1
|
Wang H, Yuan J, Wu Y, Wen Y, Lin Y, Chen Y, Lin H. Bacillus amyloliquefaciens LY-1 culture broth enhances the storage properties of fresh litchi through acting on ROS metabolism. Food Chem 2025; 480:143811. [PMID: 40117812 DOI: 10.1016/j.foodchem.2025.143811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
The impacts of Bacillus amyloliquefaciens LY-1 culture broth (BLCB) on the fruit storage properties and reactive oxygen species (ROS) metabolism of postharvest 'Wuye' litchis were studied. In comparation with control fruit, BLCB-treated litchis showed a lower fruit disease index, a higher rate of commercially acceptable fruit, higher amounts of pericarp pigments (total phenolics, anthocyanin, carotenoid, chlorophyll and flavonoid), higher chromaticity C, a*, b* and L* values but lower hue angle h° of fruit surface. Additionally, BLCB-treated litchis exhibited lower malonaldehyde (MDA) accumulation and superoxide anion radical (O2.-) production rate, higher APX, CAT and SOD activities, higher GSH and AsA amounts, higher reducing power, and higher ability of scavenging DPPH radical. Furthermore, the pericarp browning index and fruit disease index were positively correlated with O2.- production rate. These findings suggested that BLCB treatment increased the storability of postharvest litchi fruit through enhancing scavenging capacity of ROS and inhibiting overaccumulation of ROS.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Junhui Yuan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yijing Wu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yifan Wen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Yang L, Ma D, Wang F, Liu L, Chen L, He X, Tang J, Deng J. Carboxymethyl cellulose-induced Cryptococcus laurentii improves disease resistance and regulates phenylpropane and reactive oxygen metabolism in grapefruit. Food Chem 2025; 465:141955. [PMID: 39550964 DOI: 10.1016/j.foodchem.2024.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Green mould disease poses a significant threat to the citrus industry. Cryptococcus laurentii can stimulate the fruit defence system, whereas the use of antagonistic yeast alone demonstrates limited efficacy. This study investigated the molecular mechanisms of C. laurentii cultured with carboxymethyl cellulose (CMCC. laurentii), and evaluated the effects of CMCC. laurentii on phenylpropane and reactive oxygen metabolism in grapefruit fruit. Transcriptome analysis revealed that the upregulation of gene expression associated with yeast growth and antagonistic ability occurred in CMCC. laurentii after 72 h cultivation. Meanwhile, CMCC. laurentii reduced lesion diameter and disease incidence in fruit. This treatment promoted phenylpropane metabolism by activating PAL, C4H, 4CL, POD, and PPO and increasing the secondary metabolites. CMCC. laurentii also activated the AsA-GSH cycle, enhanced the activities of SOD and CAT, and reduced the accumulation of H2O2 and O2•-. The results suggested that CMCC. laurentii maintained high postharvest fruit quality in grapefruit fruit by elevating the phenylpropane and reactive oxygen metabolism.
Collapse
Affiliation(s)
- Le Yang
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Forestry College, Xingyang Agriculture and Forestry University, Xinyang 464000, PR China
| | - Diantong Ma
- Qiandongnan Institute of Forestry, Kaili 556003, PR China
| | - Fang Wang
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Li Liu
- Forestry College, Southwest Forestry University, Kunming 650224, PR China
| | - Lin Chen
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Xiahong He
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, PR China.
| | - Junrong Tang
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China.
| | - Jia Deng
- Forestry College, Southwest Forestry University, Kunming 650224, PR China; Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
3
|
Chen L, Lin Y, Li H, Liu Q, Chen Y. Kadozan Chitosan Formulation Enhances Postharvest Quality of Fresh Indian Jujube Fruit. Foods 2025; 14:266. [PMID: 39856932 PMCID: PMC11765311 DOI: 10.3390/foods14020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Indian jujube fruit is prone to perishing, resulting in a shorter shelf life after harvest. Kadozan is a liquid chitosan formulation that has a significant effect on fruit preservation. In order to explore its efficacy, the quality, and storability indicators of Indian jujube fruit were evaluated during storage at 15 ± 1 °C for 18 days. Results showed that Kadozan-treated fruit exhibited lower respiration rate, relative electrolyte leakage rate, weight loss, and decay index, along with higher firmness and commercially acceptable rate. Furthermore, Kadozan-treated fruit showed higher vitamin C, total sugar, titratable acid, total soluble solids, chlorophyll, and carotenoid contents, L* and h° values, but lower a* and b* values. Principal component analysis and comprehensive score revealed that Kadozan treatment helped preserve the appearance and nutritional qualities of Indian jujube fruit. The best effect was seen with 1:600 Kadozan among three concentrations (1:300, 1:600, 1:900). It was discovered that the commercially acceptable rate of 1:600 Kadozan-treated fruit was 37.5% higher than control fruit while the decay index was 30.5% lower than control fruit at 18 days. Therefore, Kadozan treatment has great substantial implications for the preservation of Indian jujube fruit, providing practical guidance for reducing its postharvest losses.
Collapse
Affiliation(s)
- Lian Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China; (L.C.); (Y.L.); (H.L.)
| | - Yixiong Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China; (L.C.); (Y.L.); (H.L.)
| | - Hui Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China; (L.C.); (Y.L.); (H.L.)
| | - Qingqing Liu
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou 350002, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Liu J, Xie S, Wang N, Sun Z, Tang L, Zhang GJ, Tressel J, Zhang Y, Sun Y, Chen S. Iron nanoparticle/carbon nanotube composite as oxidase-like nanozyme for visual analysis of total antioxidant capacity. Food Chem X 2025; 25:102093. [PMID: 39801591 PMCID: PMC11721849 DOI: 10.1016/j.fochx.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless o-phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.g., quercetin) impedes the formation of DAP, diminishing the color change, which can be analyzed via the RGB values obtained with a smartphone color-recognition APP, "Color Picker". The change of the optical signal can also be analyzed in the fluorescence mode. These two detection modes yield consistent TAC analysis of actual plant samples, in accord with results from the standard ABTS method. Results from this study highlight the unique potential of nanozymes in the development of effective TAC analysis platforms for natural plants and food.
Collapse
Affiliation(s)
- Junlin Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Sophia Xie
- Wuhan Britain-China School, Wuhan 430033, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guo-jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - John Tressel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Cheng L, Zhang M, Bai H, Yang F, Zhang X, Ren D, Du Y. Combined ultraviolet-C radiation and L-cysteine treatment improves the post-harvest quality and volatile compounds of edible Lanzhou lily bulbs ( Lilium davidii var. unicolor) by regulating reactive oxygen species metabolism. Food Chem X 2024; 24:101813. [PMID: 39310884 PMCID: PMC11415584 DOI: 10.1016/j.fochx.2024.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Lanzhou lily bulbs (Lilium davidii var. unicolor) are Chinese traditional edible fruits; however, industrial benefits are limited owing to ineffective post-harvest preservation technology. This study investigated the effect of 4.5 kJ/m2 ultraviolet (UV)-C radiation and 2.0 g/L L-cysteine (L-cys) treatment on storage quality and reactive oxygen species (ROS) metabolism in lily bulbs. The combined UV-C/L-cys treatment inhibited the increase in decay rate, weight loss, ∆E⁎ and reducing sugar content; delayed the decrease of firmness and starch content; retained aromatic volatile compounds; and reduced pungent compounds. UV-C/L-cys treatment reduced H2O2 content, O2 ·- production rate, lipoxygenase activity and malondialdehyde content by maintaining high ROS-scavenging enzymes (superoxide dismutase and catalase) activities and substances (total phenolic and ascorbic acid) levels, thereby protecting mitochondrial structure. Mantel test indicated that post-harvest quality and volatile compounds were closely related to ROS metabolism. Hence, UV-C/L-cys treatment can efficiently delay lily bulb senescence by reducing ROS accumulation during storage.
Collapse
Affiliation(s)
- Le Cheng
- Institute of Grassland, Flowers and Ecology, Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers and Ecology, Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Haoyue Bai
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Fengping Yang
- Institute of Grassland, Flowers and Ecology, Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Difeng Ren
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Yunpeng Du
- Institute of Grassland, Flowers and Ecology, Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| |
Collapse
|
6
|
Qadir M, Iqbal A, Hussain A, Hussain A, Shah F, Yun BW, Mun BG. Exploring Plant-Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. Int J Mol Sci 2024; 25:12198. [PMID: 39596264 PMCID: PMC11594960 DOI: 10.3390/ijms252212198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
This review explores the intricate relationship between plants and bacterial endophytes, revealing their multifaceted roles in promoting plant growth, resilience, and defense mechanisms. By selectively shaping their microbiome, plants harness diverse endophytic bacterial strains to enhance nutrient absorption, regulate hormones, mitigate damage, and contribute to overall plant health. The review underscores the potential of bacterial endophytes in self-sustaining agricultural systems, offering solutions to reduce reliance on fertilizers and pesticides. Additionally, the review highlights the importance of endophytes in enhancing plant tolerance to various environmental stresses, such as drought, salinity, extreme temperatures, and heavy metal toxicity. The review emphasizes the significance of understanding and harnessing the mutualistic relationship between plants and endophytes for maximizing agricultural yields and promoting sustainable farming practices.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental Biochemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
7
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhang J, Chen X, Liu Q, Li M, Feng S, Lin M, Chen Y, Lin H. Slightly acidic electrolyzed water treatment enhances the quality attributes and the storability of postharvest litchis through regulating the metabolism of reactive oxygen species. Food Chem X 2024; 23:101644. [PMID: 39148531 PMCID: PMC11325003 DOI: 10.1016/j.fochx.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Effects of slightly acidic electrolyzed water (SAEW) on the storability, quality attributes, and reactive oxygen species (ROS) metabolism of litchis were investigated. Results showed that SAEW-treated litchis presented better quality attributes and storability than control litchis. On storage day 5, the commercially acceptable fruit rate of control litchis was 42%, while SAEW-treated litchis displayed 59% higher rate of commercially acceptable fruit, 21% lower pericarp browning index, and 13% lower weight loss percentage than control litchis. Additionally, compared to control litchis, SAEW-treated litchis demonstrated higher activities of SOD, CAT and APX, higher levels of GSH, AsA, DPPH radical scavenging ability, and reducing power, but lower O2 -· generation rate, lower levels of H2O2 and MDA. These findings indicated that SAEW treatment could elevate antioxidant capacity and ROS scavenging ability, reduce ROS production and accumulation, and lower membrane lipid peroxidation, thereby retaining the quality attributes and storability of litchis.
Collapse
Affiliation(s)
- Jing Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuezhen Chen
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Shujuan Feng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mingyu Lin
- Water God Development, Want Want Group, Shanghai, 201103, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Guo X, Li Q, Luo T, Xu D, Zhu D, Li J, Han D, Wu Z. Zinc Oxide Nanoparticles Treatment Maintains the Postharvest Quality of Litchi Fruit by Inducing Antioxidant Capacity. Foods 2024; 13:3357. [PMID: 39517141 PMCID: PMC11545015 DOI: 10.3390/foods13213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pericarp browning and fruit decay severely reduce the postharvest quality of litchi. Improving the antioxidant capacity of the fruit is an effective way to solve these problems. In our study, the appropriate zinc oxide nanoparticles (ZnO NPs) treatment and its mechanism of action on the storability of litchi was investigated. Litchi fruit was soaked in a 100 mg·L-1 ZnO NPs suspension, water, and 500 mg·L-1 prochloraz for 2 min, respectively. The results showed that the ZnO NPs treatment delayed pericarp browning and decay in litchi fruit and was more effective than prochloraz treatment. The ZnO NPs-treated fruit showed significantly increased contents of total anthocyanin, total phenols, and activities of DPPH scavenging, superoxide dismutase, and glutathione peroxidase, as well as the lowest activities of polyphenol oxidase and laccase. ZnO NPs generated hydrogen peroxide and superoxide anion radicals, which were beneficial in slowing down the decay and inducing antioxidant capacity. However, these reactive oxygen species also consumed catalase, peroxidase, glutathione, and glutathione peroxidase. This means that litchi should be treated with an appropriate concentration of ZnO NPs. We concluded that treatment with a 100 mg·L-1 ZnO NPs suspension could induce antioxidant capacity, which is a promising and effective method to maintain the postharvest quality of litchi.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering, Hezhou University, Hezhou 542899, China;
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Qiao Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Tao Luo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Dandan Xu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Difa Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Jingyi Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Zhenxian Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (T.L.); (D.Z.); (J.L.)
| |
Collapse
|
10
|
Li M, Lin H, Wang C, Chen Y, Lin M, Hung YC, Lin Y, Fan Z, Wang H, Chen Y. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism. Food Chem 2024; 449:139175. [PMID: 38593723 DOI: 10.1016/j.foodchem.2024.139175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.
Collapse
Affiliation(s)
- Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Chao Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Lin Y, Chen H, Dong S, Chen Y, Jiang X, Chen Y. Acidic Electrolyzed Water Maintains the Storage Quality of Postharvest Wampee Fruit by Activating the Disease Resistance. Foods 2024; 13:1556. [PMID: 38790856 PMCID: PMC11120534 DOI: 10.3390/foods13101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Harvested wampee fruit is susceptible to disease, resulting in postharvest losses. Acidic electrolyzed water (AEW), a safe and innovative sterilization technology, plays a role in enhancing disease resistance in harvested produce. In this study, the efficacy of AEW in delaying wampee disease development was assessed, along with its association with disease resistance metabolism. Wampee fruit was treated with AEW (pH 2.5) at different available chlorine concentrations (ACCs) (20, 40, 60, and 80 mg/L) and subsequently stored at 25 °C for 8 days. Results revealed that 40 mg/L ACC in AEW (pH 2.5) was most effective in improving the postharvest quality of wampee fruit. Compared with control wampee fruit, those treated with 40 mg/L ACC in AEW exhibited lower incidence of fruit disease, higher pericarp lignin content, and higher activities of pericarp disease resistance enzymes (DREs), such as cinnamate-4-hydroxylase, phenylalanine ammonia-lyase, chitinase, β-1,3-glucanase, polyphenol oxidase, 4-coumarate CoA ligase, and cinnamyl alcohol dehydrogenase. These results suggested that AEW elevated DRE activities, promoted lignin accumulation, and ultimately enhanced disease resistance, suppressed disease development, and improved storage quality in harvested wampee fruit. Consequently, AEW emerged as a safe technology to mitigate the disease development and enhance the storage quality of harvested wampee fruit.
Collapse
Affiliation(s)
- Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Sisi Dong
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Yazhen Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Li C, Fu Y, Li X, Zhang C, Liu P, Miao J, Liu X. Evaluation of SYP-34773's resistance risk and its impact on the activity of mitochondrial respiratory electron transport chain complex I in Phytophthora litchii. PEST MANAGEMENT SCIENCE 2024; 80:1877-1884. [PMID: 38041622 DOI: 10.1002/ps.7918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND SYP-34773 is a low-toxicity pyrimidine amine compound, which was synthesized by modifying the lead compound diflumetorim. Previous literature has shown that it can strongly inhibit the mycelial growth of several important plant pathogens, including Phytophthora litchii. However, the resistance risk of SYP-34773 has not been reported for P. litchii. RESULTS The mean effective concentration (EC50 ) value of SYP-34773 against the mycelial growth of 111 P. litchii isolates was 0.108 ± 0.008 μg mL-1 , which can be used as the baseline sensitivity for SYP-34773 resistance detection in the future. Six mutants were obtained from two parental strain through fungicide induction, whose resistance factors fell between 194- and 687-fold, with stability. Results regarding mycelial growth, sporangial production, sporangial germination, zoospore release, cystspore germination, and pathogenicity showed that the mutants' compound fitness index values were significantly lower than those of their parental isolate. Furthermore, there was no cross-resistance between SYP-34773 and diflumetorim in P. litchii. Significant inhibition of the mitochondrial complex I enzyme activity in two wild-type P. litchii isolates, but not in mutants, was observed upon treatment with SYP-34773. CONCLUSION The resistance risk of SYP-34773 in P. litchii is moderate, and resistance management strategies should be adopted in field use. SYP-34773 is a mitochondrial complex I inhibitor, and SYP-34773-resistant P. litchii isolates did not show cross-resistance against diflumetorim. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixin Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyue Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Huang Y, Nie Y, Zhou F, Li B, Luo Q, Zhang B, Zeng Q, Huang Y. Effects of collagen-based coating with chitosan and ε-polylysine on sensory, texture, and biochemical changes of refrigerated Nemipterus virgatus fillets. Food Sci Nutr 2024; 12:2145-2152. [PMID: 38455186 PMCID: PMC10916661 DOI: 10.1002/fsn3.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.
Collapse
Affiliation(s)
- Yongping Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Ying Nie
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Fei Zhou
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Biansheng Li
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Qiulan Luo
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Bin Zhang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Qinpei Zeng
- Guangdong Wuqiong Food Group Co., LTDChaozhouChina
| | - Yisheng Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| |
Collapse
|
14
|
Wang Y, Zhang Y, Fan J, Li H, Chen Q, Yin H, Qi K, Xie Z, Zhu N, Sun X, Zhang S. Physiological and autophagy evaluation of different pear varieties (Pyrus spp.) in response to Botryosphaeria dothidea infection. TREE PHYSIOLOGY 2024; 44:tpad139. [PMID: 38051648 DOI: 10.1093/treephys/tpad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Ring rot disease is one of the most common diseases in pear orchards. To better understand the physiology, biochemistry and autophagic changes of different pear varieties after Botryosphaeria dothidea (B.dothidea) infection, we evaluated eight different pear varieties for B. dothidea resistance. The susceptible varieties had larger spot diameters, lower chlorophyll contents and higher malondialdehyde contents than the resistant varieties. In disease-resistant varieties, reactive oxygen species (ROS) levels were relatively lower, while the ROS metabolism (antioxidant enzyme activities and the ascorbic acid-glutathione cycle) was also maintained at higher levels, and it induced a significant upregulation of related gene expression. In addition, autophagy, as an important evaluation index, was found to have more autophagic activity in disease-resistant varieties than in susceptible varieties, suggesting that pathogen infestation drives plants to increase autophagy to defend against pathogens. In summary, the results of this study reveal that different resistant pear varieties enhance plant resistance to the disease through a series of physio-biochemical changes and autophagic activity after inoculation with B. dothidea. This study provides clear physiological and biochemical traits for pear disease resistance selection, potential genetic resources and material basis for pear disease control and disease resistance, breeding and points out the direction for research on the mechanism of pear resistance to B. dothidea.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Ye Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaqi Fan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Hongxiang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Qiming Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Nan Zhu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya institute of Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Xuanwu Distric, Nanjing 210095, China
| |
Collapse
|
15
|
Zhang CL, Naicker O, Zhang B, Jin ZW, Li SJ, Miao L, Karunarathna SC. Transcriptome and Hormonal Analysis of Agaricus bisporus Basidiome Response to Hypomyces perniciosus Infection. PLANT DISEASE 2024; 108:473-485. [PMID: 37669175 DOI: 10.1094/pdis-05-23-0992-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in the world. A. bisporus wet bubble disease is one of the most severe diseases of white button mushrooms and is caused by the fungal pathogen Hypomyces perniciosus. The pathogen causes a drastic reduction in mushroom yield because of malformation and deterioration of the basidiomes. However, the mechanism of the button mushroom's malformation development after infection with H. perniciosus remains obscure. Therefore, to reveal the mechanism of A. bisporus malformation caused by H. perniciosus, the interaction between the pathogen and host was investigated in this study using histopathological, physiological, and transcriptomic analyses. Results showed that irrespective of the growth stages of A. bisporus basidiomes infected with H. perniciosus, the host's malformed basidiomes and enlarged mycelia and basidia indicated that the earlier the infection with H. perniciosus, the more the malformation of the basidiomes. Analyzing physiological and transcriptomic results in tandem, we concluded that H. perniciosus causes malformation development of A. bisporus mainly by affecting the metabolism level of phytohormones (N6-isopentenyladenosine, cis-zeatin, and N6-[delta 2-isopentenyl]-adenine) of the host's fruiting bodies rather than using toxins. Our findings revealed the mechanism of the button mushroom's malformation development after infection with H. perniciosus, providing a reference for developing realistic approaches to control mushroom diseases. Our results further clarified the interaction between A. bisporus and H. perniciosus and identified the candidate genes for A. bisporus wet bubble disease resistance breeding. Additionally, our work provides a valuable theoretical basis and technical support for studying the interaction between other pathogenic fungi and their fungal hosts.
Collapse
Affiliation(s)
- Chun-Lan Zhang
- College of Landscape Architecture, Changchun University, Changchun 13022, P.R. China
| | - Odeshnee Naicker
- Department of Plant and Soil Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Bo Zhang
- College of Landscape Architecture, Changchun University, Changchun 13022, P.R. China
| | - Zheng-Wen Jin
- College of Landscape Architecture, Changchun University, Changchun 13022, P.R. China
| | - Shu-Jing Li
- College of Landscape Architecture, Changchun University, Changchun 13022, P.R. China
| | - Liu Miao
- College of Landscape Architecture, Changchun University, Changchun 13022, P.R. China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, P.R. China
| |
Collapse
|
16
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Lin Y, Lin Y, Zhang H, Lin M, Chen L, Li H, Lin H. Hydrogen peroxide induced changes in the levels of disease-resistant substances and activities of disease-resistant enzymes in relation to the storability of longan fruit. Food Chem X 2023; 20:100923. [PMID: 38144865 PMCID: PMC10740103 DOI: 10.1016/j.fochx.2023.100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
The influences of hydrogen peroxide (H2O2) on the storability and metabolism of disease-resistant substances in fresh longan were investigated. Compared to the control samples, H2O2-treated longan exhibited a higher index of fruit disease, pericarp browning, and pulp breakdown, a higher rate of fruit weight loss, but lower chromaticity values (L*, a* and b*) in pericarp appearance, and a lower commercially acceptable fruit rate. Additionally, H2O2-treated longan showed a lower lignin content, lower activities of enzymes including phenylalnine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumaryl coenzyme A ligase (4-CL), cinnamate dehydrogenase (CAD), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU). These data collectively suggest that H2O2 negatively impacted the storability of fresh longan. This can be attributed to H2O2's role in reducing the levels of disease-resistant substances and suppressing the activities of disease-resistant enzymes, implying that H2O2 reduced the postharvest storability of longan by compromising its disease resistance.
Collapse
Affiliation(s)
- Yixiong Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huili Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lian Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hui Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
18
|
Zhang W, Goksen G, Zhou Y, Yang J, Khan MR, Ahmad N, Fei T. Application of a Chitosan-Cinnamon Essential Oil Composite Coating in Inhibiting Postharvest Apple Diseases. Foods 2023; 12:3518. [PMID: 37761227 PMCID: PMC10529609 DOI: 10.3390/foods12183518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this study was to explore the film-forming properties of cinnamon essential oil (CEO) and chitosan (CS) and the effect of their composite coating on postharvest apple diseases. The results demonstrated that the composite coating exhibits favorable film-forming properties at CEO concentrations below 4% (v/v). The effectiveness of the composite coating in disease control can be attributed to two factors: the direct inhibitory activity of CEO against pathogens in vitro and the induced resistance triggered by CS on the fruits. Importantly, the incorporation of CEO did not interfere with the induction of resistance by CS in harvested apples. However, it is noteworthy that the inhibitory effect of the CS-CEO composite coating on apple diseases diminished over time. Therefore, a key aspect of enhancing the preservation ability of fruits is improving the controlled release properties of CEO within CS coatings. This will enable a sustained and prolonged antimicrobial effect, thereby bolstering the fruit preservation capabilities of the composite coatings.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Yuanping Zhou
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
19
|
Sun J, Fan Z, Chen Y, Jiang Y, Lin M, Wang H, Lin Y, Chen Y, Lin H. The effect of ε-poly-l-lysine treatment on molecular, physiological and biochemical indicators related to resistance in longan fruit infected by Phomopsis longanae Chi. Food Chem 2023; 416:135784. [PMID: 36889017 DOI: 10.1016/j.foodchem.2023.135784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Postharvest longan fruits are subjected to Phomopsis longanae Chi (P. longanae) infection that lead to fruit quality deterioration. We hypothesized that ε-poly-l-lysine (ε-PL) could enhance fruit disease resistance in longans. Through physiological and transcriptomic analyses, the results showed that, compared to P. longanae-infected longan fruit, ε-PL + P. longanae treatment reduced the disease development of longan fruits. Additionally, ε-PL + P. longanae treatment increased the contents of disease-resistant substances (lignin and H2O2) and the activities of disease-resistance enzymes (CHI, PAL, PPO, C4H, CAD, GLU, 4CL, and POD). Furthermore, the expressions of genes relevant to the phenylpropanoid biosynthesis pathway and plant-pathogen interaction pathway (Rboh, FLS2, WRKY29, FRK1, and PR1) were up-regulated by ε-PL + P. longanae treatment. These findings demonstrated that ε-PL treatment inhibited the disease development of postharvest longan fruits were associated with the increased accumulation of disease-resistant related substances, as well as the raised activities and genes expressions of disease-resistance related enzymes.
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yuji Jiang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
20
|
Yu L, Zhang X, Zhang F, Tang Y, Gong D, Oyom W, Li Y, Prusky D, Romanazzi G, Bi Y. Chitosan and chitooligosaccharide regulated reactive oxygen species homeostasis at wounds of pear fruit during healing. Int J Biol Macromol 2023; 240:124395. [PMID: 37054853 DOI: 10.1016/j.ijbiomac.2023.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Both chitosan (CTS) and chitooligosaccharide (COS) can promote fruit healing. However, whether the two chemicals regulate reactive oxygen species (ROS) homeostasis during wound healing of pear fruit remains unknown. In this study, the wounded pear fruit (Pyrus bretschneideri cv. Dongguo) was treated with a 1 g L-1 CTS and COS. We found CTS and COS treatments increased NADPH oxidase and superoxide dismutase activities, and promoted O2.- and H2O2 production at wounds. CTS and COS also enhanced the activities of catalase, peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, and elevated the levels of ascorbic acid and glutathione. In addition, the two chemicals improved antioxidant capacity in vitro and maintained cell membrane integrity at fruit wounds during healing. Taken together, CTS and COS can regulate ROS homeostasis at wounds of pear fruit during healing by scavenging excessive H2O2 and improving antioxidant capacity. Overall, the COS demonstrated superior performance over the CTS.
Collapse
Affiliation(s)
- Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yingbo Tang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - William Oyom
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
21
|
Involvement of miRNAs-mediated senescence and salicylic acid defense in postharvest litchi downy blight. Food Chem 2023; 404:134662. [DOI: 10.1016/j.foodchem.2022.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
22
|
Jia L, Li Y, Liu G, He J. UV-C delays senescence in 'Lingwu long' jujube fruit by regulating ROS and phenylpropanoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:383-393. [PMID: 36473328 DOI: 10.1016/j.plaphy.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV-C), a no residual environmentally friendly physical treatment, plays an important role in delaying the senescence in fruit. In this study, 'Lingwu long' jujubes were treated with UV-C (5 kJ m-2) to investigate the impacts of cell wall degrading enzymes (CWDEs) activities, reactive oxygen species (ROS) metabolism, and phenylpropanoid metabolism under storage at 4 ± 1 °C for 30 d. UV-C treatment reduced respiration rate and decay index. Treated fruit exhibited lower polygalacturonase (PG), pectinate lyases (PL), cellulase (Cel), and β-galactosidase (β-gal) activities which ultimately delayed the reduction of firmness. UV-C treatment increased hydrogen peroxide (H2O2), free radical scavenging ability, and superoxide dismutase (SOD) and catalase (CAT) activities, reduced superoxide anion (O2-) and malondialdehyde (MDA) content. In addition, ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activities were activated by UV-C treatment, leading to glutathione (GSH) and ascorbic acid (AsA) increased. Besides, phenolic compounds of jujube fruit treated with UV-C were also increased, which might be due to the enhanced phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) activities. In conclusion, UV-C was recommended for improving overall quality and alleviating senescence in jujube fruit.
Collapse
Affiliation(s)
- Lili Jia
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Yan Li
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| | - Jianguo He
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
23
|
Shi J, Jiang Q, Zhang S, Dai X, Wang F, Ma Y. MIR390 Is Involved in Regulating Anthracnose Resistance in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:3299. [PMID: 36501336 PMCID: PMC9736487 DOI: 10.3390/plants11233299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As an important cash crop in China, apple has a good flavor and is rich in nutrients. Fungal attacks have become a major obstacle in apple cultivation. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in apple. Thus, discovering resistance genes in response to C. gloeosporioides may aid in designing safer control strategies and facilitate the development of apple resistance breeding. A previous study reported that 'Hanfu' autotetraploid apple displayed higher C. gloeosporioides resistance than 'Hanfu' apple, and the expression level of mdm-MIR390b was significantly upregulated in autotetraploid plants compared to that in 'Hanfu' plants, as demonstrated by digital gene expression (DGE) analysis. It is still unclear, however, whether mdm-MIR390b regulates apple anthracnose resistance. Apple MIR390b was transformed into apple 'GL-3' plants to identify the functions of mdm-MIR390b in anthracnose resistance. C. gloeosporioides treatment analysis indicated that the overexpression of mdm-MIR390b reduced fungal damage to apple leaves and fruit. Physiology analysis showed that mdm-MIR390b increased C. gloeosporioides resistance by improving superoxide dismutase (SOD) and peroxidase (POD) activity to alleviate the damage caused by O2- and H2O2. Our results demonstrate that mdm-MIR390b can improve apple plants' anthracnose resistance.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Jiang
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
24
|
Luo J, Xia G, Liu L, Ji A, Luo Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO 2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022; 11:3286. [PMID: 37431032 PMCID: PMC9601993 DOI: 10.3390/foods11203286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 07/24/2023] Open
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.
Collapse
Affiliation(s)
- Jinjie Luo
- Correspondence: ; Tel.: +86-023-58105722
| | | | | | | | | |
Collapse
|
25
|
Riseh RS, Hassanisaadi M, Vatankhah M, Babaki SA, Barka EA. Chitosan as a potential natural compound to manage plant diseases. Int J Biol Macromol 2022; 220:998-1009. [PMID: 35988725 DOI: 10.1016/j.ijbiomac.2022.08.109] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
The necessity for non-chemical approaches has grown as awareness of the dangers posed by pesticides has spread. Chitosan, due to its biocompatibility, biodegradability, and bioactivity is one the effective choice in phytopathology. Chitosan is a biopolymer that reduces plant diseases through two main mechanisms: (1) Direct antimicrobial function against pathogens, including plasma membrane damage mechanisms, interactions with DNA and RNA (electrostatic interactions), metal chelating capacity, and deposition onto the microbial surface, (2) Induction of plant defense responses resulting from downstream signalling, transcription factor activation, gene transcription and finally cellular activation after recognition and binding of chitin and chitosan by cell surface receptors. This biopolymer have potential with capability to combating fungi, bacteria, and viruses phythopathogens. Chitosan is synthesized by deacetylating chitin. The degree of deacetylation and molecular weight of chitosan are variable and have been mentioned as important structural parameters in chitosan's biological properties. Chitosan with a higher degree of deacetylation (>70 %) has better biological properties. Many crops able to withstand pre- and post-harvest illnesses better after receiving chitosan as a seed treatment, soil amendment, or foliar spray. This review discussed the properties and use of chitosan and focuses on its application as a plant resistance inducer against pathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Somayeh Abdani Babaki
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Essaid Ait Barka
- Induced Resistance and Plant BioProtection Research Unit, UFR Sciences, UPRES EA 4707-USC INRAeE1488, University of Reims Champagne-Ardenne, 51687 Reims, France.
| |
Collapse
|
26
|
Investigation of biomechanical characteristics of novel chitosan from dung beetle and its application potential on stored tomato fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Developing silk sericin-based and carbon dots reinforced bio-nanocomposite films and potential application to litchi fruit. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Phomopsis longanae Chi causing the pulp breakdown of fresh longan fruit through affecting reactive oxygen species metabolism. Food Chem X 2022; 14:100301. [PMID: 35469313 PMCID: PMC9034318 DOI: 10.1016/j.fochx.2022.100301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
P. longanae raised longan pulp O2–. generation rate and contents of H2O2 and MDA. P. longanae reduced ROS scavenging enzymes activities (CAT, SOD, APX) in longan pulp. P. longanae lowered the amounts of endogenous antioxidant substances in longan pulp. P. longanae decreased longan pulp DPPH radical scavenging ability and reducing power. P. longanae stimulated longan pulp breakdown via reducing ROS scavenging capacity.
Phomopsis longanae Chi is a crucial pathogen causing fruit spoilage in postharvest fresh longan. The influence of P. longanae invasion with a suspension containing 1 × 104P. longanae spores per mL on the breakdown occurrence and ROS metabolism in pulp of longan cv. Fuyan during storage at 28 °C was explicated. Compared to control group, more severe development of pulp breakdown (PB), higher PB index, O2–. generation rate, H2O2 and MDA content, but lower SOD, APX and CAT activities, GSH, AsA, flavonoid and total phenolics amounts, ability of scavenging DPPH radical, and reducing power were displayed in the pulp of P. longanae-infected fruit during days 0–5. In this context, P. longanae induced breakdown of longan pulp by reducing the scavenging ability of ROS and increasing the cumulation of ROS, thereby enhancing the structural collapse and lipid peroxidation of cell membrane, which were responsible for the PB of harvested longans.
Collapse
|
29
|
Lin Y, Lin H, Zeng L, Zheng Y, Chen Y, Fan Z, Lin Y. DNP and ATP regulate the pulp breakdown development in Phomopsis longanae Chi-infected longan fruit through modulating the ROS metabolism. Food Chem X 2022; 14:100348. [PMID: 35663601 PMCID: PMC9160340 DOI: 10.1016/j.fochx.2022.100348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
|
30
|
The Influence of a Novel Chitosan-Based Coating with Natural Antimicrobial Agents on the Storage Properties and Reactive Oxygen Species Metabolism of Harvested Tangelo Fruit. J CHEM-NY 2022. [DOI: 10.1155/2022/7315933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of a novel antibacterial film based on chitosan, carboxymethyl cellulose, sodium alginate, tea polyphenols, ascorbic acid, and tangelo peel extract on the postharvest quality and reactive oxygen species metabolism of tangelo fruit during storage. The composite film significantly reduced the fruit decay rate and weight loss, delayed the reduction in total soluble solids and titratable acidity, and retained fruit firmness and the appearance of tangelo fruit during storage. Furthermore, the composite film effectively reduced the fruit respiration rate, inhibited the increase in cell-membrane permeability, markedly reduced the generation of superoxide anion, hydrogen peroxide, and malondialdehyde, and enhanced the activity of the antioxidant enzymes superoxide dismutase, catalase, and ascorbate peroxidase. The composite film also reduced losses of the nonenzymatic antioxidants ascorbic acid and glutathione. Overall, the chitosan-based composite antibacterial film effectively maintained the quality of tangelo fruit during storage, enhanced ROS scavenging capacity and antioxidant properties, and then reduced the rot rate of postharvest tangelo.
Collapse
|
31
|
Li Z, Xu X, Xue S, Gong D, Wang B, Zheng X, Xie P, Bi Y, Prusky D. Preharvest multiple sprays with chitosan promotes the synthesis and deposition of lignin at wounds of harvested muskmelons. Int J Biol Macromol 2022; 206:167-174. [PMID: 35227704 DOI: 10.1016/j.ijbiomac.2022.02.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
As an important elicitor, chitosan could activate the synthesis of lignin in many plants. However, no report is available on whether preharvest chitosan sprays affects the synthesis and deposition of lignin at wounds of harvested muskmelons. In the present study, the plants and fruit of muskmelons were multiple sprayed with 0.1% chitosan during fruit development. Here, we found that chitosan sprays increased the activities of 4-coumaric acid-coenzyme A ligase, cinnamyl-CoA reductase and cinnamyl alcohol dehydrogenase, and elevated the levels of p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol and lignin at wounds. Chitosan sprays enhanced H2O2 level and peroxidase activity, and accelerated the deposition of lignin at wounds. Moreover, chitosan sprays resulted in a higher hardness and lower resilience, springiness and cohesiveness of the healing tissues. Taken together, preharvest chitosan sprays accelerated the deposition of lignin at wounds of muskmelons by activating lignin metabolism, and increasing H2O2 content and peroxidase activity.
Collapse
Affiliation(s)
- Zhicheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
32
|
Zhang L, Yu Y, Chang L, Wang X, Zhang S. Melatonin enhanced the disease resistance by regulating reactive oxygen species metabolism in postharvest jujube fruit. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lele Zhang
- College of Food Science Shanxi Normal University Linfen China
| | - Youwei Yu
- College of Food Science Shanxi Normal University Linfen China
| | - Lulu Chang
- College of Food Science Shanxi Normal University Linfen China
| | - Xiaojia Wang
- College of Food Science Shanxi Normal University Linfen China
| | - Shaoying Zhang
- College of Food Science Shanxi Normal University Linfen China
| |
Collapse
|
33
|
Liu J, Lin Y, Lin H, Lin M, Fan Z. Impacts of exogenous ROS scavenger ascorbic acid on the storability and quality attributes of fresh longan fruit. Food Chem X 2021; 12:100167. [PMID: 34870143 PMCID: PMC8626660 DOI: 10.1016/j.fochx.2021.100167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
The impacts of reactive oxygen species (ROS) scavenger ascorbic acid (AsA) treatment on the storability and quality attributes of 'Fuyan' longan fruit were explored. Compared to control samples, the treatment of 4 g L-1 AsA solution clearly reduced fruit weight loss, indexes of fruit disease and pericarp browning, retained higher percentage of commercially acceptable fruit, higher values of chromaticity a∗, chromaticity b∗ , and chromaticity L∗ , delayed pigment degradation in longan pericarp, and retarded the decreases of nutritive ingredients in longan pulp. When stored for 6 d, vitamin C (0.08 g kg-1), sucrose (20.70 g kg-1), total soluble sugar (56.32 g kg-1), and total soluble solids (12.4%) in AsA-treated fruit displayed the clearly higher contents than those in control samples. These data suggested that the treatment of exogenous ROS scavenger AsA could effectively enhance the quality attributes and storability of postharvest longan fruit, thereby lengthen their postharvest shelf-life.
Collapse
Affiliation(s)
- Jingyun Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors at: Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri 65211-5160, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors at: Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
34
|
Lin Y, Lin Y, Lin M, Fan Z, Lin H. Influence of hydrogen peroxide on the ROS metabolism and its relationship to pulp breakdown of fresh longan during storage. Food Chem X 2021; 12:100159. [PMID: 34825169 PMCID: PMC8604753 DOI: 10.1016/j.fochx.2021.100159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023] Open
Abstract
H2O2 down-regulated expression of ROS scavenging-related genes in longan pulp. H2O2 reduced activities of ROS scavenging enzymes (SOD, CAT, APX) in longan pulp. H2O2 reduced ROS scavenging capacity and raised O2–. generation rate in longan pulp. H2O2 promoted lipid peroxidation of cell membrane in pulp of harvested longan fruit. H2O2-reduced ROS scavenging capacity led to H2O2-stimulated pulp breakdown of longans.
The influence of hydrogen peroxide (H2O2) on the ROS metabolism and its relationship to pulp breakdown of fresh longan cv. Fuyan during storage was evaluated. Contrasted to control fruit, H2O2-treated samples manifested a higher index of pulp breakdown, an enhanced rate of O2–. generation, and an increased amount of MDA, but lower APX, CAT and SOD activities, reduced expressions of DlAPX, DlCAT and DlSOD, and lower concentrations of total phenolics, flavonoid, AsA, and GSH as well as lower levels of free radicals scavenging capacity. These data revealed that H2O2-induced pulp breakdown of longan was because H2O2 reduced ability of removing ROS but increased ROS generation and accumulation, which promoted peroxidation of cell membrane lipid, and subsequently led to damaging cell membrane structure and breakdown occurrence in pulp of postharvest fresh longan.
Collapse
Affiliation(s)
- Yixiong Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, USA
| | - Zhongqi Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
35
|
Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, Li T. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117793. [PMID: 34274647 DOI: 10.1016/j.envpol.2021.117793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H2O2) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Collapse
Affiliation(s)
- Lihong Xie
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Wang
- Zhongshan Customs Technical Center, Zhongshan, 442000, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
36
|
Zeng L, Shi L, Lin H, Lin Y, Lin Y, Wang H. Paper-containing 1-methylcyclopropene treatment suppresses fruit decay of fresh Anxi persimmons by enhancing disease resistance. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
The purpose of this work was to evaluate the potential application of papers containing 1-methylcyclopropene (1-MCP) postharvest treatment for suppressing fruit decay of fresh Anxi persimmons and its possible mechanism.
Materials and methods
Anxi persimmon fruit were treated with papers containing 1-MCP at the dosage of 1.35 μL/L and stored at 25 ± 1 °C and 85 per cent relative humidity for 35 days. During storage, the fruit decay rate and lignin content were evaluated, and the content of total phenolics, the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU) were determined by spectrophotometry.
Results
The 1-MCP–treated persimmons displayed a lower fruit decay rate, but higher contents of lignin and total phenolics, higher activities of PAL, PPO, POD, CHI, and GLU.
Conclusions
The treatment with 1-MCP could inhibit the fruit decay of postharvest Anxi persimmons, which might be because 1-MCP enhanced fruit disease resistance by increasing the activities of disease resistance-associated enzymes and retaining higher contents of disease resistance-related substances in postharvest fresh Anxi persimmons. These findings indicate that papers containing 1-MCP at the dosage of 1.35 μL/L have potential application in suppressing fruit decay and extending storage life of postharvest fresh Anxi persimmons.
Collapse
|
37
|
Lin Y, Chen G, Lin H, Lin M, Wang H, Lin Y. Chitosan postharvest treatment suppresses the pulp breakdown development of longan fruit through regulating ROS metabolism. Int J Biol Macromol 2020; 165:601-608. [DOI: 10.1016/j.ijbiomac.2020.09.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
|
38
|
Guo DL, Wang ZG, Pei MS, Guo LL, Yu YH. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics 2020; 21:784. [PMID: 33176674 PMCID: PMC7657363 DOI: 10.1186/s12864-020-07180-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. Results In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. Conclusions The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07180-y.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Mao-Song Pei
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Li-Li Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|
39
|
Nie Z, Huang Q, Chen C, Wan C, Chen J. Chitosan coating alleviates postharvest juice sac granulation by mitigating ROS accumulation in harvested pummelo (Citrus grandis L. Osbeck) during room temperature storage. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 169:111309. [DOI: 10.1016/j.postharvbio.2020.111309] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Yan H, Chen J, Liu J. The Involvement of Energy Metabolism and Lipid Peroxidation in Lignin Accumulation of Postharvest Pumelos. MEMBRANES 2020; 10:membranes10100269. [PMID: 33007858 PMCID: PMC7599556 DOI: 10.3390/membranes10100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
Lignification is especially prominent in postharvest pumelo fruit, which greatly impairs their attractiveness and commercial value. This study investigated the energy metabolism and lipid peroxidation and their relationship with accumulated lignin content in juice sacs of “Hongroumiyou” (HR) during 90 d of storage at 25 °C. The results indicated that, the alterations of energy metabolism in juice of sacs of postharvest pumelos was featured by a continuous decline in energy charge and ATP/ADP; an increase in succinic dehydrogenase (SDH) activity before 30 d and increases in activities of cytochrome c oxidase (CCO) and F0F1-ATPase before 60 d; but declines in activities of Ca2+-ATPase and H+-ATPase. Additionally, enhanced contents of H2O2, O2−, and –OH scavenging rate; increased malondialdehyde (MDA) content; and transformation of unsaturated fatty acids (USFA) to saturated fatty acids (USFA) and reduced USFA/SFA (U/S) could result in lipid peroxidation and membrane integrity loss. Moreover, correlation analysis showed that lignin accumulation was in close relation to energy metabolism and lipid peroxidation in juice sacs of postharvest pumelos. These results gave evident credence for the involvement of energy metabolism and lipid peroxidation in the lignin accumulation of HR pumelo fruit during postharvest storage.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- South China Botanical Garden, Chinese Academy of Sciences, Beijing 100049, China
| | - Junjia Chen
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Juan Liu
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
- Correspondence:
| |
Collapse
|
41
|
Min D, Ai W, Zhou J, Li J, Zhang X, Li Z, Shi Z, Li F, Li X, Guo Y. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit. PEST MANAGEMENT SCIENCE 2020; 76:3292-3301. [PMID: 32384210 DOI: 10.1002/ps.5888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Arginase plays key roles in methyl jasmonate (MeJA)-mediated quality maintenance in vegetables and fruits. MeJA treatment induced the Arginase 2 (SlARG2) expression, which is one of the most important encoding genes of arginase. In addition, the treatment with MeJA induced resistance to pathogenic infection in many plants. However, the functions of SlARG2 in MeJA-induced defense to Botrytis cinerea are unclear. In our work, control and SlARG2-silenced tomato fruits (Solanum lycopersicum) were treated with 0.05 mmoL L-1 MeJA before storage to assay the roles of SlARG2 in MeJA-induced defense responses to Botrytis cinerea. RESULTS Our results indicated that MeJA treatment induced both pathogenesis-related gene expression (PR1, PR2a, PR2b and PR3b), and the activity of defense-related enzymes, as well as upregulated arginine metabolism. Compared to control fruits, the treatment with MeJA also induced the activity of arginase, arginine decarboxylase (ADC) and ornithine aminotransferase (OAT), and expression of SlARG2, SlADC, ornithine decarboxylase (SlODC) and SlOAT, and consequently increased the accumulation of arginine, proline, glutamate, putrescine and spermine. However, the induction effects by MeJA were significantly reduced in fruits in which SlARG2 was silenced and severe disease symptoms were observed. CONCLUSION MeJA fumigation could inhibit disease development by inducing pathogenesis-related gene expression (PR1, PR2a, PR2b and PR3b) and defense-related enzymes activity, as well as upregulated arginine metabolism. In addition, SlARG2 silencing could inhibit the functions of MeJA in inducing the accumulation of the above substances. Overall, our study provided strong evidence that SlARG2 was essential for MeJA-induced tomato fruit defense responses to Botrytis cinerea. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dedong Min
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Wen Ai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Jingxiang Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Jiaozhuo Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zilong Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zedong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Fujun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| |
Collapse
|
42
|
Liu J, Lan W, Sun X, Xie J. Effects of chitosan grafted phenolic acid coating on microbiological, physicochemical and protein changes of sea bass (Lateolabrax japonicus) during refrigerated storage. J Food Sci 2020; 85:2506-2515. [PMID: 32652561 DOI: 10.1111/1750-3841.15329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
This project aimed to evaluate the effects of gallic acid (GA) and protocatechuic acid (PA) grafted onto chitosan (CS) on the improved quality of sea bass (Lateolabrax japonicus) during refrigerated storage. The incorporation of GA and PA onto CS (CS-g-GA and CS-g-PA) were achieved by the carbodiimide-mediated grafting procedure. Samples were treated with different solutions (deionized water [CK], 1% CS [m/v], 1% CS-g-GA [m/v], and 1% CS-g-PA [m/v]) for 10 min, which were then stored at 4 °C. Microbiological quality, including total viable counts (TVC), psychrophilic bacterial counts (PBC), Pseudomonas bacterial counts, and H2 S-producing bacterial counts were measured. Physicochemical parameters, including pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) value, water holding capacity (WHC), and K value, were measured. The changes in protein characteristics, including sulfhydryl groups (SH), Ca2+ -ATPase activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and tertiary structure of protein were analyzed periodically, along with texture profile analysis (TPA). The results demonstrated that the CS copolymers treatment exhibited better preservation effects. The CS-g-GA and CS-g-PA treatments could significantly inhibit the growth of microorganisms and retard the increase of pH, TVB-N, TBA, WHC, and K-value during refrigerated storage compared with the CK and CS groups. Additionally, the CS-g-GA and CS-g-PA treatments could delay the protein oxidation by keeping a higher SH level and Ca2+ -ATPase activity. The CS copolymers treatment could also extend the shelf life for another 6 days compared with that of CK. As a result, CS copolymers can be employed in a promising method for the preservation of sea bass. PRACTICAL APPLICATION: The incorporation of gallic acid and protocatechuic acid onto chitosan (CS-g-GA and CS-g-PA) showed superior antioxidant and antimicrobial activities when applied on sea bass. The CS-g-GA and CS-g-PA coatings could maintain the quality and freshness of refrigerated sea bass. Additionally, this research could provide a theoretical basis for the application of graft copolymers on the preservation of aquatic products.
Collapse
Affiliation(s)
- Jiali Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Laboratory of Quality, Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
43
|
Zhang L, Lei D, Deng X, Li F, Ji H, Yang S. Cytosolic glyceraldehyde-3-phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:836-853. [PMID: 31873939 DOI: 10.1111/pce.13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Daili Lei
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
44
|
Liu M, Gong J, Yang B, Ding Y, Zhang Z, Wang B, Zhu C, Hou X. Differences in the photosynthetic and physiological responses of Leymus chinensis to different levels of grazing intensity. BMC PLANT BIOLOGY 2019; 19:558. [PMID: 31842774 PMCID: PMC6916219 DOI: 10.1186/s12870-019-2184-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/03/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Grazing is an important land use in northern China. In general, different grazing intensities had a different impact on the morphological and physiological traits of plants, and especially their photosynthetic capacity. We investigated the responses of Leymus chinensis to light, medium, and heavy grazing intensities in comparison with a grazing exclusion control. RESULTS With light grazing, L. chinensis showed decreased photosynthetic capacity. The low chlorophyll and carotenoid contents constrained light energy transformation and dissipation, and Rubisco activity was also low, restricting the carboxylation efficiency. In addition, the damaged photosynthetic apparatus accumulated reactive oxygen species (ROS). With medium grazing, more energy was used for thermal dissipation, with high carotene content and high non-photochemical quenching, whereas photosynthetic electron transport was lowest. Significantly decreased photosynthesis decreased leaf C contents. Plants decreased the risk caused by ROS through increased energy dissipation. With high grazing intensity, plants changed their strategy to improve survival through photosynthetic compensation. More energy was allocated to photosynthetic electron transport. Though heavy grazing damaged the chloroplast ultrastructure, adjustment of internal mechanisms increased compensatory photosynthesis, and an increased tiller number facilitated regrowth after grazing. CONCLUSIONS Overall, the plants adopted different strategies by adjusting their metabolism and growth in response to their changing environment.
Collapse
Affiliation(s)
- Min Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
- Key Laboratory of Tourism and Resources, Environment in Taishan University, Taian, 271021 China
| | - Jirui Gong
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Bo Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Yong Ding
- Grassland Research Institute of Chinese Academic of Agricultural Science, Hohhot, 010021 Inner Mongolia China
| | - Zihe Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Biao Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Chenchen Zhu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Xiangyang Hou
- Grassland Research Institute of Chinese Academic of Agricultural Science, Hohhot, 010021 Inner Mongolia China
| |
Collapse
|
45
|
Lin Y, Lin H, Chen Y, Wang H, Ritenour MA, Lin Y. Hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage. Food Chem 2019; 297:124955. [DOI: 10.1016/j.foodchem.2019.124955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
|
46
|
Effects of chitosan treatment on the storability and quality properties of longan fruit during storage. Food Chem 2019; 306:125627. [PMID: 31610328 DOI: 10.1016/j.foodchem.2019.125627] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Effects of various concentrations of Kadozan (chitosan) treatment on storability and quality properties of harvested 'Fuyan' longans were investigated. Compared to the control samples, Kadozan treated-longans displayed lower fruit respiration rate, lower pericarp cell membrane permeability, pericarp browning index, pulp breakdown index, fruit disease index, and weight loss, but higher rate of commercially acceptable fruit, higher levels of pericarp chlorophyll, carotenoid, anthocyanin, flavonoid and total phenolics, higher amounts of pulp total soluble sugar, sucrose, total soluble solids, and vitamin C. These results revealed Kadozan treatment could increase storability and retain better quality of harvested longan fruit. Among different concentrations of Kadozan, the dilution of 1:500 (VKadozan: VKadozan + Water) showed the best results in storability and maintained the best quality of longans during storage. These findings demonstrated that Kadozan could be a facile and eco-friendly postharvest handling approach for increasing storability and lengthening shelf-life of harvested 'Fuyan' longan fruit.
Collapse
|
47
|
A novel chitosan alleviates pulp breakdown of harvested longan fruit by suppressing disassembly of cell wall polysaccharides. Carbohydr Polym 2019; 217:126-134. [DOI: 10.1016/j.carbpol.2019.04.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
|
48
|
Sun C, Jin L, Cai Y, Huang Y, Zheng X, Yu T. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids. Food Chem 2019; 293:263-270. [PMID: 31151610 DOI: 10.1016/j.foodchem.2019.04.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022]
Abstract
Gray mold caused by Botrytis cinerea is the most important disease in postharvest tomato fruit. Inducing resistance to fungal pathogens in the harvested fruit and vegetable is a promising approach to control postharvest losses. In the present study, the effect of l-glutamate on induction of resistance to B. cinerea and the underlying mechanisms were investigated. The results indicated that l-glutamate at 100 ppm was effective in reducing the gray mold of tomatoes after inoculation of the pathogen. Gene expressions of nine glutamate receptors, four pathogenesis-related proteins and the content of amino acids were affected by l-glutamate treatment. Furthermore, the metabolites of l-glutamate, including GABA, Met, Lys and Arg, could also induce significant resistance against B. cinerea in tomato fruit. Our findings suggested that l-glutamate treatment may represent a promising method for managing postharvest decay of tomato fruit.
Collapse
Affiliation(s)
- Cui Sun
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lifei Jin
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yiting Cai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yining Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
49
|
Chen X, Wu Q, Chen Z, Li T, Zhang Z, Gao H, Yun Z, Jiang Y. Changes in pericarp metabolite profiling of four litchi cultivars during browning. Food Res Int 2019; 120:339-351. [PMID: 31000248 DOI: 10.1016/j.foodres.2019.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
The pericarp browning is an important physiological index during the postharvest storage, which seriously shortens the shelf-life of litchi fruit. In this study, the browning index of four litchi cultivars were compared, and the shelf-life, from longer to shorter, was 'Feizixiao (FXZ)', 'Jingganghongnuo (JGHN)', 'Huaizhi (HZ)' and 'Nuomici (NMC)', respectively. Then, comparative metabolomics were performed in the pericarp of four litchi cultivars during browning. Finding results showed that a total of 119 kinds of metabolites were detected in litchi pericarp, including 30 kinds of primary metabolites, 44 kinds of volatile compounds, 29 kinds of free amino acids and 16 kinds of hydrolytic amino acids. After ANOVA and OPLS-DA, 52 kinds of metabolites were important with predictive VIP > 1 and p < 0.05. In FZX pericarp, the contents of many amino acids increased significantly, which might be related to the yellow-green pericarp and play an important role in delaying browning. In the pericarp of JGHN, NMC and HZ, a great number of soluble sugars and some free amino acids were induced during browning, which was negatively correlated with the browning speed of three red pericarp cultivars. The browning induced a large number of sesquiterpenes in the pericarp of FZX, NMC and HZ, which was positively correlated with the browning index. In addition, the correlation analysis showed that the amino acids were negatively correlated with the volatile compounds, suggesting that pericarp browning could induce the conversion of metabolic products from amino acids to terpenes.
Collapse
Affiliation(s)
- Xi Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Qixian Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Zhongsuzhi Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| | - Zhengke Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China; College of Food Science and Technology, Hainan University, No.58 Haidiandao Renmin Street, Haikou 570228, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, No. 80 Dafeng Two Street, Tianhe District, Guangzhou 510640, China.
| | - Ze Yun
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
50
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|