1
|
Yedra VÁ, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, Sánchez-Moreiras AM, Hussain MI. Testing the role of allelochemicals in different wheat cultivars to sustainably manage weeds. PEST MANAGEMENT SCIENCE 2023; 79:2625-2638. [PMID: 36890109 DOI: 10.1002/ps.7444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Selecting wheat varieties with allelopathic potential or high competitiveness against weeds is a sustainable solution for organic farming to eliminate the use of synthetic herbicides. Wheat is one of the most economically important crops. This study focuses on screening the allelopathic or competitive potential of four wheat cultivars, Maurizio, NS 40S, Adesso and Element, on two weeds of interest due to acquired herbicide resistance, Portulaca oleracea and Lolium rigidum, through germination and growth bioassays and the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids). RESULTS The different cultivars showed different abilities to manage surrounding weeds and different capacity to exude or accumulate specialized metabolites in the presence of those weeds. Furthermore, each cultivar behaved differently depending on the weed present in the medium. The most efficient cultivar to control the tested monocot and dicot weeds was Maurizio, as it effectively controlled germination and growth of L. rigidum and P. oleracea while exuding large amounts of benzoxazinones through the roots, especially the hydroxamic acids 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and dihydroxy-2H-1,4-benzoxaxin-3(4H)-one. By contrast, NS 40S, Adesso and Element showed the potential to control the growth of just one of the two weeds through allelopathy or competition. CONCLUSION This study reveals that Maurizio is the most promising wheat cultivar for sustainable weed control, and that the screening of crop varieties with allelopathic potential, which results in the displacement of synthetic herbicides, is an immediate solution in ecological and sustainable agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Vieites-Álvarez Yedra
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Manuel J Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - M Iftikhar Hussain
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
2
|
Chieppa J, Power SA, Nielsen UN, Tissue DT. Plant functional traits affect competitive vigor of pasture grasses during drought and following recovery. Ecosphere 2022. [DOI: 10.1002/ecs2.4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jeff Chieppa
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Global Centre for Land‐based Innovation Western Sydney University, Hawkesbury Campus Richmond New South Wales Australia
| |
Collapse
|
3
|
Li F, Guo D, Gao X, Zhao X. Water Deficit Modulates the CO 2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:775477. [PMID: 34912360 PMCID: PMC8667667 DOI: 10.3389/fpls.2021.775477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (P n ) and transpiration rates (T r) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased P n and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased P n by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced P n by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of P n and T r, whereas a water deficit induced increase in WUE was linked to the decrease in T r. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.
Collapse
Affiliation(s)
- Fei Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Dagang Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, China
| | - Xining Zhao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
| |
Collapse
|
4
|
Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area. SUSTAINABILITY 2021. [DOI: 10.3390/su132112328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A better understanding of the dry bean (Phaseolus vulgaris L.) growth and yield response to weed competition under the intercropping system is critical for improving sustainable weed management strategies. A two-year trial was conducted with three types of crop arrangement (sole cropping, inter-row, and intra-row intercropping) combined with weeding frequency (no weeding, weeding over the first 50 days of crop growth, and weed-free). Effects of the treatments were tested on dry bean agronomic indicators in terms of the following: 100-grain weight, dry biomass, grain yield, grains per pod, pods per plant, plant height, number of leaves per plant, and chlorophyll content. The intercropping pattern significantly affected dry bean pods per plant, height, and chlorophyll content, while weeding frequency significantly affected all measured agronomic indicators for dry bean, except for chlorophyll content, during the 2017/18 growing season. The results showed that the significant measured agronomic indicators were the lowest under no weed control; however, they increased as weeding frequency increased. The 2018/19 growing season followed a similar trend; however, the interaction effect significantly affected dry bean 100-grain weight, dry biomass, and number of leaves per plant at 40 days after emergence. The dry bean/sweet sorghum or cowpea intra-row intercropping and intermediate weeding frequency displayed optimum productivity.
Collapse
|
5
|
Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpoor Kalkhajeh Y. Accumulation and subcellular distribution of cadmium in rygegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:263-270. [PMID: 34101523 DOI: 10.1080/15226514.2021.1932734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although plant growth-promoting fungi can greatly accelerate the ryegrass bioaccumulation of cadmium (Cd), the underlying mechanisms are not yet well documented. Therefore, we performed a 20-days hydroponic experiment to investigate the effects of Aspergillus niger TL-F2 (A. niger TL-F2) and Aspergillus flavus TL-F3 (A. flavus TL-F3) on accumulation/subcellular distribution of Cd by annual ryegrass Dongmu 70 at different Cd concentrations (0, 2.5, and 5 mg L-1). Results indicated that both fungal strains promoted ryegrass biomass/growth by about 60%. Furthermore, we found that ryegrass roots (17.8-37.1 μg pot-1) had a significantly higher capability for Cd uptake than the shoots (1.66-5.45 μg pot-1) (p < 0.05). Of total Cd in ryegrass plants, 44-67% was in soluble form, 24-37% was in cell wall, and 8.5-25.5% was in organelles. Compared with non-fungus ryegrass, cell wall and soluble Cd fractions in fungus-inoculated roots increased and decreased by 13.5-44% and 21.5-26.4%, respectively. Besides, fungus inoculation generally increased the content of cell wall and soluble Cd fractions in ryegrass shoots. Altogether, the study concludes that inoculation of fungus in ryegrass is a promising approach to improve phytoremediation of Cd contaminated environments.Novelty statement Previous study by Han et al. (2018) examined the resistance of ryegrass plant to Cd stress after its inoculation with Aspergillus aculeatus. In this study, using a hydroponic experiment, we examined the effects of co-application of two species of Aspergillus fungi. i.e. A. niger TL-F2 and A. flavus TL-F3 on ryegrass growth/biomass, Cd absorption by ryegrass shoots and roots, and subcellular distribution of Cd in ryegrass roots and shoots.
Collapse
Affiliation(s)
- Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ru Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Dandan Pan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yalou Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongjuan Lu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Mehdizadeh M, Mushtaq W. Biological Control of Weeds by Allelopathic Compounds From Different Plants: A BioHerbicide Approach. NATURAL REMEDIES FOR PEST, DISEASE AND WEED CONTROL 2020. [DOI: 10.1016/b978-0-12-819304-4.00009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|