1
|
Cruz-López H, Pascual C, Sanchez M, Domingues P, Rosas C, Gallardo P. Protein hydrolysates from fish wastes: nutritional characteristics and its inclusion in diets for Octopus maya. PLoS One 2025; 20:e0321572. [PMID: 40249745 PMCID: PMC12007706 DOI: 10.1371/journal.pone.0321572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/08/2025] [Indexed: 04/20/2025] Open
Abstract
The utilization of fish waste protein as an alternative to crab and squid protein presents an important alternative for octopus fattening. During this study, nutritional characteristics of fish protein hydrolysate (FPH) and its inclusion in prepared diets were evaluated on growth performance and enzyme activity of digestive gland of O. maya juveniles. FPH were prepared using fish waste and their nutritional properties were evaluated. Four diets with different levels of FPH (0%, 10%, 15%, and 20%) in substitution for crab meals were fed to octopuses (mean body weight 100 mg) individually distributed for 70 days. Regarding yield, at the end of the hydrolysis period (day 15) the FPH fraction constitutes 67% of the total silage (dried powder). Small peptides were recorded in FPH (< 2.12 DA). Altogether, 17 amino acids were identified on FPH, encompassing nine essential amino acids (EAAs; 182 mg g-1) and eight non-essential amino acids (NEAAs; 427 mg g-1). Also, the free amino acids (FAAs) content was 8.3% of the total amino acids content with the predominance of taurine. Octopuses fed with FPH15 had the highest weight gain (3.06 g), SGR (4.76% day-1), and survival (90%) compared to FPH0. Total alkaline protease activity of octopuses digestive gland was lower in FPH20 (3550 U mg of protein-1) than in the control (5277 U mg of protein-1). Incorporating protein hydrolysate derived from fish waste into prepared diet may offer unique advantages in promoting optimal growth and general physiological well-being for O. maya.
Collapse
Affiliation(s)
- Honorio Cruz-López
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Magalli Sanchez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Pedro Domingues
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Vigo, Spain
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Pedro Gallardo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| |
Collapse
|
2
|
Medina DM, Acevedo-Gomez AV, Pellegrini Malpiedi L, Leiva LC. Biochemical characterization of acid proteases from the stomach of palometa (Pygocentrus nattereri, Kner 1858) with potential industrial application. Int J Biol Macromol 2024; 264:130548. [PMID: 38431015 DOI: 10.1016/j.ijbiomac.2024.130548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pepsin is one of the major enzymes with significant importance in the food industry, biomedicines, and pharmaceutical formulations. In this work, the main objective was to biochemically characterize a pepsin-like enzymatic extract obtained from Pygocentrus nattereri, a predatory freshwater fish, focusing on their potential industrial application. The obtained extract exhibited optimal activity at 45 °C and pH 1.0-2.0. These proteases remained stable after 2 h of incubation at temperatures ranging from 0° to 45 °C and within pH range of 1.0 to 7.0. Their activity was significantly affected in presence of pepstatin A and SDS, 10 μM and 3.46 mM respectively, while EDTA and PMSF showed partial inhibitory effects. Divalent cations (Ca2+ and Mg2+) did not inhibit the proteolytic activity of the extract; in fact, it improved at a 5 mM CaCl2 concentration. As the NaCl concentration increased, the enzyme activity decreased. However, after desalination, 90 % of the activity was recovered within the tested exposure time. Besides, this extract demonstrated exceptional versatility across diverse industrial applications, including collagen extraction augmentation, IgG hydrolysis facilitation, and silver and polyester recovery from X-ray films. Our results suggest that the obtained enzymatic extract has a wide range of potential applications.
Collapse
Affiliation(s)
- D M Medina
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina; Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), CONICET-UNR, Mitre 1998, 2000 Rosario, Argentina.
| | - A V Acevedo-Gomez
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina
| | - L Pellegrini Malpiedi
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), CONICET-UNR, Mitre 1998, 2000 Rosario, Argentina.
| | - L C Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina.
| |
Collapse
|
3
|
Friedman IS, Fernández-Gimenez AV. State of knowledge about biotechnological uses of digestive enzymes of marine fishery resources: A worldwide systematic review. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Gomez AVA, Bustillo S, Nerli BB. Recovery of acid proteases from fishery discards with aqueous micellar two-phase systems and their use for X-ray film recycling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Friedman IS, Behrens LA, Pereira NDLA, Contreras EM, Fernández-Gimenez AV. Digestive proteinases from the marine fish processing wastes of the South-West Atlantic Ocean: Their partial characterization and comparison. JOURNAL OF FISH BIOLOGY 2022; 100:150-160. [PMID: 34676538 DOI: 10.1111/jfb.14929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Fish processing generates plenty of waste that is directly discarded in open-air dumps and water sources, or treated in the same way as urban solid waste, causing serious pollution problems. The waste represents a significant source of high-value bioproducts with potential applications in different industrial processes such as the production of feed, fertilizers, biodiesel and biogas, detergent additives and cosmetics. The objective of this study was to characterize and compare specific activities under different pH values and temperature conditions of acid and alkaline proteinases and viscera yield from the following fish species: Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis and Stripped weakfish Cynoscion guatucupa. Individuals were fished off the coast of Mar del Plata (Argentina) by a commercial fleet and the viscera were immediately extracted and kept on ice until use. Stomach proteinases from four species had the highest activity at pH 2, with stability in the range of pH 2-4. The optimum pH was 11.5 from intestinal enzymes of C. guatucupa, M. hubbsi and P. brasiliensis and 9.5 from intestinal enzymes of U. brasiliensis. Alkaline proteinases from all species were highly stable in the range of 7-11.5. The optimum temperature of stomach proteinases from the four species studied were 30 and 50°C, with stability at 10 and 30°C during 150 min. The optimum temperature of intestinal enzymes from the tested species were 50°C with high stability at 10 and 30°C during 150 min. Alkaline proteinase from all species and acid proteinases from C. guatucupa were inactive at 70°C after 150 min, while there was a residual activity lower than 5% at 80°C on pre-incubated stomach enzymes of M.hubbsi, P. brasiliensis and U. brasiliensis after 5, 10 and 20 min, respectively. Digestive proteinases recovered in this study could be appropriate for technological usage, reducing manufacturing costs, obtaining revenue from fishery wastes, and contributing to the reduction of environmental pollution.
Collapse
Affiliation(s)
- Ivana S Friedman
- Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mar del Plata, Argentina
| | - Leonel A Behrens
- Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mar del Plata, Argentina
| | - Nair de Los Angeles Pereira
- Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mar del Plata, Argentina
| | - Edgardo M Contreras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, CCT - Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mar del Plata, Argentina
| | - Analia V Fernández-Gimenez
- Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Mar del Plata, Argentina
| |
Collapse
|
7
|
Kuepethkaew S, Zhang Y, Kishimura H, Kumagai Y, Simpson BK, Benjakul S, Damodaran S, Klomklao S. Enzymological characteristics of pepsinogens and pepsins purified from lizardfish (Saurida micropectoralis) stomach. Food Chem 2021; 366:130532. [PMID: 34274702 DOI: 10.1016/j.foodchem.2021.130532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
One major pepsinogen, PG-I, and two minor pepsinogens, PG-II and PG-III were purified from lizardfish stomach by ammonium sulfate precipitation and two chromatographic columns. The three purified PGs migrated as single bands in native-PAGE gels with molecular weights (MW) ranging from 36 to 38 kDa. Each PG was converted to pepsin (P) at pH 2.0, and the MW were determined as 32 kDa (for P-I), 31 kDa (for P-II) and 30 kDa (for P-III). The optimum pH and temperature of pepsins were 2.0-3.5, and 40-50 °C. All 3 pepsins were strongly inhibited by pepstatin A. Divalent cations slightly stimulated the pepsin activities, but ATP had no effect on the pepsins. Purified pepsins were effective in the hydrolysis of various proteins. Km and kcat of the three pepsins for hemoglobin hydrolysis were 107.64-276.61 µM and 18.30-32.68 s-1, respectively. The new pepsins have potential for use in protein food procession and modification.
Collapse
Affiliation(s)
- Sakonwat Kuepethkaew
- Biotechnology Program, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung Campus, Pa-Phayom, Phatthalung 93210, Thailand
| | - Yi Zhang
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Science Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Science Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Benjamin K Simpson
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Srinivasan Damodaran
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung Campus, Pa-Phayom, Phatthalung 93210, Thailand.
| |
Collapse
|
8
|
Silva MKS, Silva TA, Silva JAF, Costa LDA, Leal MLE, Bezerra RS, Costa HMS, Freitas-Júnior ACV. Carangoides bartholomaei (Cuvier, 1833) stomach: a source of aspartic proteases for industrial and biotechnological applications. BRAZ J BIOL 2021; 82:e234413. [PMID: 34105658 DOI: 10.1590/1519-6984.234413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
The viscera and other residues from fish processing are commonly discarded by the fishing industry. These by-products can be a source of digestive enzymes with industrial and biotechnological potential. In this study, we aimed at the extraction, characterization, and application of acidic proteases from the stomach of Carangoides bartholomaei (Cuvier, 1833). A crude extract from the stomachs was obtained and submitted to a partial purification process by salting-out, which obtained a Purified Extract (PE) with a specific proteolytic activity of 54.0 U⋅mg-1. A purification of 1.9 fold and a yield of 41% were obtained. The PE presents two isoforms of acidic proteases and a maximum proteolytic activity at 45 °C and pH 2.0. The PE acidic proteolytic activity was stable in the pH range of 1.5 to 7.0 and temperature from 25 °C to 50 °C. Purified Extract kept 35% of its proteolytic activity at the presence of NaCl 15% (m/v) but was totally inhibited by pepstatin A. Purified Extract aspartic proteases presented high activity in the presence of heavy metals such as Cd2+, Hg2+, Pb2+, Al3+, and Cu2+. The utilization of PE as an enzymatic addictive in the collagen extraction from Nile tilapia scales has doubled the process yield. The results indicate the potential of these aspartic proteases for industrial and biotechnological applications.
Collapse
Affiliation(s)
- M K S Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - T A Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - J A F Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - L D A Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil
| | - M L E Leal
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil
| | - R S Bezerra
- Universidade Federal de Pernambuco - UFPE, Centro de Biociências, Departamento de Bioquímica, Laboratório de Enzimologia, Recife, PE, Brasil
| | - H M S Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - A C V Freitas-Júnior
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| |
Collapse
|
9
|
Guo Y, Li X, Jia W, Huang F, Liu Y, Zhang C. Characterization of an intracellular aspartic protease (PsAPA) from Penicillium sp. XT7 and its application in collagen extraction. Food Chem 2021; 345:128834. [PMID: 33348133 DOI: 10.1016/j.foodchem.2020.128834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
An intracellular aspartic protease, PsAPA, was identified from Penicillium sp. XT7. This protease was belonged to penicillopepsin and was expressed in Pichia pastoris GS115. The recombinant PsAPA had a specific activity of 4289.7 ± 261.7 U/mg. The pH and temperature maxima of the enzyme were 3.0 and 30 °C, respectively. The PsAPA was stable in the pH range from 3.0 to 6.0 and was completely inactivated after incubation at 50 °C for 15 min. Presence of Mn2+ and Cu2+ increased the proteolytic activity and β-mercaptoethanol and SDS showed inhibitory effects, whereas 0.05 M pepstatin A strongly inhibited it. PsAPA could effectively hydrolyze animal proteins, including myoglobin, and hemoglobin but not collagens. PsAPA increased the yield of collagen extraction compared to the acid extraction method. The above properties show that the novel low-temperature acidic protease, PsAPA, is comparable to commercial proteases (porcine pepsin) and has great potential for collagen extraction.
Collapse
Affiliation(s)
- Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Silva JAF, Silva MKS, Silva TA, Costa LDA, Leal MLE, Bezerra RS, Costa HMS, Freitas-Júnior ACV. Obtainment and characterization of digestive aspartic proteases from the fish Caranx hippos (Linnaeus, 1766). BRAZ J BIOL 2021; 82:e234500. [PMID: 33787732 DOI: 10.1590/1519-6984.234500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
This work aimed to obtain aspartic proteases of industrial and biotechnological interest from the stomach of the crevalle jack fish (Caranx hippos). In order to do so, a crude extract (CE) of the stomach was obtained and subjected to a partial purification by salting-out, which resulted in the enzyme extract (EE) obtainment. EE proteases were characterized physicochemically and by means of zymogram. In addition, the effect of chemical agents on their activity was also assessed. By means of salting-out it was possible to obtain a purification of 1.6 times with a yield of 49.4%. Two acid proteases present in the EE were observed in zymogram. The optimum temperature and thermal stability for EE acidic proteases were 55 ºC and 45 °C, respectively. The optimum pH and pH stability found for these enzymes were pH 1.5 and 7.0, respectively. Total inhibition of EE acid proteolytic activity was observed in the presence of pepstatin A. dithiothreitol (DTT) and Ca2+ did not promote a significant effect on enzyme activity. In the presence of heavy metals, such as Al3+, Cd2+ and Hg2+, EE acidic proteases showed more than 70% of their enzymatic activity. The results show that it is possible to obtain, from the stomach of C. hippos, aspartic proteases with high proteolytic activity and characteristics that demonstrate potential for industrial and biotechnological applications.
Collapse
Affiliation(s)
- J A F Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - M K S Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - T A Silva
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - L D A Costa
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil
| | - M L E Leal
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil
| | - R S Bezerra
- Universidade Federal de Pernambuco - UFPE, Centro de Biociências, Departamento de Bioquímica, Laboratório de Enzimologia, Cidade Universitária, Recife, PE, Brasil
| | - H M S Costa
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| | - A C V Freitas-Júnior
- Universidade Federal da Paraíba - UFPB, Laboratório de Biomoléculas de Organismos Aquáticos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Cidade Universitária, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, Cidade Universitária, João Pessoa, PB, Brasil
| |
Collapse
|
11
|
Diverse activities and biochemical properties of amylase and proteases from six freshwater fish species. Sci Rep 2021; 11:5727. [PMID: 33709639 PMCID: PMC7970969 DOI: 10.1038/s41598-021-85258-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/28/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigated the biochemical properties, enzyme activities, isoenzyme pattern, and molecular weight of three types of digestive enzyme from six freshwater fish species: Puntius gonionotus (common silver barb), Puntioplites proctozysron (Smith’s barb), Oreochromis niloticus (Nile tilapia), Hemibagrus spilopterus (yellow mystus), Ompok bimaculatus (butter catfish), and Kryptopterus geminus (sheatfish). The optimum pHs for amylase and alkaline protease activities were 7.0–8.0 and 8.0–10.0, and the optimum temperatures were 45–60 °C and 50–55 °C, respectively. A pepsin-like enzyme was detected in all three carnivorous fishes (Ompok bimaculatus, Kryptopterus geminus, and Hemibagrus spilopterus) with optimum reaction pH of 2.0 for each and optimum reaction temperatures 50–55 °C. In optimum reaction conditions, the amylase and alkaline protease from Puntioplites proctozyron showed the highest activities. Lower activities of all enzymes were observed at temperature (29 °C) of Lam Nam Choen swamp than at the optimum reaction temperatures. The fish species contained one to three and five to eight isoforms of amylase and alkaline protease, respectively, with molecular weights from 19.5 to 175 kDa. Both the alkaline proteases and amylases were stable in wide pH and temperature ranges.
Collapse
|