1
|
Osete-Alcaraz L, Gómez-Plaza E, Jørgensen B, Oliva J, Cámara MA, Jurado R, Bautista-Ortín AB. The composition and structure of plant fibers affect their fining performance in wines. Food Chem 2024; 460:140657. [PMID: 39106809 DOI: 10.1016/j.foodchem.2024.140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
In recent years, the wine industry has shifted towards plant-based fining agents for food safety reasons and consumer preferences. This study analysed the interaction of five plant fibers with red wine phenolic compounds to determinate their performance as fining agents. Chemical composition, polysaccharide profile, and physical properties were examined. Pea, cellulose, and Sauvignon Blanc pomace fibers effectively reduced tannin content while minimally affecting the concentration of anthocyanins, flavonols and wine color. Contrary to previous beliefs, the presence of pectins in fibers didn't play a crucial role in phenolic compound interaction since cellulose-rich fibers with low pectin concentration also bound tannins effectively, especially those with small particle size and high contact surface. Pea fiber, rich in cellulose and pectins, showed remarkable tannin retention while minimally affecting wine color. This research highlights the potential of plant fibers as effective fining agents in wine production and how their composition affects their performance.
Collapse
Affiliation(s)
- Lucía Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain.
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José Oliva
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Miguel Angel Cámara
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Ricardo Jurado
- Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, Spain
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
2
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
3
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
4
|
Ostrihoňová M, Gramblička M, Polakovič M. Industrial hydrophobic adsorbent screening for the separation of 1-phenylethanol and acetophenone. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ponce MDV, Cina M, López C, Cerutti S. Synthesis and evaluation of a Zn-Al layered double hydroxide for the removal of ochratoxin A. Greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2841-2848. [PMID: 35815894 DOI: 10.1039/d2ay00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The retention behavior of a dangerous toxin, ochratoxin A (OTA), present in food samples and derivatives was evaluated using Layered Double Hydroxides (LDHs). This nanomaterial composed mostly of zinc and aluminum was synthesized by the co-precipitation method and the obtained solid was characterized by different techniques, such as XRD, FTIR, TGA, SEM, and N2 adsorption-desorption isotherms. Experimental conditions were optimized by chemometric tools. Ochratoxin A determination was performed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to tandem mass spectrometry. From the findings, quantitative removal of the mycotoxin was achieved. Thus, a novel, nanostructured, innocuous, low-cost, easily synthesized material, such as the Zn-Al layered double hydroxide, is proposed for ochratoxin A removal. This might represent an effective and sustainable approach with potential applications to different types of food and feed samples.
Collapse
Affiliation(s)
- María Del Valle Ponce
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta 148 Ext. Norte, Villa Mercedes, CP5730, Argentina
| | - Mariel Cina
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Carlos López
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET-UNSL), Almirante Brown 1455, San Luis, CP5700, Argentina
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| |
Collapse
|
6
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Removal of Ochratoxin A from Red Wine Using Alginate-PVA-L. plantarum (APLP) Complexes: A Preliminary Study. Toxins (Basel) 2022; 14:toxins14040230. [PMID: 35448839 PMCID: PMC9025537 DOI: 10.3390/toxins14040230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/10/2022] Open
Abstract
The presence of ochratoxin A (OTA) in wines is a problem mainly due to the health damage it can cause to frequent drinkers. A method for removing these toxic substances from wine is the use of lactic acid bacteria with mycotoxin-adsorption capacities; however, their use is limited since a matrix in which they can be immobilized, to remove them after use, is needed. In this study, L. plantarum (LP) was encapsulated in a polymeric matrix composed of polyvinyl alcohol (PVA) and alginate, forming alginate–PVA–LP (APLP) complexes. Then, these complexes were characterized, and assays of OTA and phenol removal from wines were performed. As a result, it was observed that the APLP complexes at a concentration of 0.5 g mL−1 removed over 50% of the OTA without substantially affecting the concentration of total phenols. In addition, it was determined that the presence of L. plantarum directly affected the ability to adsorb OTA from wines and did not decrease the total phenols. In conclusion, an alginate–PVA matrix allows immobilizing LP, and the complexes formed are an alternative for removing ochratoxin from contaminated wines.
Collapse
|
8
|
González-Jartín JM, de Castro Alves L, Alfonso A, Piñeiro Y, Vilar SY, Gomez MG, Osorio ZV, Sainz MJ, Vieytes MR, Rivas J, Botana LM. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem 2019; 294:60-66. [PMID: 31126505 DOI: 10.1016/j.foodchem.2019.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023]
Abstract
Mycotoxins are toxic compounds that can be present in feed, food and beverages. In this work, 25 magnetic nanostructured materials were developed to remove the main types of mycotoxins from liquid food matrices. The efficiency for binding mycotoxins from contaminated aqueous solutions was studied. Nanocomposites (diameters lower to 15 μm) composed of mixtures of activated carbon, bentonite and aluminium oxide were able to eliminate up to 87% of mycotoxins with an adsorption efficiency of 450 µg/g. On the other hand, spheres with sizes below 3 mm and composed by biopolymers and activated carbon or graphene oxide removed up to 70% of mycotoxins (adsorption of 598 ng/g). These particles were tested for beer detoxification, and spheres composed of alginate and activated carbon or pectin maintain the ability to eliminate toxins from this beverage. Hence, this technology could be a useful tool for the food industry.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Lisandra de Castro Alves
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Y Piñeiro
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Susana Yáñez Vilar
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Manuel González Gomez
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Zulema Vargas Osorio
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - María J Sainz
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - J Rivas
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|