1
|
Wang J, Duan X, An Y, He J, Li J, Xian J, Zhou D. An Analysis of Capsaicin, Dihydrocapsaicin, Vitamin C and Flavones in Different Tissues during the Development of Ornamental Pepper. PLANTS (BASEL, SWITZERLAND) 2024; 13:2038. [PMID: 39124156 PMCID: PMC11313734 DOI: 10.3390/plants13152038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
As a fruit and vegetable crop, the ornamental pepper is not just highly ornamental but also rich in nutritional value. The quality of ornamental pepper fruits is given in their contents of capsaicin, vitamin C (VC), flavonoids and total phenols. The study concentrated on the accumulation of capsaicin and dihydrocapsaicin in different tissues of 18 peppers during fruit growth and development. The results showed that the pericarp and placenta contained significantly higher levels of capsaicin than dihydrocapsaicin. Additionally, the placenta contained significantly higher levels of both capsaicin and dihydrocapsaicin compared to the pericarp. The content of capsaicin was in the range of 0-6.7915 mg·g-1, the range of dihydrocapsaicin content was 0-5.329 mg·g-1. Interestingly, we found that the pericarp is rich in VC (5.4506 mg·g-1) and the placenta is high in flavonoids (4.8203 mg·g-1) and total phenols (119.63 mg·g-1). The capsaicin is the most important component using the correlation analysis and principal component analysis. The qPCR results substantiated that the expression of genes in the placenta was significantly higher than that in the pericarp and that the expression of genes in green ripening stage was higher than that in red ripening stage. This study could be utilized to select the best ripening stages and tissues to harvest peppers according to the use of the pepper and to the needs of producers. It not only provides a reference for quality improvement and processing for consumers and market but also provides a theoretical basis for high-quality pepper breeding.
Collapse
Affiliation(s)
- June Wang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (X.D.); (Y.A.); (J.H.); (J.L.); (J.X.); (D.Z.)
| | | | | | | | | | | | | |
Collapse
|
2
|
de Aguiar AC, Pereira GA, Ribeiro CSDC, Eberlin MN, Soares LP, Ruiz ALTG, Pastore GM, Martínez J. Capsicum chinense var. BRS Moema: chemical characterization by HPLC-ESI-MS/MS and antiproliferative screening. Food Funct 2023. [PMID: 37401347 DOI: 10.1039/d3fo01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Capsiate and phenolics present in the free, esterified, glycosylated, and insoluble-bound forms of BRS Moema peppers were characterized and quantified using UHPLC-ESI-MS/MS. Additionally, the in vitro antiproliferative activity of BRS Moema extract was evaluated. The peppers showed considerable quantities of capsiate and phenolic compounds. Esterified phenolics were the main fraction, followed by the insoluble-bound fraction, indicating that relying solely on the extraction of soluble phenolics may underestimate the total phenolic content. Among the fourteen phenolics identified in extract fractions, gallic acid was the major constituent. Phenolic fractions displayed high antioxidant capacity by TEAC and ORAC assays. Nevertheless, the correlation between phenolic compounds and antioxidant activity suggested that other bioactive or phenolic compounds may contribute to the overall phenolic compounds and antioxidant capacity of the obtained fractions. Concerning the antiproliferative activity, the extract did not exhibit any effect on cell proliferation within the evaluated concentration range. These findings indicated that BRS Moema peppers can serve as a rich source of phenolic compounds. Therefore, fully utilizing them could bring advantages to the food and pharmaceutical industries, as well as to consumers and producers.
Collapse
Affiliation(s)
- Ana Carolina de Aguiar
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Rod. Lauri Simões de Barros, km 12 - SP 189, 18290-000, Buri, SP, Brazil.
| | - Gustavo Araujo Pereira
- Federal University of Pará (UFPA), R. Augusto Corrêa, 001, Guamá, 66075110, Belém, PA, Brazil
| | | | - Marcos Nogueira Eberlin
- MackMass Laboratory of Mass Spectrometry, School of Engineering- PPGEMN, Mackenzie Presbyterian University, São Paulo, SP 01302-907, Brazil
| | - Lana Pereira Soares
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- LAFTEX, Faculty of Pharmaceutical Sciences, University of Campinas, 200 Candido Portinari Street, 13083-871, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| | - Julian Martínez
- School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
3
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
4
|
Das S, Priyadarshani N, Basak P, Maitra P, Bhattacharya S, Bhattacharya SS. Capsaicin derived from endemic chili landraces combats Shigella pathogen: Insights on intracellular inhibition mechanism. Microb Pathog 2023; 181:106210. [PMID: 37343896 DOI: 10.1016/j.micpath.2023.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Ethnic tribals in northeast India have been growing and maintaining local chili landraces for ages. These chilies are known for their characteristic pungency and immense therapeutic properties. Capsaicin, a significant chili metabolite, is recognized as a natural drug for pain relief, diabetic neuropathy, psoriasis, arthritis, etc. In this study, we tried to observe the influence of locality factors on the pungency and bioactive features of Capsicum annuum L. landraces. We also checked the gastro-protective ability of these chilies, especially in the cure of shigellosis. Phytometabolite characterization and estimation were done through spectrophotometric methods. Preparative and analytical HPLC techniques were employed for extracting and purifying capsaicin-enriched fractions. Shigella flexneri growth retardation was determined through the broth dilution method. Gentamicin protection assay and ELISA were done to assess the intracellular invasion and IL-1β inflammasome production by S.flexneri. The correlation analyses postulated that phenols, flavonoids, chlorophylls, β-carotene, and capsaicin synthase upregulation strongly influenced capsaicin biosynthesis in chili cultivars. Correspondingly, the inhibitory efficacy of the HPLC-purified Balijuri-derived capsaicin was more effective than the Raja-derived capsaicin in inhibiting intracellular Shigella growth. Reduced levels of pro-inflammatory cytokine (IL1β) in capsaicin-treated Shigella-infected cells probably reduced inflammation-mediated intestinal damage, limiting bacterial spread. This investigation advocates the unique potential of local chilies in curing deadly 'shigellosis' with mechanistic evidence. Our observation justifies the traditional healing practices of the ethnic people of NE India.
Collapse
Affiliation(s)
- Subhasish Das
- Department of Environmental Science, Pachhunga University College, Mizoram University (A Central University), Aizawl, 796001, Mizoram, India.
| | - Nayana Priyadarshani
- Soil Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur University, Sonitpur, 784028, Assam, India
| | - Priyanka Basak
- Department of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, 700010, India
| | - Priyanka Maitra
- Department of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, 700010, India
| | - Sushmita Bhattacharya
- Department of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, 700010, India
| | - Satya Sundar Bhattacharya
- Soil Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur University, Sonitpur, 784028, Assam, India.
| |
Collapse
|
5
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Kolašinac S, Pećinar I, Danojević D, Stevanović ZD. Raman spectroscopy coupled with chemometric modeling approaches for authentication of different paprika varieties at physiological maturity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zuo SM, Yu HD, Zhang W, Zhong Q, Chen W, Chen W, Yun YH, Chen H. Comparative Metabolomic Analysis of Dendrobium officinale under Different Cultivation Substrates. Metabolites 2020; 10:metabo10080325. [PMID: 32785071 PMCID: PMC7465462 DOI: 10.3390/metabo10080325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
Dendrobium officinale, a precious herbal medicine, has been used for a long time in Chinese history. The metabolites of D. officinale, regarded as its effective components to fight diseases, are significantly affected by cultivation substrates. In this study, ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS) was conducted to analyze D. officinale stems cultured in three different substrates: pine bark (PB), coconut coir (CC), and a pine bark: coconut coir 1:1 mix (PC). A total of 529 metabolites were identified. Multivariate statistical analysis methods were employed to analyze the difference in the content of metabolites extracted from different groups. By the criteria of variable importance in projection (VIP) value ≥1 and absolute log2 (fold change) ≥1, there were a total of 68, 51, and 57 metabolites, with significant differences in content across groups being filtrated out between PB and PC, PB and CC, and PC and CC, respectively. The comparisons among the three groups revealed that flavonoids were the metabolites that fluctuated most. The results suggested the D. officinale stems from the PB group possessed a higher flavonoid content. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the significantly regulated metabolites were mainly connected with flavonoid biosynthesis. A comprehensive profile of the metabolic differentiation of D. officinale planted in different substrates was provided, which supports the selection of an optimum cultivation substrate for a higher biomass yield of D. officinale.
Collapse
Affiliation(s)
- Si-Min Zuo
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Hai-Dong Yu
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Qiuping Zhong
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Wenxue Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
| | - Yong-Huan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 571101, China
- Correspondence: (Y.-H.Y.); (H.C.)
| | - Haiming Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (S.-M.Z.); (H.-D.Y.); (W.Z.); (Q.Z.); (W.C.); (W.C.)
- Correspondence: (Y.-H.Y.); (H.C.)
| |
Collapse
|
8
|
Phytochemical Profile of Capsicum annuum L. cv Senise, Incorporation into Liposomes, and Evaluation of Cellular Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9050428. [PMID: 32429083 PMCID: PMC7278623 DOI: 10.3390/antiox9050428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Overproduction of oxidants in the human body is responsible for oxidative stress, which is associated with several diseases. High intake of vegetables and fruits can reduce the risk of chronic diseases, as they are sources of bioactive compounds capable of contrasting the free radical effects involved in cancer, obesity, diabetes, and neurodegenerative and cardiovascular diseases. Capsicum annuum L. cv Senise is a sweet pepper that is grown in the Basilicata region (Italy). It is an important source of polyphenols, carotenoids, and capsinoids and can play a key role in human health. In this study, an ethanol extract was obtained from C. annuum dried peppers and the analysis of the phytochemical composition was performed by LC-ESI/LTQ Orbitrap/MS. The extract was incorporated into liposomes, which showed small size (~80 nm), good homogeneity, negative surface charge, and good stability in storage. The biological activity of the extract was evaluated in the human hepatoma (HepG2) cell line, used as model cells. The extract showed no cytotoxic activity and reduced the intracellular reactive oxygen species (ROS) level in stressed cells. The antioxidant activity was further improved when the extract was loaded into liposomes. Moreover, the extract promoted the expression of endogenous antioxidants, such as catalase, superoxide dismutase, and glutathione peroxidase through the Nrf-2 pathway evaluated by RT-PCR.
Collapse
|
9
|
Cortés-Estrada CE, Gallardo-Velázquez T, Osorio-Revilla G, Castañeda-Pérez E, Meza-Márquez OG, López-Cortez MDS, Hernández-Martínez DM. Prediction of total phenolics, ascorbic acid, antioxidant capacities, and total soluble solids of Capsicum annuum L. (bell pepper) juice by FT-MIR and multivariate analysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Abstract
This review article contributes new knowledge relating to the sustainability of antihail, anti-insect, and windbreak plastic nets in agriculture. Based on the review, biobased plastic nets made from polyamino acids, polysaccharide derivatives (DS), polyhydroxybutyrate (PHB), polycaprolactone (PCL), polyhydroxylalkanoate (PHA), and polylactic acid (PLA) are shown to be highly biodegradable compared to conventional plastics such as high-density polyethylene (HDPE), polyethylene (PE), and polyvinyl chloride. The biodegradability of these materials is due to the use of natural precursors. However, nonbiodegradable plastics are the materials of choice in agricultural applications for the following reasons. Global commercial production of biobased plastics is low (~1%) due to the absence of facile and scalable production methods. Even though biobased materials are ecologically benign, they are limited in agricultural settings, given the low tensile strength and disruption of the activities of natural insect predators such as spiders. The enhancement of the material properties of biobased plastics involves a trade-off with sustainability. Chemical additives such as heavy metals and volatile compounds enhance the mechanical properties of biobased plastics but limit their sustainability. The current constraints on the production of biobased plastic nets can be resolved through electrospinning techniques that facilitate the development of plastic nets with controllable composition, porosity, and surface areas.
Collapse
|
11
|
Phan ADT, Chaliha M, Sultanbawa Y, Netzel ME. Nutritional Characteristics and Antimicrobial Activity of Australian Grown Feijoa ( Acca sellowiana). Foods 2019; 8:E376. [PMID: 31480592 PMCID: PMC6770449 DOI: 10.3390/foods8090376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The present study determined the chemical composition, bioactive compounds and biological properties of Australian grown feijoa (Acca sellowiana), including whole fruit with peel, fruit peel and pulp, in order to assess the nutritional quality and antimicrobial activity of this emerging subtropical fruit. Polyphenolic compounds and vitamins were determined by UHPLC-PDA-MS/MS, showing that the feijoa fruit not only contains high amounts of antioxidant flavonoids, but is also a valuable source of vitamin C (63 mg/100 g FW (fresh weight)) and pantothenic acid (0.2 mg/100 g FW). Feijoa fruit is also a good source of dietary fibre (6.8 g/100 g FW) and potassium (255 mg/100 g FW). The edible fruit peel possesses significantly (p < 0.05) higher amounts of antioxidant flavonoids and vitamin C than the fruit pulp. This is most likely the reason for the observed strong antimicrobial activity of the peel-extracts against a wide-range of food-spoilage microorganism. The consumption of feijoa fruit can deliver a considerable amount of bioactive compounds such as vitamin C, flavonoids and fibre, and therefore, may contribute to a healthy diet. Furthermore, the potential use of feijoa-peel as a natural food perseverative needs to be investigated in follow-up studies.
Collapse
Affiliation(s)
- Anh Dao Thi Phan
- ARC Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
| | - Mridusmita Chaliha
- ARC Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Yasmina Sultanbawa
- ARC Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Michael E Netzel
- ARC Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
| |
Collapse
|