1
|
Shahabinejad F, Ghorbani M, Abbaszadeh S, Nejatian M, Taghdir M. Functional instant noodle formulation for emergency conditions: Sensory and stability characteristics. Food Sci Nutr 2024; 12:4605-4614. [PMID: 39055187 PMCID: PMC11266917 DOI: 10.1002/fsn3.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 07/27/2024] Open
Abstract
The aim of this study was to evaluate the shelf-life and sensory characteristics of a functional instant noodle preparation designed to be used in emergencies as a tactical ration. Instant noodles were selected for their global acceptability and ease of preparation. In this study, semolina flour was used as the main ingredient, and soy protein isolate was added to increase the protein content. Additionally, green tea and beef tallow were incorporated to decrease the likelihood of oxidation. Carboxymethyl cellulose was added to increase the porosity and water absorption of the dry noodles. Spirulina powder was used as a dressing for the final product before serving to increase the nutritional value and provide the consumer with the required vitamins and minerals of the day. Physical, chemical, and organoleptic properties were assessed at multiple timepoints in a 120-day period to perform an accelerated shelf-life test by determining their critical moisture content and moisture sorption isotherm curves at 30, 45, and 55°C. The shelf-life of the product was evaluated to be 1197.28 days at 30°C and 75% relative humidity in aluminum pouches. In conclusion, the product is shelf-stable at room temperature and is recommended to be stored and used in disaster conditions such as earthquakes, floods, and wars.
Collapse
Affiliation(s)
| | - Maryam Ghorbani
- Department of Pharmacology and Toxicology, Faculty of PharmacyBaqiyatallah University of Medical SciencesTehranIran
| | - Sepideh Abbaszadeh
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Mohammad Nejatian
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Maryam Taghdir
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Nutrition and Food Hygiene, Faculty of HealthBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Wang J, Li Y, Guo X, Zhu K, Wu Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024; 13:1507. [PMID: 38790811 PMCID: PMC11121694 DOI: 10.3390/foods13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.
Collapse
Affiliation(s)
- Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaona Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
3
|
Testing the Feasibility and Dietary Impact of Macaroni Fortified with Green Tea and Turmeric Curcumin Extract in Diabetic Rats. Foods 2023; 12:foods12030534. [PMID: 36766064 PMCID: PMC9914615 DOI: 10.3390/foods12030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Macaroni is a commercially available Italian food product that is popular among consumers around the world. The supplementation of green tea extract (GTE) and turmeric curcumin extract (TCE) in macaroni may serve as promising and beneficial bioactive ingredients. We aimed to produce functional macaroni, assess the degree of consumer satisfaction and study the antidiabetic activity in diabetic rats. In this study, macaroni was fortified with GTE, TCE and a mixture of GTE and TCE ratio of 1:1, w/w (GTE/TCE). The resulting products were then analyzed in terms of their chemical compositions, while the degree of consumer satisfaction was monitored and the hypoglycemic and hypolipidemic effects in streptozotocin (STZ)-rats were investigated. GTE/TCE-M exhibited the strongest antioxidant activity (p < 0.05), while phenolics were most abundant in GTE-M. The overall preference for GTE-M, TCE-M and GTE/TCE-M were within ranges of 4.7-5.1, 5.9-6.7 and 6.2-8.2, respectively, in the nine-point hedonic scale. Consumption of these three preparations of macaroni (30 and 300 mg/kg each) neither decreased nor exacerbated increasing blood glucose levels in diabetic rats, while GTE-M (30 mg/kg) tended to lower increased serum triglyceride and cholesterol levels. In conclusion, GTE/TCE-M containing high amounts of bioactive EGCG and curcumin exerted the strongest degree of antioxidant activity and received the highest level of acceptance. Importantly, consumption of GTE-M tentatively ameliorated serum lipid abnormalities in diabetic STZ-induced rats by inhibiting lipase digestion and lipid absorption. Herein, we are proposing that GTE-fortified macaroni is a functional food that can mitigate certain metabolic syndromes.
Collapse
|
4
|
Xing S, Liu L, Zhang X, Guan H, Gong H, Li H, Liu W. A mathematical model to predict the color change of fresh dough sheets under fluctuation temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang YH, Zhang YR, Yang YY, Shen JQ, Zhang QM, Zhang GZ. Effect of wheat gluten addition on the texture, surface tackiness, protein structure, and sensory properties of frozen cooked noodles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Świąder K, Florowska A. The Sensory Quality and the Physical Properties of Functional Green Tea-Infused Yoghurt with Inulin. Foods 2022; 11:foods11040566. [PMID: 35206044 PMCID: PMC8870793 DOI: 10.3390/foods11040566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to investigate the influence of the addition of inulin (3%, 6% and 9%) to green tea-infused set type yoghurt on its sensory quality and physical properties. Yogurts were made by combining green tea with milk and inulin and inoculated with freeze-dried starter cultures YO-122. Incubation was conducted at 43 °C for approximately 4.5 h until a pH value of 4.5–4.6 was achieved. For the prepared yoghurts, a panel of experts (n = 10) was selected, characterized 35 attributes and conducted a sensory quality assessment of these yoghurts using the Quantitative Descriptive Profile method. Additionally, instrumental analyses such as yield stress, adhesiveness, firmness, physical stability and color parameters were also carried out. The use of green tea infusion increased the perception of green tea flavor, bitterness, astringency, dark color of the yoghurt and the existing whey, which worsened the overall sensory quality of the yoghurt. The addition of inulin (9%) to the green tea yoghurt, increased the perception of sweet, peach flavor and aroma and improved the firmness of the yoghurt while reducing the perception of sour taste, which improved the sensory quality of the yoghurt. Both inulin and green tea affected the physical properties of the yoghurts, causing an increase in the yield stress (43%, and 20%, respectively) and deteriorated the stability of the yoghurts. Green tea affected the color of the yoghurts, causing the lightness to decrease. The L* parameter decreased from 89.80 for the control sample to 84.42 for the green tea infused yoghurt. The use of infused green tea in yoghurt production makes it necessary to use ingredients that will neutralize its adverse effects on sensory quality and physical parameters of yoghurt, and such an additive can be prebiotic fiber–inulin at a concentration of 9%.
Collapse
Affiliation(s)
- Katarzyna Świąder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW–WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-593-70-47
| | - Anna Florowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences (SGGW–WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland;
| |
Collapse
|
7
|
Preventing the browning of fresh wet noodle sheets by aqueous ozone mixing: Browning and physicochemical properties. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Li F, Zhou L, Cao J, Wang Z, Liao X, Zhang Y. Aggregation induced by the synergy of sodium chloride and high-pressure improves chlorophyll stability. Food Chem 2021; 366:130577. [PMID: 34293542 DOI: 10.1016/j.foodchem.2021.130577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/04/2022]
Abstract
The development of green vegetable processing is still limited by the imperfect green protection now. Chlorophyll (Chl), the main pigment presented in green vegetables, was studied that the effects of NaCl on the stability of it, and the synergy of NaCl and high-pressure on Chl protection. Compared to the control, the retention of Chl was increased by 80.14% and the activation energy was 62.7% higher in 7.8% NaCl solution. When the pressure was 600 MPa with 7.8% NaCl, the synergy of NaCl and high-pressure increased the Chl retention by 100%. The restriction of NaCl to H2O provided Chl with a lower polarity environment and increased the contact between Chl molecules. And the fluorescence quenching confirmed the aggregation of Chls induced by high-pressure. This study explains the mechanism of green protection by NaCl and high-pressure, broadening the horizon for the development of color protection in vegetable processing.
Collapse
Affiliation(s)
- Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Liang Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Jiarui Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Zhenhao Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China.
| |
Collapse
|
9
|
Wu XT, Guo XN, Zhu KX. Inhibition of L-Cysteine on the Browning of Fresh Wet Noodles. Foods 2021; 10:foods10061156. [PMID: 34063977 PMCID: PMC8224084 DOI: 10.3390/foods10061156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
This research explored the effect of L-cysteine on the browning of fresh wet noodles (FWN). With the increasing addition of L-cysteine (0.02–0.1%), the ΔL* decreased and Δa*, Δb* increased. The L-cysteine could reduce the pH value and polyphenol oxidase (PPO) activity and increase the retention rate of polyphenol of FWN. It suggested that L-cysteine could inhibit the browning of FWN by decreasing pH value, PPO activity, and the oxidation of polyphenols. In the in vitro PPO solution, the inhibitory effect of L-cysteine on PPO activity was related to the decrease in pH and the ability of chelating Cu2+. According to UPLC-TOF-MS analysis, L-cysteine could reduce the generation of browning products, which suggested that L-cysteine could react with the browning intermediate product (quinone) and generate a light-colored substance (-C9H10NO4S). L-cysteine effectively inhibited the browning of FWN and had the potential to be used in noodle industry.
Collapse
|
10
|
Göksel Saraç M. Evaluation of non-starch polysaccharide addition in Turkish noodles: ELECTRE techniques approach. J Texture Stud 2021; 52:368-379. [PMID: 33491201 DOI: 10.1111/jtxs.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
In the present study, the effects of non-starch polysaccharide addition into noodle samples were determined in uncooked and cooked noodle samples from cooking, physicochemical, textural, and sensorial aspects. Turkish-type noodles were obtained using apple (AFN), carrot (CFN), inulin (IFN), and pea (PFN) fibers among the non-starch polysaccharides. Moreover, the sensory analyses were performed using elimination et choixtraduisant la realite-elimination and choice translating reality (ELECTRE), one of the multi-criteria decision-making approach methods. The cooking loss values were found to be low in the final products containing a high amount of dietary fibers. The hardest product among the cooked noodles was the noodle produced using pea fiber that was also the one with the lowest water absorption value. Because of the different characteristics of dietary fibers, the noodles also have different properties. Based on the criteria selected as a result of the ELECTRE analysis performed for sensorial analysis, the most preferred product following the control sample was found to be the IFN sample. The others were ranked as the ones obtained using pea, carrot, and apple fiber.
Collapse
|
11
|
Zhao Y, Huang ZH, Zhou HM, Zhu KX, Guo XN, Peng W. Inhibition of hexose oxidase on the dark spots in fresh wet noodle sheets: A feasible prevention of dark spots. Food Chem 2020; 339:128021. [PMID: 33152859 DOI: 10.1016/j.foodchem.2020.128021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022]
Abstract
Hexose oxidase was a feasible prevention for the dark spots in the fresh wet noodle sheets (FWNS). The chemical mechanism that hexose oxidase recucing the melanins of dark spots was discussed basis on the UPLC-TOF-MS analysis of the polyphenol oxidase (PPO)-catechol system. In the process of PPO browning, hexose oxidase catalyzed the oxidation of o-benzoquinone derivatives and their oligomers, hindering the formation of melanins. Hexose oxidase was efficient in FWNS with low ash content when water addition was 24%~44% or pH range was 4 ~ 7.5. Hexose oxidase could inhubit dark spots in the presence of 10 metal ions. The recommended addition amount was 40 ~ 60 ppm, by which the dark spots could be compolitely inhibited. Hexose oxidase was also suitable for wholewheat and oat FWNS, ΔL6d of wholewheat and oat FWNS were reduced by 4 and 7.98, respectively.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ze-Hua Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; College of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan 450001, People's Republic of China
| | - Hui-Ming Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Peng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
12
|
Yu K, Zhou HM, Zhu KX, Guo XN, Peng W. Physicochemical changes in the discoloration of dried green tea noodles caused by polyphenol oxidase from wheat flour. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Water Cooking Stability of Dried Noodles Enriched with Different Particle Size and Concentration Green Tea Powders. Foods 2020; 9:foods9030298. [PMID: 32151003 PMCID: PMC7143046 DOI: 10.3390/foods9030298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
Incorporating green tea powder (GTP) into dried noodles enriched the functional characteristics of noodles. To achieve the maximum benefits from GTP, the water cooking stability of dried green tea noodles (DGTN) should be investigated. Indeed, antioxidant activities and phenolic compounds of DGTN after water cooking markedly decreased. The results showed that large GTP particles caused the increased cooking loss of DGTN, but the phenolic compound loss of DGTN prepared with them was low after cooking. Analysis of texture properties and microstructure showed that DGTN with a 2% concentration of large GTP particles formed some holes in the noodles’ network, and its breaking strength decreased. However, we observed that many GTP particles adhered to the surface of DGTN prepared with small GTP particles, and they were easier to lose after water cooking. Comprehensive analysis concluded that cooking loss, functional compounds retention and textural properties of DGTN were related to GTP particle size and concentration via the microstructure.
Collapse
|
15
|
Zhang Y, Liu C, Hong J, Li L, Zheng X, Bian K, Guan E. Effect of heat treatment and salt addition on the physicochemical properties and quality of fresh noodles. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yanyan Zhang
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Chong Liu
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Jing Hong
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Limin Li
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Xueling Zheng
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Ke Bian
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| | - Erqi Guan
- College of Grain and Food Henan University of Technology Zhengzhou 450001 China
| |
Collapse
|