatory mechanism underlying grain hardness.
Collapse
Affiliation(s)
- Peixun Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Xiaofei Ma
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Qingyan Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Qiang Mao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Xiaoye Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, China; (P.L.)
| |
Collapse
|
18
|
Wei Q, Zhang G, Mei J, Zhang C, Xie J. Optimization of freezing methods and composition of frozen rice dough reconstituted by glutinous rice starch and gluten. Int J Biol Macromol 2023; 240:124424. [PMID: 37060979 DOI: 10.1016/j.ijbiomac.2023.124424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
This study investigated the effects of four different freezing methods on the texture of rice dough reconstituted by glutinous rice starch and gluten, and the changes of properties of rice dough with different gluten ratios after liquid nitrogen (LF) treatment. The profiles of frozen rice dough were studied by texture analyzer, low-field NMR, SEM, FT-IR, DSC, CLSM, X-RD and RVA. Results revealed that with the slowing down of freezing rate, the damage of freezing process to starch granules and protein structure in frozen rice dough increases, resulting in the increase of damaged starch, the decrease of protein ordered structure, the change of bound water in frozen rice dough to free water, the decrease of frozen rice dough hardness and elasticity, the decrease of storage modulus (G') and the deterioration of frozen rice dough texture. The addition of gluten in frozen rice dough will increase the short-range ordered structure and crystal structure of starch, reduce the digestibility of starch, and change the viscosity characteristics of frozen rice dough. Based on the experimental results, adding 10 % gluten is more suitable for making frozen rice dough, while LF has the least effect on frozen rice dough texture.
Collapse
Affiliation(s)
- Qi Wei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Ge Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Area A, No.118 Gaodong Road, Pudong New District, Shanghai 200137, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Chenchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
19
|
Effects of natural freeze-thaw treatment on structural, functional, and rheological characteristics of starches isolated from three bitter potato cultivars from the Andean region. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
21
|
Song X, Chiou BS, Xia Y, Chen M, Liu F, Zhong F. The improvement of texture properties and storage stability for kappa carrageenan in developing vegan gummy candies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3693-3702. [PMID: 34894157 DOI: 10.1002/jsfa.11716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND As plant-based foods have become more mainstream in recent years, carrageenan has been used to replace animal-derived gelatin in confectionery products. However, texture defects and water seepage during storage limit the development of kappa carrageenan (KC) gummy candies. RESULTS This study evaluated the effects of hydrocolloids on the texture properties and storage stability of KC gummy candies. The results showed that 4 g kg-1 carboxymethylcellulose (CMC) composited with 20 g kg-1 KC formed a flexible gummy candy with low fragility and limited water seepage during storage. Further investigation revealed that 4 g kg-1 CMC promoted side-by-side intermolecular aggregation of KC helices through hydrogen bonding, which stabilized a denser network structure compared to the pure KC hydrogel. However, high CMC proportions (8-12 g kg-1 ) led to electrostatic repulsion that dominated in the system, inhibiting the gel-forming process and thus resulting in a weak gel structure with accelerated syneresis. CONCLUSION This study found that 4 g kg-1 CMC was able to improve the flexibility and decrease unacceptable fragility of KC gummy candies, with water seepage decreased during storage significantly. It provided preliminary evidence for utilizing hydrocolloids to adjust texture and control water migration in KC gels, and has potential to promote wide development of vegan gummy candies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, US Department of Agriculture, Albany, CA, USA
| | - Yixun Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Zhou T, Zhang L, Zhao R, Liu Q, Liu W, Hu H. Effects of particle size distribution of potato starch granules on rheological properties of model dough underwent multiple freezing-thawing cycles. Food Res Int 2022; 156:111112. [DOI: 10.1016/j.foodres.2022.111112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/11/2023]
|
23
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
24
|
Ma Y, Wu D, Guo L, Yao Y, Yao X, Wang Z, Wu K, Cao X, Gao X. Effects of Quinoa Flour on Wheat Dough Quality, Baking Quality, and in vitro Starch Digestibility of the Crispy Biscuits. Front Nutr 2022; 9:846808. [PMID: 35495943 PMCID: PMC9043647 DOI: 10.3389/fnut.2022.846808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Quinoa is a pseudo-cereal which has excellent nutritional and functional properties due to its high content of nutrients, such as polyphenols and flavonoids, and therefore quinoa serves as an excellent supplement to make healthy and functional foods. The present study was aimed to evaluate the quality characteristics of wheat doughs and crispy biscuits supplemented with different amount of quinoa flour. The results showed that when more wheat flour was substituted by quinoa flour, proportion of unextractable polymeric protein to the total polymeric protein (UPP%) of the reconstituted doughs decreased and the gluten network structure was destroyed at a certain substitution level. The content of B-type starch and the gelatinization temperature of the reconstituted flours increased. The storage modulus, loss modulus, development time, and stability time of the dough increased as well. Moreover, hardness and toughness of the formulated crispy biscuits significantly decreased. Analyses suggested that starch digestibility was reduced and resistant starch content increased significantly. Taken together, quinoa flour improved dough rheological properties, enhanced the textural properties, and increased resistant starch content in crispy biscuits, thus adding to high nutritional value.
Collapse
Affiliation(s)
- Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Daying Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Youhua Yao
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
| | - Xiaohua Yao
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Kunlun Wu
- State Key Laboratory of Plateau Ecology and Agronomy, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Qinghai University, Xining, China
- *Correspondence: Kunlun Wu,
| | - Xinyou Cao
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Xinyou Cao,
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Xin Gao,
| |
Collapse
|
25
|
Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility. Foods 2022; 11:foods11071049. [PMID: 35407136 PMCID: PMC8998035 DOI: 10.3390/foods11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Capsaicin was microencapsulated in six different wall systems by spray drying whey protein and citrate mung bean starch at various ratios (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, 0:10) to improve its stability and water solubility and reduce its pungency. The morphological, rheological, storage stability, and physicochemical properties of capsaicin emulsion and capsaicin microcapsules were characterized. As a result, the yield of six capsaicin microcapsules was 19.63–74.99%, the encapsulation efficiency was 26.59–94.18%, the solubility was 65.97–96.32%, the moisture content was lower than 3.63% in all systems, and particle size was broadly distributed in the range of 1–60 μm. Furthermore, microcapsules with high whey protein content in the encapsulation system had an excellent emulsifier effect and wetness, smooth particle surface, and higher lightness (L*). Moreover, the system formed by composite wall materials at a ratio of whey protein to citrate mung bean starch of 7:3 had the highest retention rate and the best stability. The overall results demonstrate that whey protein combined with citrate mung starch through spray drying could be a promising strategy to produce microcapsules of poorly water-soluble compounds such as capsaicin.
Collapse
|
26
|
Precup G, Teleky BE, Ranga F, Vodnar DC. Assessment of Physicochemical and Rheological Properties of Xylo-Oligosaccharides and Glucose-Enriched Doughs Fermented with BB-12. BIOLOGY 2022; 11:biology11040553. [PMID: 35453752 PMCID: PMC9027653 DOI: 10.3390/biology11040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Xylo-oligosaccharides (XOS) are considered indigestible fibers that could support the growth of potentially beneficial gut microbes, thus classified as “prebiotics”. Prebiotics are “a substrate that is selectively utilized by host microorganisms conferring a health benefit” as defined by the International Scientific Association for Probiotics and Prebiotics. The current work aimed to study the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production and on the rheological properties of the doughs. The effect of XOS addition increased the production of organic acids, and positively influenced the rheological properties of the dough. Additionally, after frozen storage, there were no significant viscoelastic changes in the dough structure, which indicates that xylo-oligosaccharides improved the water retention capability of the dough. Through fermentation carbohydrates like, glucose, xylose, maltose, and XOS were consumed, and a high quantity of lactic and acetic acid were produced, organic acids with roles in the flavor generation and sensorial properties of the final product. This study showed the potential use of XOS as food ingredient in sourdoughs for bakery products manufacturing with improved quality and rheological properties. Abstract Xylo-oligosaccharides (XOS) are considered non-digestible fibers produced mainly from agricultural biomass and are classified as “emerging prebiotic” compounds. Since XOS were shown to promote the growth of bifidobacteria in the gut with potential effects on one’s health, scientists used them as food ingredients. For example, the addition of XOS in bakery products could improve their physicochemical characteristics. The current work aimed to investigate the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production. The effect on viscoelastic changes during frozen storage and after the thawing process was also studied. The results showed that the viability of BB-12 increased slightly with the increase in XOS and glucose concentrations, which determined dough acidification due to accumulation of organic acids, that positively influenced the dough’s rheological properties such as a higher elasticity before and after frozen storage. With 10% XOS-addition, the acetic acid quantity reached 0.87 ± 0.03 mg/L, and the highest lactic acid concentration was found in the 10% XOS-enriched doughs, the glucose-enriched doughs and in the control sample (100% wheat dough). The quantity of glucose, maltose, XOS, and xylose decreased until the end of fermentation.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| |
Collapse
|
27
|
Critical melting assisted freeze-thawing treatment as a novel clean-label way to prepare porous starch: Synergistic effect of melting and ice recrystallization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Modification of potato starch by critical melting pretreatment combined with freeze-thawing: Preparation, morphology, structure, and functionality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wang H, Wang Y, Xu K, Zhang Y, Shi M, Liu X, Chi C, Zhang H. Causal relations among starch hierarchical structure and physicochemical characteristics after repeated freezing-thawing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Effect of multiple freezing/thawing cycles on the physicochemical properties and structural characteristics of starch from wheat flours with different gluten strength. Int J Biol Macromol 2022; 194:619-625. [PMID: 34822831 DOI: 10.1016/j.ijbiomac.2021.11.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022]
Abstract
The physicochemical properties and structural characteristics of starches from three wheat flours with different gluten strength (S-YM20, S-ZM27, and S-ZM366) during freezing/thawing (F/T) cycles were studied. After F/T treatment, the damaged starch content of these three starches all increased, and the lowest increment of damaged starch content after 8 F/T cycles was S-ZM366; the most serious distribution of particle surface concave hole and fracture was S-YM20, followed by S-ZM27 and S-ZM366; additionally, the results of solubility, swelling power, thermal stability and pasting properties indicated S-ZM366 exhibited the strongest resistance to F/T cycles. The differences of freezing resistance among the three starches were possibly ascribed to the differences in compositions, crystallinity and microstructure among these three starches. This study provides theoretical contribution to the development of frozen dough industry from the perspective of wheat variety.
Collapse
|
31
|
ZHANG L, TIAN X, ZENG J, WANG H, GAO H, ZHANG K, WANG M. Changes of moisture distribution and starch properties in fermented dough under subfreezing temperature storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Changes of aggregation and structural properties of heat-denatured gluten proteins in fast-frozen steamed bread during frozen storage. Food Chem 2021; 365:130492. [PMID: 34237565 DOI: 10.1016/j.foodchem.2021.130492] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022]
Abstract
The aim of this research was to clearly clarify the deterioration mechanism of heat-denatured gluten proteins by exploring the change of aggregation and structural characteristics of heat-denatured gluten proteins in the steamed bread system and the steamed gluten system during frozen storage. An increase in the total SDS-soluble protein content was determined, which mainly attributed to the soluble monomer protein content increased. Combined with the significant increase of free sulfhydryl, from 3.12 μmol/g to 5.06 μmol/g and 2.64 μmol/g to 3.29 μmol/g, respectively, it can be inferred that the proteins depolymerization induced by frozen storage was mainly involved in the breakdown of heat-induced glutenin-gliadin disulfide cross-linking. Frozen storage induced the conversion of random coil structure to β-sheet structure and a ruptured microstructure with small fragment was observed. Moreover, the protein of steamed bread system was easier to depolymerize than that of the steamed gluten system.
Collapse
|
33
|
Yang Y, Zheng S, Li Z, Pan Z, Huang Z, Zhao J, Ai Z. Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Wang H, Xu K, Liu X, Zhang Y, Xie X, Zhang H. Understanding the structural, pasting and digestion properties of starch isolated from frozen wheat dough. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106168] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Liang Y, Qu Z, Liu M, Zhu M, Zhang X, Wang L, Jia F, Zhan X, Wang J. Further interpretation of the strengthening effect of curdlan on frozen cooked noodles quality during frozen storage: Studies on water state and properties. Food Chem 2020; 346:128908. [PMID: 33401084 DOI: 10.1016/j.foodchem.2020.128908] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Curdlan has been applied to weaken the quality deterioration of frozen cooked noodles (FCN) during frozen storage. However, the underlying mechanism is still unclear. In this paper, an A/LKB-F probe was used for texture profile analysis and mercury intrusion was firstly used for analyzing ice crystals state in three dimensions. Meanwhile, a systematic study on the water state was conducted, as well as the freeze-thawed stability of FCN under curdlan intervention during frozen storage. The results showed that 0.5% curdlan significantly (P < 0.05) alleviated the decrement in hardness, chewiness and extension, and enhanced the freeze-thawed stability of FCN. This was closely associated with the fact that the addition of curdlan minimized freezable water content, inhibited water mobility and migration, and raised the homogeneity of ice crystals in FCN. This study provides more comprehensive theories for the strengthening effect of curdlan on FCN quality from the perspective of water state.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuoting Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengfei Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Feng Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaobei Zhan
- Ministry of Education, Key Lab Carbohydrate Chemical and Biotechnology & School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Zhang J, Liu D, Liu Y, Yu Y, Hemar Y, Regenstein JM, Zhou P. Effects of particle size and aging of milk protein concentrate on the biophysical properties of an intermediate-moisture model food system. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Ning Y, Cui B, Yuan C. Decreasing the digestibility of debranched corn starch by encapsulation with konjac glucomannan. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Magalhães F, Calton A, Heiniö RL, Gibson B. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiol 2020; 94:103640. [PMID: 33279066 DOI: 10.1016/j.fm.2020.103640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Despite Saccharomyces cerevisiae being a synonym for baker's yeast, the species does not perform well in all baking-related conditions. In particular, dough fermentation, or proofing, is compromised by the species' sensitivity to the low and freezing temperatures that are often used in modern bakeries. Here, screening trials that included representatives of all known Saccharomyces species, showed that S. cerevisiae was generally the most sensitive member of the genus with respect to cold and freezing conditions. We hypothesized therefore that the superior cold tolerance of the non-S. cerevisiae yeast would enable their use as frozen-dough baking strains. To test this, the different yeast species were incorporated into doughs, flash frozen and kept in a frozen state for 14 days. During the proofing stage, dough development was lower in doughs that had been frozen, relative to fresh doughs. This reduction in fermentation performance was however most pronounced with S. cerevisiae. The psychrotolerant yeasts S. eubayanus, S. jurei and S. arboricola showed a strong capacity for post-freeze proofing in terms of dough development and duration of lag phase prior to fermentation. The superior proofing power of these species resulted in breads that were significantly softer and less dense than those prepared with S. cerevisiae. A sensory panel could distinguish the S. cerevisiae and non-S. cerevisiae breads based on their physical properties, but aroma and taste were unaffected by the species employed. To further improve frozen dough baking properties, S. eubayanus, S. jurei and S. arboricola were crossed with baker's yeast through rare mating, and hybrids with improved proofing capacities in both fresh and frozen doughs relative to the parents were created. The use of S. jurei and S. arboricola in baking represents the first potential technological application of these species.
Collapse
Affiliation(s)
- Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland.
| | - Alex Calton
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Raija-Liisa Heiniö
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| |
Collapse
|
39
|
Su H, Tu J, Zheng M, Deng K, Miao S, Zeng S, Zheng B, Lu X. Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chem 2020; 315:126209. [PMID: 32007811 DOI: 10.1016/j.foodchem.2020.126209] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 01/11/2020] [Indexed: 11/25/2022]
Abstract
The effects of fructooligosaccharides (FOS), galactooligosaccharides (GOS), and xylooligosaccharides (XOS) on gelatinization, retrogradation, thermal properties and particle size of wheat starch at different freezing temperatures were studied. The results showed that the wheat starch porosity, particle size, peak viscosity increased with increasing freezing temperature. With the addition of 16% oligosaccharides to starch, the porosity, particle size, crystallinity, initial gelatinization temperature, peak value, breakdown and retrogradation viscosity of the starch granules significantly decreased in the order of XOS > GOS > FOS. However, the pasting temperature of the granules increased. The addition of oligosaccharides (especially XOS, which has the most significant effect in inhibiting starch retrogradation) can inhibit the formation of starch crystal structures to a certain extent, reduce the damage from ice crystals to starch granules and delay starch retrogradation. Therefore, functional oligosaccharides can be used as a potentially effective additive to increase freezing stability in frozen starch-based foods.
Collapse
Affiliation(s)
- Han Su
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jinjin Tu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaibo Deng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Ning Y, Cui B, Yuan C, Zou Y, Liu W, Pan Y. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105342] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Langenaeken NA, De Schepper CF, De Schutter DP, Courtin CM. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chem 2019; 295:138-146. [DOI: 10.1016/j.foodchem.2019.05.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
|
42
|
Li MN, Zhang B, Xie Y, Chen HQ. Effects of debranching and repeated heat-moisture treatments on structure, physicochemical properties and in vitro digestibility of wheat starch. Food Chem 2019; 294:440-447. [DOI: 10.1016/j.foodchem.2019.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/22/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
|
43
|
El Halal SLM, Kringel DH, Zavareze EDR, Dias ARG. Methods for Extracting Cereal Starches from Different Sources: A Review. STARCH-STARKE 2019. [DOI: 10.1002/star.201900128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Dianini Hüttner Kringel
- Department of Agroindustrial Science and TechnologyFederal University of Pelotas 96010‐900 Pelotas Brazil
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and TechnologyFederal University of Pelotas 96010‐900 Pelotas Brazil
| |
Collapse
|
44
|
Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Tao H, Li M, Deng HD, Ren KX, Zhuang GQ, Xu XM, Wang HL. The impact of sodium carbonate on physico-chemical properties and cooking qualities of starches isolated from alkaline yellow noodles. Int J Biol Macromol 2019; 137:697-702. [DOI: 10.1016/j.ijbiomac.2019.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
|
46
|
Li XM, Wu ZZ, Zhang B, Pan Y, Meng R, Chen HQ. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem 2019; 293:197-203. [DOI: 10.1016/j.foodchem.2019.04.096] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
|
47
|
Shaikh F, Ali TM, Mustafa G, Hasnain A. Comparative study on effects of citric and lactic acid treatment on morphological, functional, resistant starch fraction and glycemic index of corn and sorghum starches. Int J Biol Macromol 2019; 135:314-327. [DOI: 10.1016/j.ijbiomac.2019.05.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
48
|
Li XM, Xie QT, Zhu J, Pan Y, Meng R, Zhang B, Chen HQ, Jin ZY. Chitosan hydrochloride/carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Yan X, Wu ZZ, Li MY, Yin F, Ren KX, Tao H. The combined effects of extrusion and heat-moisture treatment on the physicochemical properties and digestibility of corn starch. Int J Biol Macromol 2019; 134:1108-1112. [DOI: 10.1016/j.ijbiomac.2019.05.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
|
50
|
Vargas-León EA, Falfan-Cortes RN, Navarro-Cortez RO, Hernández-Ávila J, Castro-Rosas J, Gómez-Aldapa CA. Double chemical modification in rice starch: acid hydrolysis optimization process and phosphating. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1624623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Enaim Aída Vargas-León
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Reyna Nallely Falfan-Cortes
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
- Cátedra CONAyT, México, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Ricardo Omar Navarro-Cortez
- Área Académica de Ingeniería Agroindustrial e Ingeniería en Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Juan Hernández-Ávila
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Javier Castro-Rosas
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Carlos Alberto Gómez-Aldapa
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|