1
|
Hu J, Wang L, Song Z, Zhou M, Lai M, Cui B, Xiao M, Yang J, Wu C, Zhao M. Preparation and properties of thermal responsive 2,3-diethyl-5-methylpyrazine fragrance microcapsules with β-CD/CS as wall materials. Int J Biol Macromol 2024; 283:137853. [PMID: 39566799 DOI: 10.1016/j.ijbiomac.2024.137853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
2,3-Diethyl-5-methylpyrazine (DEMP) is recognized for its unique nutty scent but faces limitations due to rapid evaporation. The primary objective of this study was to explore the effect of incorporating DEMP with β-cyclodextrin (β-CD) and chitosan (CS) as wall material on the microstructure and thermal release behavior, antibacterial, and antioxidant characteristics. Initially, the microcapsules preparation process underwent optimization with embedding rate of 78.03 % through response surface by ultrasonic technique. The characterization of microcapsules was confirmed through SEM, FT-IR and TEM, with the majority exhibiting smooth and shell core structures that overlapped. Through sustained release kinetics analysis, the release of microcapsules under 80 °C, 50 °C and room temperature was more in line with the first-order kinetic and Avrami kinetic equation. The heat release kinetics analysis yielded a well-matched linear fitting curve. Additionally, microcapsules effectively suppressed the growth of S. aureus and E. coli germs, and demonstrated strong antioxidant properties, compared with DEMP. Adding 10 mg microcapsules to the Heat Not Burning (HNB) cigarette, the sensory quality was significantly improved. This discovery has the potential to pave a new route for the encapsulation of fragrance molecules, and expanding their multifunctional usages for enhancing the flavor of cigarettes and food.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Longfei Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zuguo Song
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China
| | - Meng Zhou
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Menglan Xiao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianli Yang
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China
| | - Chengchun Wu
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Xian 710065, China.
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Yan W, Chen C, Zheng Y, Xu J, Wang Y, He X. Total triterpenoids from apple peels exert pronounced anti-breast-cancer activity in vivo and in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9228-9239. [PMID: 39007208 DOI: 10.1002/jsfa.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Apples are among the most nutritionally valuable fruits and have a history of use in traditional Chinese medicine. Triterpenoids, the primary bioactive compounds found in apples, demonstrate significant antitumor activity. RESULTS Following enrichment and optimization, the total content of major triterpenoids in total triterpenoids from apple peels (ATT) reached 5.76 g kg-1. The growth of MDA-MB-231 xenograft tumors was significantly inhibited after treatment with ATT. Network pharmacology analysis conclusively identified a close association between the antitumor effect of ATT and the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. Experimental validation using MDA-MB-231 cells and a xenograft nude mouse model confirmed that ATT suppressed tumor cell proliferation effectively by modulating the PI3K-Akt signaling pathway, which was consistent with the findings from network pharmacology. The total triterpenoids from apple peels also induced cell apoptosis by mediating the PI3K-Akt signaling pathway. CONCLUSION The total triterpenoids from apple peels can inhibit tumor cell proliferation and induce cell apoptosis effectively through the PI3K-Akt signaling pathway, suggesting that ATT holds promise as a prospective therapeutic agent for breast cancer treatment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanyu Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Cong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Yuanru Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, China
| |
Collapse
|
3
|
Si X, Yuan Z, Li H, Zhu Y, Zhou Y, Liu J, Wu Z. Microencapsulated granaticins from Streptomyces vilmorinianum YP1: Optimization, physiochemical characterization and storage stability. Food Chem X 2024; 23:101548. [PMID: 38974200 PMCID: PMC11225699 DOI: 10.1016/j.fochx.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Granaticins are natural pigments derived from microorganisms with promising bioactivity. However, their practical applications have been restricted due to inherent instability. To improve the stability of granaticins from the novel strain Streptomyces vilmorinianum YP1, microcapsules were prepared using gum Arabic (GA) by a freeze-drying method. The optimal parameters for microencapsulation were determined using response surface methodology. Under the optimal conditions (GA 9.2% (v/v), a wall/-core ratio 4.8 (w/w), encapsulating temperature 29 °C), the maximum encapsulation efficiency achieved was 93.64%. The microcapsules were irregular single crystals with an average particle size of 206.37 ± 2.51 nm. Stability testing indicated improved stability of the microencapsulated granaticins. Notably, granaticnic B retention increased by 17.0% and 6.6% after exposure to sunlight and storage at 4 °C, respectively. These finding suggest that GA as a well material significantly enhances the stability of granaticins from S. vilmorinianum YP1, facilitating their potential applications.
Collapse
Affiliation(s)
- Xuechen Si
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zuoyun Yuan
- COFCO Nutrition and Health Research Institute, Beijing 102200, China
| | - Huilin Li
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunping Zhu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Yawen Zhou
- School of light industry science and engineering, Beijing Technology and Business university, China
| | - Jia Liu
- Internal Trade Food Science Research Institue Co., Ltd, Beijing, 102200, China
| | - Zhichao Wu
- Internal Trade Food Science Research Institue Co., Ltd, Beijing, 102200, China
| |
Collapse
|
4
|
Zhang X, Huang Y, Huang S, Xie W, Huang W, Chen Y, Li Q, Zeng F, Liu X. Antisolvent precipitation for the synergistic preparation of ultrafine particles of nobiletin under ultrasonication-homogenization and evaluation of the inhibitory effects of α-glucosidase and porcine pancreatic lipase in vitro. ULTRASONICS SONOCHEMISTRY 2024; 105:106865. [PMID: 38564909 PMCID: PMC10999467 DOI: 10.1016/j.ultsonch.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yan Huang
- Jiaying University, Meizhou 514015, China
| | - Siyi Huang
- Jiaying University, Meizhou 514015, China
| | - Wenyi Xie
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Wenxuan Huang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yi Chen
- Jiaying University, Meizhou 514015, China
| | - Qiyuan Li
- Jiaying University, Meizhou 514015, China
| | - Fajian Zeng
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Xiongjun Liu
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China.
| |
Collapse
|
5
|
Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023; 28:5163. [PMID: 37446825 DOI: 10.3390/molecules28135163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Chinatangkul
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Faculty of Pharmacy, Siam University, Bangkok 10160, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
6
|
Influence of different extraction methods on the chemical composition, antioxidant activity, and overall quality attributes of oils from peony seeds (Paeonia suffruticosa Andr.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Optimization of a New Ultrasound-Assisted Extraction Method of Caffeic Acid from the Aerial Parts of Coriandrum sativum by Using Experimental Design and Ultra-Performance Liquid Chromatography. SEPARATIONS 2023. [DOI: 10.3390/separations10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coriander (Coriandrum sativum L.) is among the most widely used medicinal and aromatic plants. It is well known for its multiple health benefits, most of which are correlated with its phenolic composition. Four phenolic compounds were identified in the extracts of aerial parts of coriander extracts, including caffeic acid, isoquercitrin, quercetin-3-O-glucuronide, and rutin. Caffeic acid was the major compound in the extracts. A Box–Behnken Design (BBD) was employed in conjunction with the response surface methodology (RSM) to develop an ultrasound-assisted extraction method for the determination of phenolic compounds in the aerial parts of coriander using the level of caffeic acid as the target response. The following working variables were evaluated: methanol level in the extraction solvent, temperature, sonication time, and liquid-to-solvent ratio. It was found that the methanol concentration is the most significant factor that influences the recovery of caffeic acid. The optimal extraction conditions were: 10 min as the extraction time, 70 °C as the temperature, 50% for methanol in water as the solvent, and 6.51 mL of solvent per gram of sample. The repeatability and reproducibility were calculated and RSD values below 6% were obtained in both cases. The new method was employed for the extraction of real coriander samples and it is suggested that this method could potentially be applied for quality control analyses.
Collapse
|
8
|
Li J, Hou X, Jiang L, Xia D, Chen A, Li S, Li Q, Gu X, Mo X, Zhang Z. Optimization and characterization of Sichuan pepper (Zanthoxylum bungeanum Maxim) resin microcapsule encapsulated with β-cyclodextrin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
10
|
Coelho TLS, Silva DSN, Dos Santos Junior JM, Dantas C, Nogueira ARDA, Lopes Júnior CA, Vieira EC. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. ULTRASONICS SONOCHEMISTRY 2022; 84:105980. [PMID: 35288329 PMCID: PMC8921489 DOI: 10.1016/j.ultsonch.2022.105980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/05/2023]
Abstract
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59-201 mg) and extraction time (6-34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.
Collapse
Affiliation(s)
- Tiago Linus Silva Coelho
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Darlisson Slag Neri Silva
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Jedaias Marreiros Dos Santos Junior
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Clecio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - (LQCINMETRIA), State University of Maranhão - UEMA, 65604-380 Caxias, Maranhão, Brazil
| | | | - Cícero Alves Lopes Júnior
- Institute for Chemistry, TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| | - Edivan Carvalho Vieira
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| |
Collapse
|
11
|
Tang H, Zhang Y, Deng Y, Du S, Li D, Wang Z, Li H, Gao X, Wang F. Optimization of Synthesis of (S)-Omeprazole Catalyzed by Soybean Pod Peroxidase in Water-in-Oil Microemulsions Using RSM. Catal Letters 2021. [DOI: 10.1007/s10562-021-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wang Q, Peng C, Shi L, Liu Z, Zhou D, Meng H, Zhao H, Li F, Zhang M. A Technical System for the Large-Scale Application of Metabolites From Paecilomyces variotii SJ1 in Agriculture. Front Bioeng Biotechnol 2021; 9:671879. [PMID: 34055763 PMCID: PMC8149806 DOI: 10.3389/fbioe.2021.671879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4–10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.
Collapse
Affiliation(s)
- Qingbin Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China.,Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Liran Shi
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| | - Dafa Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui Meng
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Hongling Zhao
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Fuchuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
13
|
Nekkaa A, Benaissa A, Mutelet F, Canabady-Rochelle L. Rhamnusalaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants (Basel) 2021; 10:300. [PMID: 33669348 PMCID: PMC7920288 DOI: 10.3390/antiox10020300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Rhamnus alaternus, is a wild-growing shrub, belonging to the Rhamnaceae family. Widely distributed in the Mediterranean basin, R. alaternus is used in the usual medicine in numerous countries, mostly Tunisia, Algeria, Morocco, Spain, France, Italy, and Croatia. A large number of disorders-including dermatological complications, diabetes, hepatitis, and goiter problems-can be treated by the various parts of R. alaternus (i.e., roots, bark, berries, and leaves). Several bioactive compounds were isolated from R. alaternus, including flavonoids, anthocyanins, and anthraquinones, and showed several effects such as antioxidant, antihyperlipidemic, antigenotoxic, antimutagenic, antimicrobial, and antiproliferative. This review summarizes the updated information concerning the botanical description, distribution, extraction processes applied on R. alaternus, and its ethnopharmacology, toxicity, phytochemistry, and pharmacological effects.
Collapse
Affiliation(s)
- Amine Nekkaa
- Process Engineering Laboratory for Sustainable Development and Health Products, Department of Process Engineering, National Polytechnic School of Constantine—Malek Bennabi, Constantine 25000, Algeria
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Akila Benaissa
- Laboratory of Process Engineering for the Environment (LIPE), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider University, Constantine 3, Constantine 25000, Algeria;
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | | |
Collapse
|
14
|
Yu M, Wang S, Zhu H, Wang H, Yao R, Li F, Bian X. In-situ reactive heat breaking cell wall by SO 3 hydration: innovative cell-wall breaking technique to enhance extraction of cinnamaldehyde from cinnamon. Prep Biochem Biotechnol 2021; 51:833-841. [PMID: 33427036 DOI: 10.1080/10826068.2020.1867867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cinnamaldehyde (CA) is one of the major active pharmaceutical ingredient of cinnamon bark. Hydrodistillation (HD) is usually used in CA extraction, however, the extraction yield is lower. The cell wall is a key factor limiting the extraction of essential oils. In-situ reactive heat breaking cell wall (RHB) could destroy the cell wall, which was conducive to the diffusion of CA. The aim of this work was to examine the effect of RHB pretreatment to HD extraction. Response surface methodology (RSM) was used to optimize RHB pretreatment parameters, and Box-Behnken Design (BBD) method was performed to evaluate the effects of different operating parameters. The maximum yield was increased to 3.31 ± 0.11% (w/w) from 2.08 ± 0.042% (w/w) after RSM optimization. Scanning electron microscopic (SEM) analysis showed that RHB destroyed and disrupted the cell wall of cinnamon bark. The GC analysis demonstrated that the purity of cinnamaldehyde was improved and no new components were presented in the extraction product from the cinnamon via RHB pretreatment. In conclusion, RHB is an effective pretreatment method for the CA extraction, and also may be used in the other herbal medicine extraction.
Collapse
Affiliation(s)
- Mingjun Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuiling Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huixia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Risheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Engineering Research Center of Bioprocess, Ministry of Education, PRC, Hefei, China
| | - Fenghe Li
- Anson Biochemical Technology Co., Ltd, Hefei, China
| | - Xialing Bian
- Anson Biochemical Technology Co., Ltd, Hefei, China
| |
Collapse
|
15
|
Abstract
The mechanism of ultrasonic extraction was discovered and analyzed in detail for the liquid membrane technique from the consideration of the specific features of the radial vibrations of a droplet of the dispersed phase placed into an immiscible continuous phase subjected to ultrasonic irradiation. Analytical formulas were derived for the rate of mass transfer as a function of the amplitude of acoustic pressure oscillations and the time of ultrasonic treatment of an extraction system. Conditions for achieving the maximum efficiency of the extraction of a substance under the stimulating effect of ultrasound were analyzed. A nonlinear equation was derived for the radial vibrations of a spherical droplet of the dispersed phase in an immiscible continuous phase under forcing in the form of acoustic pressure periodically changing with time. Experimental study of the dependence of sulfosalicylic acid distribution on time in an aqueous two-phase system with ultrasound shows good agreement of experimental results with the calculations performed.
Collapse
|
16
|
Zhang Y, Ren W, Zhao Q, Lv K, Sun Y, Gao X, Wang F, Liu J. One-pot three-step enzymatic ROP in situ to form polycaprolactone from cyclohexanone: Optimizing and kinetic modeling. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Mansoori S, Bahmanyar H, Jafari Ozumchelouei E, Najafipour I. Investigation and optimisation of the extraction of carvone and limonene from the Iranian Mentha spicata through the ultrasound-assisted extraction method. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1831407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sepideh Mansoori
- Surface Phenomena and Liquid–Liquid Extraction Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hossein Bahmanyar
- Surface Phenomena and Liquid–Liquid Extraction Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elnaz Jafari Ozumchelouei
- Surface Phenomena and Liquid–Liquid Extraction Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Najafipour
- Surface Phenomena and Liquid–Liquid Extraction Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Zhang Y, Yao Q, Li Z, Yang F, Wang F, Liu J. A one-pot process for synthesis of mitomycin analogs catalyzed by laccase/lipase optimized by response surface methodology. Eng Life Sci 2020; 19:805-814. [PMID: 32624973 PMCID: PMC6999360 DOI: 10.1002/elsc.201900118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
To reach the excellent yield as well as environmental friendliness, an efficient one‐pot process for the synthesis of 2‐methyl‐3‐n‐butylaminoyl‐1,4‐benzoquinone, a mitomycin‐like compound by the domino reaction of 2‐methyl‐1,4‐hydroquinone and butylamine using laccase/lipase as co‐catalysts, has been developed. In this present study, the process proposed here was further improved by optimizing the relevant factors using the response surface methodology based on Box–Benkhen Design. The optimum condition that afforded the highest yield (98%) of 2‐methyl‐3‐n‐butylaminoyl‐1,4‐benzoquinone was obtained as follows: molar ratio of amines to hydroquinones 1.16:1, activity ratio of laccase to lipase 1.14:2, and reaction temperature 38.9°C. The results obtained indicate that this process may be useful as a green alternative method for higher yield production of mitomycin analogs.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Quancai Yao
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Zewen Li
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Fengke Yang
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Fanye Wang
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Junhong Liu
- Department of Pharmaceutical Engineering in College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| |
Collapse
|
19
|
Che-Galicia G, Váquiro-Herrera HA, Sampieri Á, Corona-Jiménez E. Ultrasound-assisted extraction of phenolic compounds from avocado leaves (Persea americana Mill. var. Drymifolia): optimization and modeling. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractUltrasonic-assisted extraction (UAE) was performed to extract the total phenolic compounds from avocado (Persea americana Mill. var. Drymifolia; Lauraceae) leaves with different electric powers (UAE 0%, UAE 60%, and UAE 100%) and extraction times. Ultrasonic extraction parameters were optimized by using a mathematical model made by stepwise regression (SWR) for the determination of the maximum total phenolic content (TPC) and their antioxidant activity. Moreover, TPC extraction was modeled applying heterogeneous models to elucidate the involved mechanisms phenomena that determine the extraction rates. Optimization results found that the maximum value of TPC reached 48,732 mg GAE/100 g D.M. at 84.5% electric power and 29.7 min of extraction, which was superior to 0% electric power UAE. It was also found that the ultrasound causes the degradation of phenolic compounds, whereas the final extraction yield of TPC increases and their antioxidant activity decreased with the increase of ultrasound electric power. Proposed models gave a satisfactory quality of fit data using a second-order reaction for the degradation kinetics of TPC under ultrasound application. The estimated effective diffusivity values were in a range from 1.3889 × 10−11 m2/s to 2.2128 × 10−11 m2/s for the UAE 0% and UAE 100%, respectively. UAE significantly increased the extraction yield through the enhancement of the effective diffusivity, demonstrating that it is a promising technology to extract phenolic substances from avocado leaves.
Collapse
Affiliation(s)
- Gamaliel Che-Galicia
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Henry A. Váquiro-Herrera
- Facultad de Ingeniería Agronómica, Universidad del Tolima, Barrio Santa Helena, A.A. 546, Ibagué, Tolima, Colombia
| | - Álvaro Sampieri
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Edith Corona-Jiménez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570, Puebla, Mexico
| |
Collapse
|
20
|
Huang G, Zhang M, Sun J, Bai Y, Li L, Xue Z, He Y, Li H, Yang B. Determination of Flavonoids in Magnolia officinalis Leaves Based on Response Surface Optimization of Infrared Assisted Extraction Followed by High-Performance Liquid Chromatography (HPLC). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1732401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Guoying Huang
- School of Food and Bioengineering, Xihua University, Chengdu, China
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Mingxiao Zhang
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Jiaxing Sun
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yuqi Bai
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhenzhen Xue
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hua Li
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Bin Yang
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| |
Collapse
|
21
|
Zou Y, Zhang T, Wang G, Zhou M, Xiong Y, Huang S, Li H, Liu X. Microfluidic continuous flow synthesis of 1,5-ditosyl-1,5-diazocane-3,7-dione using response surface methodology. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Optimization of Ultrasound Assisted Extraction (UAE) of Kinsenoside Compound from Anoectochilus roxburghii (Wall.) Lindl by Response Surface Methodology (RSM). Molecules 2020; 25:molecules25010193. [PMID: 31906599 PMCID: PMC6983077 DOI: 10.3390/molecules25010193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to establish an extraction method for the kinsenoside compound from the whole plant Anoectochilus roxburghii. Ultrasound assisted extraction (UAE) and Ultra-high performance liquid chromatography (UPLC) method were used to extract and determine the content of kinsenoside, while response surface method (RSM) was used to optimize the extraction process. The best possible range for methanol concentration (0–100%), the liquid-solid ratio (5:1–30:1 mL/g), ultrasonic power (240–540 W), duration of ultrasound (10–50 min), ultrasonic temperature (10–60 °C), and the number of extractions (1–4) were obtained according to the single factor experiments. Then, using the Box-Behnken design (BBD) of response surface analysis, the optimum extraction conditions were obtained with 16.33% methanol concentration, the liquid-solid ratio of 10.83:1 mL/g and 35.00 °C ultrasonic temperature. Under these conditions, kinsenoside extraction yield reached 32.24% dry weight. The best conditions were applied to determine the kinsenoside content in seven different cultivation ages in Anoectochilus roxburghii.
Collapse
|
23
|
Fu X, Belwal T, Cravotto G, Luo Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. ULTRASONICS SONOCHEMISTRY 2020; 60:104726. [PMID: 31541966 DOI: 10.1016/j.ultsonch.2019.104726] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 05/18/2023]
Abstract
Ultrasound is an advanced non-thermal food-processing technology that has received increasing amounts of interest as an alternative to, or an adjuvant method for, conventional processing techniques. This review explores the sono-physical and sono-chemical effects of ultrasound on food processing as it reviews two typical food-processing applications that are predominantly driven by sono-physical effects, namely ultrasound-assisted extraction (UAE) and ultrasound-assisted freezing (UAF), and the components modifications to food matrices that can be triggered by sono-chemical effects. Efficiency enhancements and quality improvements in products (and extracts) using ultrasound are discussed in terms of mechanism and principles for a range of food-matrix categories, while efforts to improve existing ultrasound-assist patterns was also seen. Furthermore, the progress of experimental ultrasonic equipments for UAE and UAF as food-processing technologies, the core of the development in food-processing techniques is considered. Moreover, sono-chemical reactions that are usually overlooked, such as degradation, oxidation and other particular chemical modifications that occur in common food components under specific conditions, and the influence on bioactivity, which was also affected by food processing to varying degrees, are also summarised. Further trends as well as some challenges for, and limitations of, ultrasound technology for food processing, with UAE and UAF used as examples herein, are also taken into consideration and possible future recommendations were made.
Collapse
Affiliation(s)
- Xizhe Fu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy; Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
24
|
Zhang Y, Li Z, Tang H, Ren W, Gao X, Sun Y, Zhao QX, Wang F, Liu J. Development and optimization of levodopa and benzylhydrazine orally disintegrating tablets by direct compression and response surface methodology. Drug Dev Ind Pharm 2019; 46:42-49. [PMID: 31794271 DOI: 10.1080/03639045.2019.1698597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of Parkinson's disease (PD) patients with the advanced phase and motor fluctuations is increasing. The objective of this study is developing levodopa/benzylhydrazine orally disintegrating tablets (L/B ODTs), which would provide greater convenience and ease of use than conventional tablets for these patients. In the present study, the L/B ODTs were developed successfully with an optimized formulation using response surface methodology (RSM). The direct compression technology was employed for the preparation of L/B ODTs. Considerably shorter disintegration time and faster dissolution profile were obtained under the optimum formulation with microcrystalline cellulose 25.7%, cross-polyvinylpyrrolidone 6.22% and Sodium carboxymethyl starch 5.36%. The content uniformity (%) of levodopa and benzylhydrazine was 50 ± 1.4% and 14.25 ± 0.6%, respectively. Thickness, friability, hardness and wetting time were 2.8 ± 0.05 mm, 0.46 ± 0.21%, 5.42 ± 1.1 kp and 31.2 ± 2.1 s, respectively, and all of data well comply with the General Principles of the Chinese Pharmacopeia. Mannitol of 22% in formulation could bring a pleasant taste: sweet, cool and refreshing. Almost all the volunteers felt that the ODTs had good taste, no roughness, and no gritty feeling, indicating that the ODTs prepared had good palatability, so patients will have good compliance when taking medicine.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zewen Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hui Tang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenjie Ren
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xin Gao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yangjian Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qiu Xiang Zhao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fanye Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Junhong Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Teglia CM, Guiñez M, Goicoechea HC, Culzoni MJ, Cerutti S. Enhancement of multianalyte mass spectrometry detection through response surface optimization by least squares and artificial neural network modelling. J Chromatogr A 2019; 1611:460613. [PMID: 31629489 DOI: 10.1016/j.chroma.2019.460613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
In this work, the use of design of experiments and posterior data modelling by artificial neural network (ANN) and least squares (LS) is presented as a suitable analytical tool for the performance optimization of a tandem mass spectrometric detector coupled to ultra-high performance liquid chromatography for the analysis of seventeen veterinary drugs. Firstly, a central composite design was built considering as factors the cone, capillary, extractor and radio frequency voltages of the mass spectrometer in order to obtain a proper combination to improve the sensitivity of the method. Secondly, a one factor design considering the collision voltage was built to define the adequate voltage for each daughter ion. The response surface methodology (RSM) was then applied, and the prediction capability of ANN and LS were compared. As conclusion, the ANN modelling provided better results than LS, both in terms of the ANOVA and predicted areas results. The accuracy of the model prediction was between 85 and 125%, confirming that the estimates of the model were correct, and endorsing the optimization procedure as a suitable way to gather excellent results. The suitability of the new approach and its implications on the simultaneous analysis of seventeen veterinary drugs by ultra-high liquid chromatography coupled to tandem mass spectrometry detection are discussed.
Collapse
Affiliation(s)
- Carla M Teglia
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - María Guiñez
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Ming L, Huang H, Jiang Y, Cheng G, Zhang D, Li Z. Quickly Identifying High-Risk Variables of Ultrasonic Extraction Oil from Multi-Dimensional Risk Variable Patterns and a Comparative Evaluation of Different Extraction Methods on the Quality of Forsythia suspensa Seed Oil. Molecules 2019; 24:molecules24193445. [PMID: 31547523 PMCID: PMC6803820 DOI: 10.3390/molecules24193445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 12/04/2022] Open
Abstract
Generally, essential oils and components of interest are extracted from plants using organic solvent, distillation, ultrasound and supercritical extraction methods. Ultrasonic extraction (UE) has the advantage of high efficiency, but its process is complicated and it has numerous variables. In this study, an L18-Hunter experimental design was applied for the first time to investigate the practicability of applying UE to Forsythia suspensa seed oil. Six potential high-risk variables, including numerical and non-numeric types, were obtained from the risk analysis and their impacts on global yield and antioxidant activity were screened. Furthermore, oils obtained by different extraction processes (i.e., UE, supercritical fluid extraction (SFE), soxhlet extraction (SE) and hydrodistillation extraction (HD)) were analyzed. A comparative study of these oils was characterized and compared by FT-IR, GC-MS and antioxidant activity. The obtained results show that the type of solvent, solvent-to-solid ratio, extraction power and time were the significant variables affecting the extraction yield, whereas antioxidant activity was only affected by the type of solvent. The regression coefficients of the yield and antioxidant activity models were 0.79 and 0.91, and the ANOVA of the models were 0.013 and <0.0001, respectively. Beta-Pinene was the main abundant component in the oils for the UE, SFE, SE and HD methods and the content was about 46%~52.4%. In conclusion, the L18-Hunter design could be used as an effective experimental design method for rapid screening of high-risk variables. Regarding extraction efficiency, chemical composition and biological activity, UE not only offered a robust Forsythia suspensa seed oil extraction process, but also provided a time- and cost-effective advantage to the food and pharmaceutical industry when compared to the SFE, SE and HD extraction processes.
Collapse
Affiliation(s)
- Liangshan Ming
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Yumao Jiang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Gengjinsheng Cheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Daoying Zhang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Zhe Li
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| |
Collapse
|
27
|
Zhang Y, Jiang W, Lv K, Sun Y, Gao X, Zhao Q, Ren W, Wang F, Liu J. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology. Biotechnol Prog 2019; 36:e2901. [PMID: 31465150 DOI: 10.1002/btpr.2901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 11/09/2022]
Abstract
ε-Caprolactone (ε-CL) has attracted a great deal of attention and a high product concentration is of great significance for reducing production cost. The optimization of ε-CL synthesis through chemoenzymatic Baeyer-Villiger oxidation mediated by immobilized Trichosporon laibacchii lipase was studied using response surface methodology (RSM). The yield of ε-CL was 98.06% with about 1.2 M ε-CL concentration that has a substantial increase mainly due to both better stability of the cross-linked immobilized lipase used and the optimum reaction conditions in which the concentration of cyclohexanone was 1.22 M, the molar ratio of cyclohexanone:urea hydrogen peroxide (UHP) was 1:1.3, and the reaction temperature was 56.5°C. Based on our experimental results, it can be safely concluded that there are three reactions in this reaction system, not just two reactions, in which the third reaction is that the acetic acid formed reacts with UHP to form peracetic acid in situ catalyzed by the immobilized lipase. A quadratic polynomial model based on RSM experimental results was developed and the R2 value of the equation is 0.9988, indicating that model can predict the experimental results with high precision. The experimental results also show that the molar ratio of cyclohexanone to UHP has very significant impact on the yield of ε-CL (p < .0006).
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Weiwei Jiang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Kuiying Lv
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yangjian Sun
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xin Gao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qiuxiang Zhao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenjie Ren
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fanye Wang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Junhong Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
28
|
ZHANG S, LV X, XIA Q, ZHANG J, CHEN J, LIU D. Ultrasonic Assisted Microchannel Extraction of Fe(III) from Wet-Process Phosphoric Acid. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2019. [DOI: 10.15261/serdj.26.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Shuai ZHANG
- School of Chemical Engineering, Sichuan University
| | - Xingbin LV
- School of Chemical Engineering, Sichuan University
| | - Qi XIA
- School of Chemical Engineering, Sichuan University
| | | | - Jianjun CHEN
- School of Chemical Engineering, Sichuan University
| | - Daijun LIU
- School of Chemical Engineering, Sichuan University
| |
Collapse
|