1
|
Jerga R, Skopalová J, Barták P. Adsorptive transfer cyclic square-wave voltammetry and HPLC with tandem electrochemical detection - Two novel methods for determination of chili peppers pungency. Talanta 2024; 280:126711. [PMID: 39167935 DOI: 10.1016/j.talanta.2024.126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The pungency of chili peppers, the most popular hot spice used worldwide, is caused by capsaicinoids (CPDs), the content of which can vary greatly due to varietal differences and growing conditions. For the first time, a novel simple method for the fast determination of CPDs in chili peppers and chili products was developed based on adsorptive transfer cyclic square-wave voltammetry (AdTCSWV), using adsorption of lipophilic CPDs on an unmodified glassy carbon electrode surface from methanolic extracts of chili pepper samples. The CSWV is based on short oxidation of adsorbed CPDs to quinoid products, and their subsequent reduction and re-oxidation to provide specific analytical signals with a linear range from 0.05 to 1.00 mg L-1. This principle was also implemented in tandem coulometric and amperometric detection of CPDs after HPLC separation. The two-step electrochemical detection provides increased selectivity for CPDs in case of CPDs co-elution with other electrochemically oxidizable components that cannot be reversibly reduced.
Collapse
Affiliation(s)
- Radek Jerga
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic.
| | - Jana Skopalová
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Petr Barták
- Palacký University, Faculty of Science, Department of Analytical Chemistry, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
2
|
Cheng Z, Wen ZF, Liu ZF, Zhang Y, Zhou Y, Feng XS. Capsaicinoids in Food: An Update on Pretreatment and Analysis Methods since 2010. Crit Rev Anal Chem 2024; 54:73-92. [PMID: 35320052 DOI: 10.1080/10408347.2022.2054269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Capsaicinoids, whose basic chemical structure is the vanilla amide of n-nonanoic acid, are responsible for chili pepper fruits' spicy flavor (pungency) and multiple pharmacological actions. Capsaicinoids are widely used to produce intense flavor food additives due to their sensory attributes of pungency, aroma, and color. To ensure strict quality control for capsaicinoids and maximize their positive effects, valid and sensitive pretreatment and determination methods are urgently needed. Consequently, this review provides a comprehensive summary of capsaicinoids' preparation and analytical technologies in food samples. Pretreatment techniques mainly include liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, and dispersive solid-phase microextraction, among others. Detection methods include liquid chromatography coupled with different detectors, gas chromatography, electrochemical sensor methods, capillary electrophoresis, etc. Furthermore, the advantages and disadvantages of various pretreatment and analytical methods are compared and discussed. Thus, the present paper has attempted to shed light on novel and traditionalpretreatment methods and determination approaches and provided proper comments about their new developments and applications.
Collapse
Affiliation(s)
- Zheng Cheng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi-Feng Wen
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Tonanon P, Jalando-On Agpoon K, Webster RD. A comparison of the detection and quantification of praziquantel via electrochemical and gas chromatography methods in freshwater and saltwater samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1323-1329. [PMID: 38189186 DOI: 10.1039/d3ay01905e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Two new techniques for analyzing praziquantel (PZQ), an effective antiparasitic drug used in fresh and saltwater aquariums, were optimized and compared. One method was based on voltammetry and the other method used gas chromatography combined with mass spectrometry (GC-MS), although both procedures utilized the same sample pretreatment strategy which involved the PZQ being quantitatively transferred into acetonitrile using solid phase extraction. GC-MS analysis led to lower limits of detection (0.32 μM, 0.10 ppm) and quantification (0.72 μM, 0.22 ppm) compared to voltammetry, although both methods gave acceptable quantification for levels of PZQ > 25 μM (7.8 ppm). GC-MS is preferred for the most accurate determination, but voltammetry may provide a cost-effective alternative for detecting PZQ where on site testing is required.
Collapse
Affiliation(s)
- Panyawut Tonanon
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Katherine Jalando-On Agpoon
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Richard D Webster
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| |
Collapse
|
4
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Fan YF, Jiang HL, Chen XF, Li N, Wang XL, Lin JM, Zhao RS. Room-temperature synthesis of nitrogen-rich conjugated microporous polymers for solid-phase extraction of trace synthetic musks. Food Chem 2023; 404:134681. [DOI: 10.1016/j.foodchem.2022.134681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
6
|
Nezhadali A, Eshghi Ghorbanzadeh A, Sadeghzadeh S, Shadmehri R. Application of response surface modeling optimization in UV spectrophotometric determination of 4-aminobenzoic acid by molecularly imprinted polypyrrole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122034. [PMID: 36308830 DOI: 10.1016/j.saa.2022.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Selective determination of 4-aminobenzoic acid (ABA) in pharmaceutical and human serum samples was performed by molecularly imprinted polypyrrole and ultraviolet (UV) spectrophotometry, based on precipitation polymerization. The molecularly imprinted polymer (MIP) was prepared using pyrrole functional monomer and ABA template molecules. The significant factors controlling the performance of the synthesized ABAMIP sorbent were screened and optimized using Plackett- Burman design (PBD) and central composite design (CCD), respectively. The model was used to obtain the optimal values of the significant response factors. The predicted MIP to NIP response ratio demonstrated an approximate deviation of 5 % from the experimental value. Under the obtained optimal conditions, the calibration curve showed a linear range of 0.05-2 mM with a correlation coefficient (r2) of 0.9920 and a limit of detection (LOD) of 0.0310 mM. The method recovery for the analyte was obtained 88.10-100.5 in the investigated real samples. The proposed ABA-MIP sorbent showed an acceptable selectivity in the presence of some pharmaceuticals.
Collapse
Affiliation(s)
- Azizollah Nezhadali
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran.
| | | | - Samira Sadeghzadeh
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran.
| | - Raham Shadmehri
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran.
| |
Collapse
|
7
|
Chan KK, Hamid MSB, Webster RD. Oxidation of capsaicin in acetonitrile in dry and wet conditions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Genovese S, Epifano F, Marchetti L, Bastianini M, Cardellini F, Spogli R, Fiorito S. Pre-concentration of capsaicinoids from different cultivars of Capsicum annuum after extraction in heterogenous mixtures. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
10
|
Mi S, Yu W, Li J, Liu M, Sang Y, Wang X. Characterization and discrimination of chilli peppers based on multi-element and non-targeted metabolomics analysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Impact of capsaicin on aroma release: in vitro and in vivo analysis. Food Res Int 2020; 133:109197. [PMID: 32466935 PMCID: PMC7262593 DOI: 10.1016/j.foodres.2020.109197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
Capsaicin is the main bioactive compound in chili pepper that leads to the perception of "spiciness". However, the effect of capsaicin on aroma release in the nose remains unexplained. This is the first study designed to measure capsaicin's impact on aroma release during consumption. In vitro studies, using static headspace analysis by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS), showed no impact of capsaicin (5 ppm) on the gas-liquid partitioning equilibria of a range of aroma compounds. However, a significant reduction in aroma release was observed in vivo, during oral melting of a model ice cube system (p < 0.05) included 5 ppm capsaicin. The total release of aroma into the nasal cavity was decreased, such that only 49% of 3-methylbutanal, 60% of 1-octen-3-ol and 83% of linalool was released. This is the first evidence of capsaicin's reduction effect on aroma release during consumption. It was also found that 5 ppm capsaicin increased saliva secretion by 75%, which may have led to the dilution of aroma compounds in the mouth and directly impacted the aroma release into the nasal cavity. The most hydrophilic compound (3-methylbutanal) was affected by capsaicin to a greater extent than the hydrophobic compound (linalool), the solvent effect of the additional saliva may explain this.
Collapse
|
12
|
Jerga R, Rajcová A, Müllerová V, Barták P, Cankař P, Navrátil T, Skopalová J. Phospholipid modified glassy carbon electrode for determination of chili peppers pungency by ex-situ extraction voltammetry. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Optimizing and Comparing Ultrasound- and Microwave-Assisted Extraction Methods Applied to the Extraction of Antioxidant Capsinoids in Peppers. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Capsinoids are very similar antioxidant compounds to capsaicinoids, but less irritating, non-pungent and more palatable, and can thus be used in greater concentrations for food applications. To date, three capsinoids (capsiate, dihydrocapsiate, and nordihydrocapsiate) have been isolated from the pepper fruits. Due to its substantial commercial importance, it would be convenient to determine which pepper varieties have a richer content. Ultrasound- (UAE) and microwave- (MAE) assisted extraction have been implemented and analyzed using multivariate statistical methods. Firstly, different solvents were tested individually. The three best solvents were used in a set mixture design, where 42% methanol and 58% ethyl acetate were determined as the optimum combination for UAE, and 100% methanol for MAE. Subsequently, a Box–Behnken experimental design with four variables for both UAE and MAE (time, temperature, pH and sample mass:solvent volume “ratio”) was performed. The sample mass:solvent volume was the most influential variable in UAE; while for MAE no variable was any more influential than the others. Finally, both optimized extraction methods were successfully applied to different varieties of peppers. Besides, to demonstrate the efficiency of both extraction methods, a recovery study was performed. The results prove the potential of both techniques as highly adequate methods for the extraction of capsinoids from peppers.
Collapse
|
14
|
Ebrahimi B, Mohammadiazar S, Ardalan S. New modified carbon based solid phase extraction sorbent prepared from wild cherry stone as natural raw material for the pre-concentration and determination of trace amounts of copper in food samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
da Silva Antonio A, Wiedemann LSM, da Veiga Junior VF. Food Pungency: the Evolution of Methods for Capsaicinoid Analysis. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01470-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|