1
|
Bamburowicz-Klimkowska M, Malecki M, Bystrzejewski M, Kasprzak A, Grudzinski IP. Graphene-encapsulated iron nanoparticles as a non-viral vector for gene delivery into melanoma cells. Biochem Biophys Res Commun 2023; 652:84-87. [PMID: 36841098 DOI: 10.1016/j.bbrc.2023.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
The rapid progress of nanotechnology has led to use different nanomaterials for biomedical applications. Among them, graphene-encapsulated magnetic nanoparticles (GEMNS) are recognized as next generation carbon nanomaterials in translation cancer research. In this study, we utilized green fluorescence protein (GFP) expression plasmid DNA (pDNA) and GEMNS decorated with branched polyethyleneimine (PEI) to yield a novel transporter (GEMNS-PEI/pDNA) for gene delivery into melanoma cells (B16F10). The efficiency of transfection was examined using PCR and confocal microscopy. The studies show that the as-designed GEMNS-PEI construct is successfully used to transfect the melanoma cells with pDNA and it should be considered as a potent non-viral vector for introducing naked nucleic acids into eucaryotic cells.
Collapse
Affiliation(s)
- Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| | - Maciej Malecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warszawa, Poland
| | - Michal Bystrzejewski
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University, L. Pasteura 1, 02-093, Warsaw, Poland
| | - Artur Kasprzak
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Gañán J, Martínez-García G, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Nanomaterials-modified electrochemical sensors for sensitive determination of alkaloids: Recent trends in the application to biological, pharmaceutical and agri-food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
González-Gómez L, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Occurrence and Chemistry of Tropane Alkaloids in Foods, with a Focus on Sample Analysis Methods: A Review on Recent Trends and Technological Advances. Foods 2022; 11:407. [PMID: 35159558 PMCID: PMC8833975 DOI: 10.3390/foods11030407] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Tropane alkaloids (TAs) are natural toxins produced by different plants, mainly from the Solanaceae family. The interest in TAs analysis is due to the serious cases of poisoning that are produced due to the presence of TA-producing plants in a variety of foods. For this reason, in recent years, different analytical methods have been reported for their control. However, the complexity of the matrices makes the sample preparation a critical step for this task. Therefore, this review has focused on (a) collecting the available data in relation to the occurrence of TAs in foods for human consumption and (b) providing the state of the art in food sample preparation (from 2015 to today). Regarding the different food categories, cereals and related products and teas and herbal teas have been the most analyzed. Solid-liquid extraction is still the technique most widely used for sample preparation, although other extraction and purification techniques such as solid-phase extraction or QuEChERS procedure, based on the use of sorbents for extract or clean-up step, are being applied since they allow cleaner extracts. On the other hand, new materials (molecularly imprinted polymers, mesostructured silica-based materials, metal-organic frameworks) are emerging as sorbents to develop effective extraction and purification methods that allow lower limits and matrix effects, being a future trend for the analysis of TAs.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, 28933 Madrid, Spain; (L.G.-G.); (S.M.-Z.); (D.P.-Q.)
| |
Collapse
|
5
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
6
|
González-Gómez L, Gañán J, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Sulfonic Acid-Functionalized SBA-15 as Strong Cation-Exchange Sorbent for Solid-Phase Extraction of Atropine and Scopolamine in Gluten-Free Grains and Flours. Foods 2020; 9:foods9121854. [PMID: 33322655 PMCID: PMC7763219 DOI: 10.3390/foods9121854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
A novel method was developed and applied to the determination of the most representative tropane alkaloids (TAs), atropine and scopolamine, in gluten-free (GF) grains and flours by HPLC-MS/MS. Accordingly a suitable sample treatment procedure based on solid-liquid extraction (SLE) and followed by strong cation-exchange solid-phase extraction (SCX-SPE) was optimized. SBA-15 mesostructured silica functionalized with sulfonic acids was evaluated as sorbent. The proposed method was fully validated in sorghum flour showing good accuracy with recoveries in the range of 93–105%, good linearity (R2 > 0.999) and adequate precision (RSD < 20%). Low method quantification limits (MQL) were obtained (1.5 and 2.4 µg/kg for atropine and scopolamine, respectively) and no matrix effect was observed thanks to the extraction and clean-up protocol applied. The method was applied to 15 types of GF samples of pseudocereals (buckwheat, quinoa and amaranth), cereals (teff, corn and blue corn, sorghum and millet) and legumes (red and green lentil, chickpea and pea). Atropine was found above the MQL in eight of them, with values between 7 and 78 µg/kg, while scopolamine was only found in teff flour, its concentration being 28 µg/kg. The method developed is an interesting tool for determining TAs in a variety of samples of GF grains and flours.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sierra
- Correspondence: ; Tel.: +34-91-488-70-18; Fax: +34-91-488-81-43
| |
Collapse
|
7
|
Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv Colloid Interface Sci 2020; 286:102297. [PMID: 33142210 DOI: 10.1016/j.cis.2020.102297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Food industry is always looking for more innovative and accurate ways to monitor the food safety and quality control of final products. Current detection techniques of analytes are costly and time-consuming, and occasionally require professional experts and specialized tools. The usage of nanomaterials in sensory systems has eliminated not only these drawbacks but also has advantages such as higher sensitivity and selectivity. This article first presents a general overview of the current studies conducted on the detection of spoilage and adulteration in foods from 2015 to 2020. Then, the sensory properties of nanomaterials including metal and magnetic nanoparticles, carbon nanostructures (nanotubes, graphene and its derivatives, and nanofibers), nanowires, and electrospun nanofibers are presented. The latest investigations and advancements in the application of nanomaterial-based sensors in detecting spoilage (food spoilage pathogens, toxins, pH changes, and gases) and adulterants (food additives, glucose, melamine, and urea) have also been discussed in the following sections. To conclude, these sensors can be applied in the smart packaging of food products to meet the demand of consumers in the new era.
Collapse
|
8
|
Yang J, Wang Y, Pan M, Xie X, Liu K, Hong L, Wang S. Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods 2020; 9:E1610. [PMID: 33172006 PMCID: PMC7694616 DOI: 10.3390/foods9111610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability. Combined with solid phase extraction (SPE) technique, MMOF materials have been widely used in the food pretreatment. This article introduced the new preparation strategies of different MMOF materials, systematically summarizes their applications as SPE adsorbents in the pretreatment of food contaminants and analyzes and prospects their future application prospects and development directions.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yabin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Wang S, Wang L, Zhu Y, Song Y. Fluorescent detection of S 2- based on ZnMOF-74 and CuMOF-74. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118327. [PMID: 32315951 DOI: 10.1016/j.saa.2020.118327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The detection of S2- is of great significance because excess S2- can lead to a variety of serious physiological diseases. Here, two metal-organic frameworks (MOFs), ZnMOF-74 and CuMOF-74, were synthesized by using 2,5-dihydroxy terephthalic acid with strong fluorescence as organic ligand and Zn2+ or Cu2+ as central coordination ions for S2- detection. Both as-prepared ZnMOF-74 and CuMOF-74 displayed nanospheres with a diameter of about 100 nm. Under the excitation of 353 nm, the ZnMOF-74 had a characteristic emission peak at 537 nm and the CuMOF-74 had a characteristic emission peak at 528 nm under excitation of 356 nm. The interaction of S2- and Zn2+ weakened the fluorescence of ZnMOF-74 but the interaction of S2- with Cu2+ to form CuS restored the fluorescence of CuMOF-74, so the ZnMOF-74 and CuMOF-74 were exploited as a fluorescent nanosensor for sensing S2-. The ZnMOF-74 sensor has a good linear range of 19.6 nmol L-1-90.0 μmol L-1, and the limit of detection was as low as 6.53 nmol L-1. The CuMOF-74 sensor has a good linear relationship with II0 in the S2- concentration range of 1.50 nmol L-1-125 μmol L-1, and the limit of detection was 1.50 nmol L-1. The proposed ZnMOF-74 and CuMOF-74 sensor could also detect S2- in actual samples.
Collapse
Affiliation(s)
- Shiqi Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yongmei Zhu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
10
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
11
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
12
|
Li Z, Li X, Jian M, Geleta GS, Wang Z. Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins (Basel) 2019; 12:E20. [PMID: 31906152 PMCID: PMC7020412 DOI: 10.3390/toxins12010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good electrical conductivity and a large surface area with plenty of active groups for conjugating 2D nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize recent developments in the application of 2D nanomaterial-based electrochemical biosensors for detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer technologies into electrochemical biosensors has led to an unprecedented impact on improving the assaying performance of microbial toxins, and has shown great promise in public health and environmental protection.
Collapse
Affiliation(s)
- Zhuheng Li
- Jilin Provincial Institute of Education, Changchun 130022, China;
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Girma Selale Geleta
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma 378, Ethiopia
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| |
Collapse
|
13
|
Petrucci R, Chiarotto I, Mattiello L, Passeri D, Rossi M, Zollo G, Feroci M. Graphene Oxide: A Smart (Starting) Material for Natural Methylxanthines Adsorption and Detection. Molecules 2019; 24:E4247. [PMID: 31766549 PMCID: PMC6930464 DOI: 10.3390/molecules24234247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.
Collapse
Affiliation(s)
- Rita Petrucci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| | | | | | | | | | | | - Marta Feroci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| |
Collapse
|
14
|
Ratiometric fluorometric and visual determination of cyanide based on the use of carbon dots and gold nanoclusters. Mikrochim Acta 2019; 186:809. [DOI: 10.1007/s00604-019-3803-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
|
15
|
|
16
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|